文科数学数列高考题及答案

合集下载

高考数学(文科)习题 第六章 数列 6-3-2 word版含答案

高考数学(文科)习题 第六章 数列 6-3-2 word版含答案

1.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )点击观看解答视频A .6B .5C .4D .3答案 C解析 ∵a 4=2,a 5=5,∴a 4a 5=a 1a 8=a 2a 7=a 3a 6=10,∴lg a 1+lg a 2+…+lg a 8=lg (a 1a 2…a 8)=lg (a 1a 8)4=lg (a 4a 5)4=4lg (a 4a 5)=4lg 10=4,选C.2.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=( )A .2B.73C.83D .3 答案 B解析 由等比数列的性质得:S 3,S 6-S 3,S 9-S 6仍成等比数列,于是,由已知得S 6=3S 3,∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,∴S 9=7S 3,∴S 9S 6=73,故选B. 3.已知等比数列{a n }的前n 项积记为Ⅱn ,若a 3a 4a 8=8,则Ⅱ9=( )点击观看解答视频A .512B .256C .81D .16答案 A解析 由题意可知,a 3a 4a 7q =a 3a 7a 4q =a 3a 7a 5=a 35=8,Ⅱ9=a 1a 2a 3…a 9=(a 1a 9)(a 2a 8)(a 3a 7)(a 4a 6)a 5=a 95,所以Ⅱ9=83=512.故选A.4.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.答案 2n -1解析 ∵⎩⎪⎨⎪⎧ a 1+a 4=9a 2a 3=8,∴⎩⎪⎨⎪⎧ a 1+a 4=9a 1a 4=8,则a 1,a 4可以看作一元二次方程x 2-9x +8=0的两根,故⎩⎪⎨⎪⎧ a 1=1a 4=8或⎩⎪⎨⎪⎧ a 1=8a 4=1, ∵数列{a n }是递增的等比数列,∴⎩⎪⎨⎪⎧ a 1=1a 4=8,可得公比q =2,∴前n 项和S n =2n-1. 5.设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.答案 -12解析 S 1=a 1,S 2=2a 1-1,S 4=4a 1-6.故(2a 1-1)2=a 1×(4a 1-6)6.成等差数列的三个正数的和等于15,并且这三个数分别加上列{b n }中的b 3,b 4,b 5.(1)求数列{b n }的通项公式;(2)求数列{b n }的前n 项和S n .解 (1)设成等差数列的三个正数分别为a -d ,a ,a +d ,则(a -d )+a +(a +d )=15,解得a =5,∴b 3=7-d ,b 4=10,b 5=18+d .∵b 3,b 4,b 5成等比数列,∴b 3b 5=b 24,即(7-d )(18+d )=102,化简,得d 2+11d -26=0,解得d =2或d =-13(舍去),∴b 3=5,b 4=10,b 5=20,∴数列{b n }的公比q =105=2, 数列{b n }的通项公式为b n =b 3q n -3=5×2n -3.(2)由b 3=5,q =2,得b 1=b 3q 2=54, ∴数列{b n }是首项为b 1=54,公比为q =2的等比数列,b11-q n1-q =5×2n-2-54.∴数列{b n}的前n项和S n=。

高考文科数学数列经典大题训练(附答案)

高考文科数学数列经典大题训练(附答案)

1.〔此题总分值14 分〕设数列a的前n项和为S n,且S n4a n3(n1,2,),n〔1〕证明: 数列a n是等比数列;〔2〕假设数列b满足b n1a n b n(n1,2,),b12,求数列b n的通项公n式.2.〔本小题总分值12分〕等比数列a的各项均为正数,且n2 2a3a1,a9aa.123261.求数列a n的通项公式.2.设blogaloga......loga,求数列n31323n 1bn的前项和.3.设数列a满足n2n1 a12,a1a32nn〔1〕求数列a的通项公式;n〔2〕令b n na n,求数列的前n项和S n3.等差数列{a n}的前3项和为6,前8项和为﹣4.〕,求数列{b n}的前n项和S n.〔Ⅰ〕求数列{a n}的通项公式;n﹣1*〔Ⅱ〕设b n=〔4﹣a n〕q〔q≠0,n∈N× 5.数列{a n}满足,,n∈N.〔1〕令b n=a n+1﹣a n,证明:{b n}是等比数列;〔2〕求{a n}的通项公式....4.解:〔1〕证:因为S n4a n3(n1,2,),那么S n14a n13(n2,3,),所以当n2时,a SS14a4a1,nnnnn4整理得aa1.5分nn3由S43,令n1,得a14a13,解得a11.n an所以分a是首项为1,公比为n43的等比数列.7〔2〕解:因为4n1 a(),n3由b1ab(n1,2,),得nnn4n1 bb().9分n1n3由累加得()()()b n bbbbbbb12`132nn14n11()43n1=23()1,〔n2〕,43134n1 当n=1时也满足,所以)1b3(.n35.解:〔Ⅰ〕设数列{a n}的公比为q,由 2a39a2a6得32a39a4所以21q。

