光电耦合器的应用与使用注意事项

合集下载

光电耦合器用途

光电耦合器用途

光电耦合器是一种将光信号转换成电信号或者将电信号转换成光信号的器件。

它由发光二极管(LED)和光敏二极管(光电二极管)组成,可以将一个电路中的电信号隔离开来,在不同电路之间传递信号。

光电耦合器的主要用途如下:
1. 隔离信号:当需要在两个电路之间传输信号时,为了避免电路之间相互干扰,使用光电耦合器将信号进行隔离,可以有效地避免信号噪声和电磁干扰。

2. 传输信号:当需要在两个电路之间传输信号时,使用光电耦合器将电信号转换成光信号,然后再在另一个电路中将光信号转换成电信号,从而完成信号传输,这种方法可以减少信号损耗和传输误差。

3. 调节电平:光电耦合器也可以用来调节电平。

例如,当输出信号的电平高于输入信号电路的工作电平时,可以使用光电耦合器将输出信号转换成光信号,然后在另一个电路中将光信号转换成所需的电信号。

4. 触发器:光电耦合器也可以用作触发器。

当需要在一个电路中检测另一个电路的信号时,通过使用光电耦合器将信号转换成光信号,然后再在触发器电路中将光信号转换成电信号,就可以完成触发器的
功能。

总之,光电耦合器在电子设备中有着广泛的应用。

例如在电源、控制系统、通信等领域中均有应用。

模拟电子技术光电耦合器-教学文稿

模拟电子技术光电耦合器-教学文稿

二、知识准备
(二) 光电耦合器的基本工作特性
(3)光电耦合器可作为线性耦合器使用。 在发光二极管上提供一个偏置电流,再把信号电压通过电阻耦合到发
光二极管上,这样光电晶体管接收到的是在偏置电流上增、减变化的光信 号,其输出电流将随输入的信号电压作线性变化。光电耦合器也可工作于 开关状态,传输脉冲信号。在传输脉冲信号时,输入信号和输
高等职业教育数字化学习中心
电气自动化技术专业教学资源库
电工电子技术
主 讲:韩振花
单击此处编辑母版标题样式
讲授内容
项目六:常用半导体器件 知识点 光电耦合器
目录
01 02 03 04
明确任务:光电耦合器 知识准备:光电耦合器的工作原理 知识深化:光电耦合器的应用 归纳总结
一、明确任务
(一)光电耦合器
二、知识准备
(四) 光电耦合器的选用
选择光电耦合器注意事项 : (1)在光电耦合器的输入部分和输出部分必须分别采用独立的电源,若两 端共用一个电源,则光电耦合器的隔离作用将失去意义。 (2)当用光电耦合器来隔离输入输出通道时,必须对所有的信号(包括数 位量信号、控制量信号、状态信号)全部隔离,使得被隔离的两边没有任何 电气上的联系,否则这种隔离是没有意义的。
对于开关电路,往往要求控制电路和开关电
路之间要有很好的电隔离,这对于一般的电子开
关来说是很难做到的,但采用光电耦合器就很容
易实现了。图1中所示电路就是用光电耦合器组
成的简单开关电路。
图1 光电耦合器组成的开关电路
二、知识准备
(一) 光电耦合器的工作原理
光电耦合器是一种把红外光发射器件和红外光接受器件以及信号处理电路 等封装在同一管座内的器件。当输入电信号加到输入端发光器件LED上,LED 发光,光接受器件接受光信号并转换成电信号,然后将电信号直接输出,或者 将电信号放大处理成标准数字电平输出,这样就实现了“电-光-电”的转换 及传输,光是传输的媒介,因而输入端与输出端在电气上是绝缘的,也称为电 隔离。

光耦的使用者注意事项

光耦的使用者注意事项

光电耦合器(简称光耦),是一种把发光元件和光敏元件封装在同一壳体内,中间通过电→光→电的转换来传输电信号的半导体光电子器件。

光电耦合器可根据不同要求,由不同种类的发光元件和光敏元件组合成许多系列的光电耦合器。

目前应用最广的是发光二极管和光敏三极管组合成的光电耦合器,其内部结构如图1a所示。

光耦以光信号为媒介来实现电信号的耦合与传递,输入与输出在电气上完全隔离,具有抗干扰性能强的特点。

对于既包括弱电控制部分,又包括强电控制部分的工业应用测控系统,采用光耦隔离可以很好地实现弱电和强电的隔离,达到抗干扰目的。

但是,使用光耦隔离需要考虑以下几个问题:① 光耦直接用于隔离传输模拟量时,要考虑光耦的非线性问题;② 光耦隔离传输数字量时,要考虑光耦的响应速度问题;③ 如果输出有功率要求的话,还得考虑光耦的功率接口设计问题。