有条件9可知a>0,故1q。

311a。

故数列{a n}的通项式为a n=33由2a13a21得2a13a2q1,所以1n。

〔Ⅱ〕b logaloga...logan111111(12...n)n(n1)2故12112() bn(n1)nn1n111111112n ...2((1)()...()) bbb223nn1n1 12n...所以数列1{}bn2n 的前n 项和为n16.解:〔Ⅰ〕由,当n≥1 时,a1[(a1a)(a a1)(a2a1)]a1nnnnn2n12n33(222)222(n1)1。

高考文科数学大题专题练习 (3)

高考文科数学大题专题练习 (3)
因此数列{an}的通项公式为an=2n+1. 由Tn+2 n=bn-1,得Tn=2bn-2-n. 当n=1时,b1=2b1-2-1,b1=3. 当n≥2时,Tn-1=2bn-1-2-(n-1),且Tn-Tn-1=bn, 所以bn=2bn-2-n-[2bn-1-2-(n-1)], bn=2bn-1+1,bn+1=2(bn-1+1),bbn-n+1+11=2.
第7页
3.(2019·长郡中学月考)设数列{an}的前n项和为Sn,且Sn= n2-n+1,在正项等比数列{bn}中,b2=a2,b4=a5.
(1)求{an}和{bn}的通项公式; (2)设cn=anbn,求数列{cn=S1=1; 当n≥2时,an=Sn-Sn-1=(n2-n+1)-[(n-1)2-(n-1)+1]
第6页
b1=3对上式也成立,所以bn=n(n+2),即
1 bn

1 n(n+2)

121n-n+1 2,
所以Tn=
1 2
[
1-13

12-14

13-15
+…+
n-1 1-n+1 1

1n-n+1 2]=12(1+12-n+1 1-n+1 2)=34-2(n+21n)+(3n+2).
第14页
5.(2019·郑州市第一次质量预测)已知数列{an}为等比数 列,首项a1=4,数列{bn}满足bn=log2an,且b1+b2+b3=12.
(1)求数列{an}的通项公式; (2)令cn=bn·4bn+1+an,求数列{cn}的前n项和Sn.
第15页
解析 (1)由bn=log2an和b1+b2+b3=12,得log2(a1a2a3)= 12,∴a1a2a3=212.
设等比数列{an}的公比为q,∵a1=4,∴a1a2a3=4·4q·4q2= 26·q3=212,解得q=4,∴an=4·4n-1=4n.

2022年全国乙卷高考文科数学试卷及答案解析

2022年全国乙卷高考文科数学试卷及答案解析

2022年全国乙卷高考文科数学试卷及答案解析2022全国乙卷高考文科数学试题及答案高考数学答题技巧一、三角函数题注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。

二、数列题1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。

利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。

简洁的是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。

三、立体几何题1、证明线面位置关系,一般不需要去建系,更简单;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。

四、导数、极值、最值、不等式恒成立(或逆用求参)问题1、先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);2、注意最后一问有应用前面结论的意识;3、注意分论讨论的思想;4、不等式问题有构造函数的意识;5、恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);6、整体思路上保6分,争10分,想14分。

五、概率问题1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2、搞清是什么概率模型,套用哪个公式;3、记准均值、方差、标准差公式;4、求概率时,正难则反(根据p1+p2+。

2023年高考数学(全国甲卷)文科数学(含答案及详细解析)

2023年高考数学(全国甲卷)文科数学(含答案及详细解析)

2023年高考数学真题试卷(全国甲卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A.B.C.D.2.()A.B.1C.D.3.已知向量,则()A.B.C.D.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.B.C.D.5.记为等差数列的前项和.若,则()A.25B.22C.20D.156.执行下边的程序框图,则输出的()A.21B.34C.55D.897.设为椭圆的两个焦点,点在上,若,则()A.1B.2C.4D.58.曲线在点处的切线方程为()A.B.C.D.9.已知双曲线的离心率为,其中一条渐近线与圆交于A,B两点,则()A.B.C.D.10.在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.311.已知函数.记,则()A.B.C.D.12.函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记为等比数列的前项和.若,则的公比为.14.若为偶函数,则.15.若x,y满足约束条件,则的最大值为.16.在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.记的内角的对边分别为,已知.(1)求;(2)若,求面积.18.如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.841 6.63520.已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.21.已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.22.已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.23.已知.(1)求不等式的解集;(2)若曲线与轴所围成的图形的面积为2,求.答案解析部分1.【答案】A【解析】【解答】,故选:A【分析】先计算补集,再求并集即得答案.2.【答案】C【解析】【解答】,故选:C【分析】利用复数乘法运算计算由得出答案。

2023年江西省高考文科数学真题及参考答案

2023年江西省高考文科数学真题及参考答案

2023年江西省高考文科数学真题及参考答案一、选择题1.=++3222ii ()A .1B .2C .5D .52.设集合{}8,6,4,2,1,0=U ,集合{}6,4,0=M ,{}6,1,0=N ,则=⋃N C M U ()A .{}8,6,4,2,0B .{}8,6,4,1,0C .{}8,6,4,2,1D .U3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B .26C .28D .304.在ABC ∆中,内角C B A ,,的对边分别是c b a ,,,若c A b B a =-cos cos ,且5π=C ,则=∠B ()A .10πB .5πC .103πD .52π5.已知()1-=ax xe xe xf 是偶函数,则=a ()A .2-B .1-C .1D .26.正方形ABCD 的边长是2,E 是AB 的中点,则=⋅ED EC ()A .5B .3C .52D .57.设O 为平面坐标系的坐标原点,在区域(){}41,22≤+≤y x y x 内随机取一点A ,则直线OA 的倾斜角不大于4π的概率为()A .81B .61C .41D .218.函数()23++=ax x x f 存在3个零点,则a 的取值范围是()A .()2-∞-,B .()3-∞-,C .()14--,D .()0,3-9.某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A .65B .32C .21D .3110.已知函数()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,直线6π=x 和32π=x 为函数()x f y =的图象的两条对称轴,则=⎪⎭⎫⎝⎛-125πf ()A .23-B .21-C .21D .2311.已知实数y x ,满足042422=---+y x y x ,则y x -的最大值是()A .2231+B .4C .231+D .712.已知B A ,是双曲线1922=-y x 上两点,下列四个点中,可为AB 中点的是()A .()1,1B .()2,1-C .()3,1D .()4,1-二、填空题13.已知点()51,A 在抛物线px y C 22=:上,则A 到C 的准线的距离为.14.若⎪⎭⎫ ⎝⎛∈30πθ,,21tan =θ,则=-θθcos sin .15.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则y x z -=2的最大值为.16.已知点C B A S ,,,均在半径为2的球面上,ABC ∆是边长为3的等边三角形,SA ⊥平面ABC ,则=SA .三、解答题(一)必做题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i i y x ,()10,2,1 =i ,试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记i i i y x z -=()10,2,1 =i ,记1021,z z z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果1022s z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.记n S 为等差数列{}n a 的前n 项和,已知112=a ,4010=S .(1)求{}n a 的通项公式;(2)求数列{}n a 前n 项和n T .19.