1 光电耦合器非线性的克服光电耦合器的输入端是发光二极管,因此,它的输入特性可用发光二极管的伏安特性来表示,如图1b所示;输出端是光敏三极管,因此光敏三极管的伏安特性就是它的输出特性,如图1c所示。

由图可见,光电耦合器存在着非线性工作区域,直接用来传输模拟量时精度较差。

图1 光电耦合器结构及输入、输出特性解决方法之一,利用2个具有相同非线性传输特性的光电耦合器,T1和T2,以及2个射极跟随器A1和A2组成,如图2所示。

如果T1和T2是同型号同批次的光电耦合器,可以认为他们的非线性传输特性是完全一致的,即K1(I1)=K2(I1),则放大器的电压增益G=Uo/U1=I3R3/I2R2=(R3/R2)[K1(I1)/K2(I1)]=R3/R2。

由此可见,利用T1和T2电流传输特性的对称性,利用反馈原理,可以很好的补偿他们原来的非线性。

图2 光电耦合线性电路另一种模拟量传输的解决方法,就是采用VFC(电压频率转换)方式,如图3所示。

现场变送器输出模拟量信号(假设电压信号),电压频率转换器将变送器送来的电压信号转换成脉冲序列,通过光耦隔离后送出。

光电耦合器使用常识

光电耦合器使用常识

光电耦合器使用常识简易测试方法由于光电耦合器的组成方式不尽相同,所以在检测时应针对不同的结构特点,采取不同的检测方法。

例如,在检测普通光电耦合器的输入端时,一般均参照红外发光二极管的检测方法进行。

对于光敏三极管输出型的光电耦合器,检测输出端时应参照光敏三极管的检测方法进行。

1.万用表检测法。

这里以MF50型指针式万用表和4脚PC817型光电耦合器为例,说明具体检测方法:首先,按照图1(a)所示,将指针式万用表置于“R×100”(或“R×1k”)电阻挡,红、黑表笔分别接光电耦合器输入端发光二极管的两个引脚。

如果有一次表针指数为无穷大,但红、黑表笔互换后有几千至十几千欧姆的电阻值,则此时黑表笔所接的引脚即为发光二极管的正极,红表笔所接的引脚为发光二极管的负极。

然后,按照图1(b)所示,在光电耦合器输入端接入正向电压,将指针式万用表仍然置于“R×100”电阻挡,红、黑表笔分别接光电耦合器输出端的两个引脚。

如果有一次表针指数为无穷大(或电阻值较大),但红、黑表笔互换后却有很小的电阻值(<100Ω),则此时黑表笔所接的引脚即为内部NPN型光敏三极管的集电极c、红表笔所接的引脚为发射极e。

当切断输入端正向电压时,光敏三极管应截止,万用表指数应为无穷大。

这样,不仅确定了4脚光电耦合器PC817的引脚排列,而且还检测出它的光传输特性正常。

如果检测时万用表指针始终不摆动,则说明光电耦合器已损坏。

图1 光电耦合器的检测需要说明的是:光电耦合器中常用红外发光二极管的正向导通电压较普通发光二极管要低,一般在1.3V以下,所以可以用指针式万用表的“R×100”电阻挡直接测量,并且图1(b)中的电池G电压取1.5V(用1节5号电池)即可。

还可用图1(a)所示的万用表接线直接取代图1(b)所示的输入端所接正向电压(即电阻器R和电池G),使测量更方便,只不过需要增加一块万用表。

至于多通道光电耦合器的检测,应首先将所有发光二极管的管脚判别出来,然后再确定对应的光敏三极管的管脚。

光电耦合器的作用

光电耦合器的作用

光电耦合器的作用光电耦合器的作用简单描述:用来隔离高频电路与低频电路,高频电路产生的高频信号会干扰低频电路,用光耦合器既能连接两个部分又能屏蔽高频信号。

光电耦合器的作用详解:由于光耦种类繁多,结构独特,优点突出,因而其应用十分广泛,主要应用以下场合:(1) 在逻辑电路上的应用光电耦合器可以构成各种逻辑电路,由于光电耦合器的抗干扰性能和隔离性能比晶体管好,因此,由它构成的逻辑电路更可靠。