如图,在三棱锥ABC P -中,BC AB ⊥,2=AB ,22=BC ,6==PC PB ,BC AP BP ,,的中点分别为O E D ,,,点F 在AC 上,AO BF ⊥.(1)证明:EF ∥平面ADO ;(2)若︒=∠120POF ,求三棱锥ABC P -的体积.20.已知函数()()1ln 1+⎪⎭⎫⎝⎛+=x a x x f .(1)当1-=a 时,求曲线()x f 在()()1,1f 的切线方程;(2)若()x f 在()∞+,0单调递增,求a 的取值范围.21.已知椭圆C :()012222>>=+b a bx a y 的离心率为35,点()02,-A 在C 上.(1)求C 的方程;(2)过点()3,2-的直线交曲线C 于Q P ,两点,直线AQ AP ,交y 轴于N M ,两点,证明:线段MN 中点为定点.(二)选做题【选修4-4】22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤=24sin 2πθπθρ,曲线2C :⎩⎨⎧==ααsin 2cos 2y x (α为参数,παπ<<2).(1)写出1C 的直角坐标方程;(2)若直线m x y +=既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】23.已知()22-+=x x x f .(1)求不等式()x x f -≤6的解集;(2)在直角坐标系xOy 中,求不等式组()⎩⎨⎧≤-+≤06y x yx f 所确定的平面区域的面积.参考答案一、选择题123456789101112CADCDBCBADCD1.解:∵i i i i 212122232-=--=++,∴()52121222232=-+=-=++i ii 3.解:如图所示,在长方体1111D C B A ABCD -中,2==BC AB ,31=AA ,点K J I H ,,,为所在棱上靠近点1111,,,A D C B 的三等分点,N M L O ,,,为所在棱的中点,则三视图所对应的几何体为长方体1111D C B A ABCD -去掉长方体11LMHB ONIC -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方体.4.解:∵C B A -=+π,∴()B A C +=sin sin ,∵c A b B a =-cos cos ,由正弦定理得:B A B A C A B B A sin cos cos sin sin cos sin cos sin +==-∴0cos sin =A B ,∵()π,0∈B ,∴0sin ≠B ,∴0cos =A ,∴2π=A ∵5π=C ,∴10352πππ=-=B .5.解:∵()1-=ax xe xe xf 是偶函数,则()()=--x f x f ()()[]01111=--=-------axx a x ax x axx e e e x e e x e xe ,又∵x 不恒为0,可得()01=--xa xee ,则()x a x 1-=,∴2=a .6.解:以AD AB ,为基底表示:AD AB BC EB EC +=+=21,AD AB AD EA ED +-=+=21,∴31441212122=-=-=⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+=⋅AB AD AD AB AD AB ED EC7.解:∵区域(){}41,22≤+≤y x y x 表示以()00,O 为圆心,外圆半径2=R ,内圆半径1=r 的圆环,则直线OA 的倾斜角不大于4π的部分如阴影所示,在第一象限对应的圆心角4π=∠MON ,结合对称性可得所求概率为41242=⨯=ππp .8.解:由条件可知()032=+='a x x f 有两根,∴0<a 要使函数()x f 存在3个零点,则03>⎪⎪⎭⎫ ⎝⎛--a f 且03<⎪⎪⎭⎫⎝⎛-a f ,解得3-<a 9.解:有条件可知656626=⨯=A P .10.解:∵()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,∴26322πππ=-=T ,且0>ω,则π=T ,22==Tπω.当6π=x 时,()x f 取得最小值,则Z k k ∈-=+⋅,2262ππϕπ,则Z k k ∈-=,652ππϕ,不妨取0=k 则()⎪⎭⎫ ⎝⎛-=652sin πx x f ,则2335sin 125=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππf .11.解:由042422=---+y x y x 得()()91222=-+-y x ,令t y x =-,则0=--t y x ,圆心()1,2到直线0=--t y x 的距离为321111222≤-=+--t t ,解得231231+≤≤-t ,∴y x -的最大值为231+.12.解:由对称性只需考虑()1,1,()2,1,()3,1,()4,1即可,注意到()3,1在渐近线上,()1,1,()2,1在渐近线一侧,()4,1在渐近线的另一侧.下证明()4,1点可以作为AB 的中点.设直线AB 的斜率为k ,显然k 存在.设()41+-=x k y l AB :,直线与双曲线联立()⎪⎩⎪⎨⎧=-+-=194122y x x k y ,整理得()()()094429222=------k x k k xk,只需满足⎩⎨⎧>∆=+0221x x ,∴()29422=--k k k ,解得49=k ,此时满足0>∆.二、填空题13.49;14.55-;15.8;16.213.解:由题意可得:()1252⨯=p ,则52=p ,∴抛物线的方程为x y 52=,准线方程为45-=x ,点A 到C 的准线的距离为49451=⎪⎭⎫ ⎝⎛--.14.解:∵⎪⎭⎫⎝⎛∈20πθ,,∴0cos ,0sin >>θθ,由⎪⎩⎪⎨⎧===+21cos sin tan 1cos sin 22θθθθθ,解得552cos ,55sin ==θθ,∴55cos sin -=-θθ.15.解:作出可行域如下图所示,∵y x z -=2,∴z x y -=2,联立有⎩⎨⎧=+-=-9213y x y x ,解得⎩⎨⎧==25y x 设()2,5A ,显然平移直线x y 2=使其经过点A ,此时截距z -最小,则z 最大,代入得8=z .16.解:如图所示,根据题中条件2==OS OA ,3===AC BC AB ,∴3323321=⎪⎪⎭⎫ ⎝⎛⨯⨯==A O r ,∴()⎪⎩⎪⎨⎧+-=+=2121221212A O OO SA OS A O OO OA即()⎪⎩⎪⎨⎧+-=+=222222r d SA R r d R ,代入数据得()⎪⎩⎪⎨⎧+-=+=343422d SA d ,解得2=SA 或1-=SA (舍)三、解答题(一)必做题17.解:(1)∵i i i y x z -=()10,2,1 =i ,∴9536545111=-=-=y x z ;62=z ;83=z ;84-=z ;155=z ;116=z ;197=z ;188=z ;209=z ;1210=z .()()[]1112201819111588691011011021=++++++-+++⨯=++=z z z z ∵()∑=-=1012101i i z z s ,将各对应值代入计算可得612=s (2)由(1)知:11=z ,612=s ,∴5122106121061210222=⨯==s ,121112==z ,∴1022s z ≥∴甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高18.解:(1)设等差数列{}n a 的公差为d ,由题意可得⎪⎩⎪⎨⎧=⨯+==+=402910101111012d a S d a a 解得⎩⎨⎧-==2131d a ,∴数列{}n a 的通项公式为()n d n a a n 21511-=-+=.(2)由(1)知n a n 215-=,令0215>-=n a n 得*∈≤<N n n ,70∴当*∈≤<N n n ,70时,()n n a a n T n n 14221+-=+=;当*∈≥N n n ,8时,nn a a a a a a T +++++++= 98721n a a a a a a ----+++= 98721()n a a a a a a +++-+++= 98721()981414492222777+-=+--⨯=-=--=n n n n T T T T T n n 综上所述⎪⎩⎪⎨⎧∈≤++-∈≤+-=**Nn n n n Nn n n n T n ,7,814,7,142219.解:(1)∵BC AB BF AO ⊥⊥,,∴OAB FBC ∠=∠.22tan ==∠AB OB OAB ,22tan ==∠BC AB ACB ,∴ACB FBC ∠=∠.又点O 为BC 中点,∴BC OF ⊥.又BC AB ⊥∴AB OF ∥.∴点F 为AC 中点.∵点E 为P A 中点,∴PC EF ∥.∵点O D ,分别为BC BP ,中点,∴PC DO ∥,即EFDO ∥∵⊄EF 平面ADO ,⊂DO 平面ADO ,∴EF ∥平面ADO .(2)过点P 作OF PH ⊥,垂足为H .由(1)知BC OF ⊥,在PBC ∆中,PC PB =,∴BC PO ⊥.∵O PO OF =⋂,∴BC ⊥平面POF .又⊂PH 平面POF ,∴PH BC ⊥.又∵OF PH ⊥,O BC OF =⋂,∴PH ⊥平面ABC .在PBC ∆中,222=-=OC PC PO .在POH Rt ∆中,︒=∠60POH ,3sin =∠⋅=POH PO PH ∴362213131=⋅⋅⨯=⋅=∆-BC AB PH S PH V ABC ABC P .20.解:(1)(1)当1-=a 时,()(),1ln 11+⎪⎭⎫⎝⎛-=x x x f ,则()()11111ln 12+⨯⎪⎭⎫⎝⎛-++⨯-='x x x x x f ,据此可得()()2ln 1,01-='=f f ,函数在()()11f ,处的切线方程为()12ln 0--=-x y ,即()02ln 2ln =-+y x .(2)由题意知()()()()()11ln 11111ln 1222+++-+=+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-='x x x x x ax x a x x x x f .若()x f 在()∞+,0上单调递增,则方程()()01ln 12≥++-+x x x ax 在()∞+,0上恒成立,令()()()0,1ln 12>++-+=x x x x ax x h ,则()()1ln 2+-='x ax x h .当21≥a 时,()()01ln 2≥+-='x ax x h 成立,()x h 单调递增且()00=h ,()0≥x h 成立,符合题意.当210<<a 时,()()()0112,1ln 2=+-=''+-='x a x h x ax x h ,则121-=a x ,则()x h '在⎪⎭⎫ ⎝⎛-121,0a 上单调递减,在⎪⎭⎫ ⎝⎛∞+-,121a 上单调递增,()00='h 则()x h 在⎪⎭⎫⎝⎛-121,0a 上单调递减,()00=h ,则⎪⎭⎫⎝⎛-∈121,0a x 上时,()0<x h 不合题意,舍去.当0≤a 时,()()01ln 2<+-='x ax x h ,()x h 单调递减,()00=h ,则()0<x h 不合题意,舍去.∴a 的取值范围为⎪⎭⎫⎢⎣⎡∞+,21.21.解:(1)由题意可得⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==352222a c e c b a b ,解得⎪⎩⎪⎨⎧===523c b a ,∴椭圆的方程为14922=+x y 。