(2) 作为固体开关应用在开关电路中,往往要求控制电路和开关之间要有很好的电隔离,对于一般的电子开关来说是很难做到的,但用光电耦合器却很容易实现。

(3) 在触发电路上的应用将光电耦合器用于双稳态输出电路,由于可以把发光二极管分别串入两管发射极回路,可有效地解决输出与负载隔离地问题。

(4) 在脉冲放大电路中的应用光电耦合器应用于数字电路,可以将脉冲信号进行放大。

(5) 在线性电路上的应用线性光电耦合器应用于线性电路中,具有较高地线性度以及优良地电隔离性能。

(6) 特殊场合的应用光电耦合器还可应用于高压控制,取代变压器,代替触点继电器以及用于A/D电路等多种场合。

光电耦合器简介:光电耦合器是一种把红外光发射器件和红外光接受器件以及信号处理电路等封装在同一管座内的器件。

当输入电信号加到输入端发光器件LED上,LED发光,光接受器件接受光信号并转换成电信号,然后将电信号直接输出,或者将电信号放大处理成标准数字电平输出,这样就实现了“电-光-电”的转换及传输,光是传输的媒介,因而输入端与输出端在电气上是绝缘的,也称为电隔离。

光电耦合器特点光电耦合器因为其独特的结构特点,因此在实际使用过程中,具有以下明显的优点:(1) 能够有效抑制接地回路的噪声,消除地干扰,使信号现场与主控制端在电气上完全隔离,避免了主控制系统受到意外损坏。

(2) 可以在不同电位和不同阻抗之间传输电信号,且对信号具有放大和整形等功能,使得实际电路设计大为简化。

光电耦合器的工作原理以及应用

光电耦合器的工作原理以及应用

光电耦合器的工作原理以及应用1. 工作原理光电耦合器(Optocoupler)是一种能够将输入端和输出端电气信号进行隔离的装置。

它由发光二极管(LED)和光敏三极管(Phototransistor)构成。

当输入端加上电压时,LED发出光信号,该光信号被光敏三极管接收后产生电流。

这种光电耦合的原理实质上是一种光控转换和能量传递的过程。

具体工作原理如下: 1. 输入端的电流通过限流电阻(Rx)流过发光二极管,使其发出一定功率的光信号。

2. 光信号经传输介质到达光敏元件,并激发出光敏元件的电子。

3. 光敏元件将光信号转换为电流信号,并通过输出端引出。

2. 主要构成部分光电耦合器的主要构成部分包括以下几个方面: - 发光二极管(LED):将输入电流转换为光信号。

- 光敏三极管(Phototransistor):将接收到的光信号转换为电流信号。

- 传输介质:用于将光信号从发光二极管传递到光敏三极管。

- 封装结构:提供外部环境下的物理保护和隔离。

3. 应用领域光电耦合器具有隔离、调制和数传等特点,广泛应用于以下领域:3.1 工业自动化控制系统光电耦合器在工业自动化控制系统中起到隔离和信号调制的作用。

它能够将电气信号转换为光信号并进行隔离,防止输入端的噪声、干扰等影响输出端的稳定性。

常见的应用包括: - PLC(可编程逻辑控制器)输入/输出模块 - 隔离式继电器输出模块 - 工业通信接口隔离3.2 通信设备光电耦合器在通信设备中用于隔离输入和输出信号,避免信号干扰和电气故障。

通信设备中常用到的应用包括: - 光纤调制解调器(光猫) - 光电耦合器串并转换器 - 光电耦合器隔离阵列模块3.3 医疗设备光电耦合器在医疗设备中起到信号隔离和电气保护的作用。

它能够将信号从控制电路隔离,确保患者和医护人员的安全。

常见的应用有: - 医疗设备输入/输出模块 - 医疗设备控制系统 - 医疗器械接口隔离3.4 电力电子设备光电耦合器在电力电子设备中用于信号隔离、电气保护和触发控制。