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。

2024全国高考真题 全国甲卷 文科数学+答案

2024全国高考真题  全国甲卷  文科数学+答案

三、解答题:共 70 分.解答应写出文字说明,证明过程或演算步骤.第 17 题第 21 题为必
考题,每个考题考生必须作答.第 22、23 题为选考题,考生根据要求作答.
(一)必考题:共 60 分.
15. 已知等比数列{ }的前项和为 ,且2 = 3+1 − 3.
(1)求{ }的通项公式;
【12 题答案】2
【13 题答案】64
【14 题答案】(−2,1)
三、解答题:
(一)必考题:共 60 分.
【15 题答案】
−1
(1) = (5)
3ห้องสมุดไป่ตู้
3 5
3
(2) ( ) −
2 3
2
【16 题答案】
(1)证明见详解;
6√13
(2)
13
【17 题答案】
(1)见解析
(2)见解析
【18 题答案】


C.
D.
9. 已知
cos

= 3 ,则tan ( + 4 ) =(
cos − sin
A. 2√3 + 1
B. 2√3 − 1

C.
√3
2
D. 1 − √3
10. 设、是两个平面,、是两条直线,且 ∩ = .下列四个命题:
.
①若//,则//或//
②若 ⊥ ,则 ⊥ , ⊥
(2)求点到的距离.
17 已知函数() = ( − 1) − + 1.
(1)求() 单调区间;
(2)若 ≤ 2时,证明:当 > 1时, f ( x ) e
18. 设椭圆:
的的
2
2
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文科数学数列高考题及答案
数列是数学中重要的知识点,它是指一个数字依次出现的有规律的序列,几何数列是按正确的顺序由若干数组成的一类数列。

在数学高考中,对数列的考查也是很重要的,下面就来看看数学高考几何数列题目及答案。

1、若等比数列{an}的前5项依次为3,-6,12,-24,48,则第6项的值为()
A. -96
B. -92
C. 96
D. 92
答案:A. -96
证明:由题意,可得等比数列an的前五项为3,-6,12,-24,48,该数列的公比为
$q=\frac{-6}{3}=-2$,故题中第六项的值为:$a_6=a_5\times q^2=48\times(-2)^2=-96$。

所以选项A为正确答案。

2、若复数等比数列{z1,z2,z3,…}的前两项为z1=1+2i,z2=2+i,则第五项的共轭复数z5?()
A. 2-3i
B. -2+3i
C. -2-3i
D. 2+3i
答案:C. -2-3i
证明:由题意可知,等比数列的公比$q=\frac{z2}{z1}=\frac{2+i}{1+2i}=\frac{2-i}{1-2i}=-2-i$,故第五项的值为:$z_5=z_1\times(q)^4=(1+2i)\times(-2-i)^4=-2-3i$,该数列的共轭复数为$\overline{z_5}=-2+3i$。

所以正确答案为C。

3、已知等腰三角形的两条直角边分别为x,y,若直角边x,y成等比数列,则该数列的公比的值是()
A. $\frac{1}{2}$
B. $\frac{-1}{2}$
C. $\frac{2}{3}$
D. $\frac{2}{1}$
答案:B. $\frac{-1}{2}$
证明:由直角边构成的等腰三角形,有$y=\frac{1}{2}x$,故x、y构成的等比数列公比为$q=\frac{y}{x}=\frac{\frac{1}{2}x}{x}=\frac{1}{2}$。

由于x、y是等比数列,故公比$q$为负数,即$q=-\frac{1}{2}$。

所以答案选B.$\frac{-1}{2}$。

以上就是有关数学高考几何数列题目及答案的详细介绍,从中可以看出,学习数列的考题时,要准确弄清楚数列的特点,仔细分析题目,才能准确地推断出正确的结果。

只有了解了数列的规律,才能正确地解答题目,获取更高的分数。

相关文档
最新文档