光电耦合器应用

光电耦合器应用

光电耦合器应用光电耦合器是一种传感器和控制器之间的接口,它可以将光信号转换成电信号。

光电耦合器具有高精度、高速度、低功耗、小型化和免磁干扰等特点,因此被广泛应用于自动控制、机器视觉、光电通信、仪器仪表、电力电子等领域。

一、自动控制领域在自动控制领域,光电耦合器可以用来作为开关、传感器、放大器、隔离器、数字转换器和模数转换器等。

例如,当光电耦合器作为隔离器时,可以将输入和输出隔离,避免潜在的电磁干扰。

当光电耦合器作为数字转换器时,可以将输入的数字信号变成相应的电信号,以便进行数字化处理。

二、机器视觉领域机器视觉领域中,光电耦合器通常用来检测和测量光信号,以便实现对物体形状、颜色、纹理等特征的识别与分类。

例如,光电耦合器可以在自动化制造系统中用来检测产品表面的缺陷,例如磨痕、裂纹等。

此外,光电耦合器也可以用来测量激光干涉图中两个激光点之间的距离,以便计算物体表面的形状。

三、光电通信领域光电耦合器在光电通信领域起到了非常重要的作用,它可以将光信号转换成电信号,然后再通过电线进行传输。

例如,在音频设备中,光电耦合器可以将音频信号转换成电信号,以便进行信号放大和处理。

此外,光电耦合器也可以用于光纤通信中,通过将光信号转换成电信号,以便将信号传输到需要处理的设备。

四、仪器仪表领域在仪器仪表领域,光电耦合器通常用于隔离输入和输出信号,以防止干扰,同时也可以用来控制电路。

例如,光电耦合器可以在电功率仪表中用来隔离输入信号和输出信号,同时还可以防止外部电磁干扰。

此外,光电耦合器还可以用来控制温度、湿度、压力和振动等传感器的输出。

五、电力电子领域在电力电子领域,光电耦合器通常用于隔离输入和输出信号,防止高电压的干扰。

例如,在交流电源中,光电耦合器可以用来隔离输入端和输出端,同时还可以将输入的电流和电压转换成相应的电信号,以便进行数字化处理和电力控制。

此外,光电耦合器还可以在高压直流输电中充当隔离器,以防止高电压的干扰,从而保护电路的稳定性。

【精选】6N137引脚图,参数,特性,真值表及应用注意事项

【精选】6N137引脚图,参数,特性,真值表及应用注意事项

高速光电耦合器(光耦)6N137引脚图,参数,特性,真值表及应用注意事项6N137光耦合器是一款用于单通道的高速光耦合器,其内部有一个850 nm波长AlGaAs LED和一个集成检测器组成,其检测器由一个光敏二极管、高增益线性运放及一个肖特基钳位的集电极开路的三极管组成。

具有温度、电流和电压补偿功能,高的输入输出隔离,LSTTL/TTL兼容,高速(典型为10MBd),5mA的极小输入电流。

其工作原理是: 6N137的结构原理如图1所示,信号从脚2和脚3输入,发光二极管发光,经片内光通道传到光敏二极管,反向偏置的光敏管光照后导通,经电流-电压转换后送到与门的一个输入端,与门的另一个输入为使能端,当使能端为高时与门输出高电平,经输出三极管反向后光电隔离器输出低电平。

当输入信号电流小于触发阈值或使能端为低时,输出高电平,但这个逻辑高是集电极开路的,可针对接收电路加上拉电阻或电压调整电路。

6N137特性:①转换速率高达10MBit/s;②摆率高达10kV/us;③扇出系数为8;④逻辑电平输出;⑤集电极开路输出;6N137电气参数:最大输入电流,低电平:250uA∙最大输入电流,高电平:15mA∙最大允许低电平电压(输出高):0.8v∙最大允许高电平电压:Vcc∙最大电源电压、输出:5.5V∙扇出(TTL负载):8个(最多)∙工作温度范围:-40°C to +85°C∙典型应用:高速数字开关,马达控制系统和A/D转换等6N137引脚图及内部结构6N137光耦合器的内部结构、管脚如图1所示。

6N137光电耦合器的真值表如表1所示:6N137典型应用电路6N137典型应用电路如图2所示,若以脚2为输入,脚3接地,则真值表如附表所列,这相当于非门的传输,若希望在传输过程中不改变逻辑状态,则从脚3输入,脚2接高电平。

隔离器使用方法如图2所示,假设输入端属于模块I,输出端属于模块II。

输入端有A、B两种接法,分别得到反相或同相逻辑传输,其中RF 为限流电阻。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电耦合器的应用与使用注意事项
摘要:本文主要介绍了光藕及其应用。

关键词:光耦;应用
光耦合器自70年代发展起来后,已经得到了广泛的应用,下面举两个实例进行说明。

案例1
当我们要设计一组开关电源时,从安全以及抗干扰角度考虑,很多时候不希望是热地(即希望将高频变压器的初级侧与次级侧的电源进行隔离,以提高弱电侧的安全性)。

我们将上面的要求以及同时将开关电源的其他特性考
虑进去,基本上发现开关电源具有以下几个特征:
1、需要初级侧的电源与次级侧的电源进行隔离;
2、开
关具有高频率特性;3、输由电压需要能够实时地反馈给初级端控制芯片,以便芯片做由控制;4、次级侧的电压变化
能够线性地反馈到初级侧;5、初级侧与零火线直接相连,要求次级侧的电源不受初级侧的电源干扰;
在解决以上几点要求上,光耦体现了其价值,而且设计
简单。

光耦的线性特性,能够使次级侧的输由线性地反馈到初级侧;光耦的非机械触点可以迅速开通与关闭,实现了开关电源实时、迅速的要求,同时还具备无寿命要求;更重要的是,其是隔离的,可以完全隔断初级侧与次级侧,使次级侧不受初级侧的影响。

图1是一个简单的开关电源示意。

该开关电源的工作原理
当输由电压升高时,光耦发光端电流增加,此时受光端电流也相应的增大,致使开关电源芯片减小开关管的导通时间或者导通频率,从而降低输由电压:相反,当输由电压降低时,光耦发光端电流减小、此时受光端电流也相应的减小,致使开关电源芯片增大开关管的导通时间或者导通频率、从而提高输由电压,并使输由电压稳定。

该设计充分利用了光耦的线性。

当然在使用上述电路时,需要保证光耦与稳压二极管的匹配,保证二者都工作在合理的电流范围内。

案例2
当我们莫些时候需要一个非接触式开关时,光耦能够帮我们这个忙。

一股的时候,我们的开关基本上都是有触点的按一下, 按键闭合;再按一下,按键断开。

但假如莫些时候没有办法去接触,怎么办呢?光耦可以帮助我们,其只需要挡一下。

为实现遮挡的要
求,我们将光耦的发光侧与受光侧拉大,同时将发光侧和受光侧分别集成在一个结构件中,同时在发光侧与受光侧中间保留一个空隙(见图2)。

需要注意:发光侧与受光侧的结构材料必须是透光的。

通过结构的改进后,再配以图3电路,一个非常实用的
开关电路就产生了。

图3电路的工作原理如下:
当有遮光体伸入发光侧与受光侧中间的空隙中时,芯片
I/O口检测到低电平;
当没有遮光体伸入发光侧与受光侧中间的空隙中时,芯片I/O□检测到高电平。

该电路具有以下优点:
1遮光体只要是一个不透光的物体即可,不再需要像传统按键
那样有力的输生:
2如果发光侧需要进行逻辑控制,可以将发光侧连接
到奥一个I/O口;
3发光侧和受光侧根据需要,可以使用同一电源,当然也可以
使用不同电源。

光耦使用注意事项
为了用好光耦,需要注意一些细节问题,以我们使用较
多的光耦PC817举例介绍
1同一系列的光耦有不同的子系列,其对应的CTR(电
流传输比)是不同的(如表1),我们在选择时,需要根据自己的电路要求选择型号;分类表电流传输比如表1所示。

2输由侧的极限耐压值是需要考虑的一个参数VCEO(如表2),使用时工作电压一定不能高过此电压值,并需要保留一定余留。


时也需要考虑浪涌值,必要时,可以在其两侧并联一个TVS二极管去抗浪涌干扰。

3输入侧的二极管的反向电压(VR)是另一个需要特别注意的参数(如表3)因为光耦很重要的应用是隔离,所以光耦在很多时候被直接运用在交流回路中,此时光耦需要特别注意反向回路问题,需要时可以在输入侧的二极管上反向并联一个二极管(如图4),起到保护光耦作用;或者直接使用双向光耦。

4CTR(电流传输比)是受到IF(输入端正向电流)影响的,如图5。

要想获得合适的CTR值,需要给定一个合理的电流值。

5当然,作为半导体器件中的一员,其同样受到温度、电压等因素的影响。

6当在使用光耦的隔离性时,需要同步考虑光耦两侧的安全性、即在进行PCB(印制电路板)设计时,需要考虑它们之间的安全距
离,确保符合认证要求。

结语
光耦的优良特性,为我们的设计(尤其是隔离设计)带来了很大的方便、可靠,使我们的设计变的简单、可靠。

随着科技的发展,已经产生了很多更新更好用的光耦,如双向光耦、固态继电器等等。

未来、也必定将有更完美的光耦为我们的设计带来更大的进步。

相关文档
最新文档