常见随机变量的分布函数

合集下载

随机变量的函数及其分布

随机变量的函数及其分布
应的概率相加, 随即 机可 变Y得 量 gX的分布. 律
返回主目录
第二章 随机变量及其分布
§5 随机变量的函数的分布
例 1设离散型随机X变 的量 分布律为
X -2
0
3
P1
1
1
6
3
2
随机Y 变 X 量 1,试 Y的 求分布律.
解: 随机变 YX 量 1的取值 3,为 1,2.
这些取值两两互不相同 .由此得随机变量 YX1
例 3(续)
Y=(X-1)2 同理,
X -1 0 1 2 pk 0.2 0.3 0.1 0.4
P{Y=1}=P{X=0}+P{X=2}=0.3+ 0.4=0.7,
P{Y=4}= P{X= -1}= 0.2,
所以,Y=(X-1)2 的分布律为:
Y0 1 4 pk 0.1 0.7 0.2
返回主目录
第六章 随机变量的函数及其分布
FY(y)P{Yy}P{X2 y}
y
P{ yX y} y fX(x)dx.
返回主目录
第六章 随机变量的函数及其分布
例 7(续)
y
FY(y) y fX(x)dx.
(2)利用 FY(y)fY(y)及变限定积分 得求 :
fY(y) 21y[fX( y)fX( y), y0,
2x, 0x1, fX(X)0, 其它 .
试求 Y=X-4 的概率密度.
解:(1) 先求 Y =X-4 的分布函数 FY(y):
F Y(y)P {Yy} P { X 4 y } P { X y 4 }
目 录 前一页 后一页 退 出
第二章 随机变量及其分布
§5
例4 设离散型随机X变的量分布律为

随机变量函数的分布

随机变量函数的分布





二 、连续型随机变量函数的分布 2.分布函数法 一般地,若已知X的概率密度为 fX(x),求其函数 Y=g(X)的概率密度 fY(y)分两个步骤: 10 根据分布函数的定义求Y的分布函数FY(y); 20 由 fY(y) = F (y) 求出 fY (y)
例3 对一圆片直径进行测量, 其值在[5,6]上均匀分
定理 设X是一连续型随机变量,其密度函数f(x) , (-∞<x< +∞ ),又函数y = g(x)处处可导,且严格单 调,其反函数为x = h(y ),则Y = g(X)也是一连续型随 机变量,且密度函数为
h y f[ h ( y )], y f y Y , 其他 0
计算离散型随机变量函数的分布的方法: 首先将xi的取值代入函数关系,求出随机变量Y相应的取值
y g ( x )( i 1 , 2 , .) i i
如果yi(i=1,2,…)的值各不相等,则Y的概率分布为 Y P y1 p1 y2 p2 … … yi pi … …
如果 yi=g(xi)(i=1,2,…)中出现m(≥2)个相同的函数值,即存在
0 , y25 /4 F (y) * 25 /4y9 1, y9
F ( y ) P { Y y } P { X / 4 y }
2
P { X 4 y / }

4 y /

f ( x ) dx X
例3 对一圆片直径进行测量, 其值在[5,6]上均匀分
其中, m g ( in{ ), g ( )}, m g ( ax ), g ( )
注意 若f(x)在有限区间[a,b]外等于0,则只需设在[a,b] ( x ) 0 [ 或 g ( x ) 0 ]. 上有 g

概率论-随机变量的分布函数

概率论-随机变量的分布函数
如果一个函数具有上述性质,则一定是某个随机 变量X 的分布函数. 也就是说,性质(1)--(4)是鉴别 一个函数是否是某随机变量的分布函数的充分必要 条件.
连续型随机变量及其概率密度函数
例 在区间 [0,a] 上任意投掷一个质点,以 X 表示这个质点的坐标 . 设这个质点落在 [0, a]中意 小区间内的概率与这个小区间的长度成正比,试求 X 的分布函数.
因此,只要知道了随机变o 量x X1 的X分x 2布函x数, 它
的统计特性就可以得到全面的描述.
F (x ) P (X x ) , x
oX
x
x
分布函数是一个普通的函数, 正是通过它,我们可以用高等数 学的工具来研究随机变量的概率
问题.
例1 设 随机变量 X 的分布律为 X 012
p k 13 16 12 求 X 的分布函数 F (x) .
连续型随机变量的分布函数在 R上连续
二、概率密度的性质
1 o f (x)0
2 o f (x)dx1
这两条性质是判定一个 f(x)是否为某随机变量X 的
概率密度的充要条件
f (x)
面积为1
o
x
3 o 对于任意实数 x1 , x2 , (x1 < x2 ) ,
P { x 1 X x 2 } F ( x 2 ) F ( x 1 ) x x 1 2f( x ) d x
P ( a X b ) P ( a X b )
P(aXb)
P(aXb)
注意
设X为连续型随机变量 ,X=a 是不可能
事件,则有
P{Xa}0.

若P{Xa}0,
续 型
不 能 确 定 { X a } 是 不 可 能 事 件

常见分布函数

常见分布函数

介绍常见的几种分布函数以及分析生物数据可能会用到的几种分布。

概率分布函数概率分布函数是什么?概率分布函数是描述随机变量取值分布规律的数学表示。

对于任何实数x,事件[X<x]的概率当然是一个x的函数。

令F(x)=P(X<x),显然有F(-∞)=0,F(∞)=1,称F(x)为随机变量X的分布函数。

概率分布函数怎么分类?随机变量有离散型和连续型之分,根据随机变量的类型,概率分布函数也可分为离散型及连续型概率分布函数。

对于离散型随机变量,设x1,x2,...,xn为变量X的取值,而p1,p2,...,pn为对应上述取值的概率,则离散型随机变量X的概率分布函数为:对于连续型随机变量,设变量X取值于区间(a,b),并假设其分布函数F(x)为单调增函数,在-∞<x<∞间可微分且其导数F’(x)在此区间连续。

为描述其概率分布规律,引入“概率分布密度函数”的新概念。

定义概率分布函数F(x)的导数F’(x)为概率分布密度函数f(x),于是连续型随机变量X的概率分布函数可写为常用的概率积分公式的形式:常见分布有哪些常见的概率分布?对于离散型随机变量,常见的分布类型有二项分布、泊松分布、负二项分布等。

对于连续型随机变量,常见的分布类型有正态分布、指数分布、t分布、卡方分布等。

常见的概率分布有什么特点?对应的分布函数有什么特点?来看一下由RHK同学整理的几种常见分布特点及对应的分布函数:二项分布 X~(n,p)1、二项分布特点①离散型分布②每次试验中只有两种可能的结果,而且两种结果发生与否互相对立。

③每一种结果在每次实验中都有恒定的概率。

④试验之间应是相互独立的。

2、概率计算及特点①概率计算公式:②总体均数、方差分别为np、np(1-p)泊松分布X~P(λ)1、泊松分布特点①离散型分布②每次试验中只有两种可能的结果,而且两种结果发生与否互相对立。

③每一种结果在每次实验中都有恒定的概率。

④试验之间应是相互独立的。

为随机变量X的分布函数

为随机变量X的分布函数

就会离去. 若该顾客一个月到银行5次, 以Y表示一个月内他未等
到服务而离开窗口的次数,写出Y的分布律,并求P{Y≥1}.
解:
X的分布函数
F
(
x)

1

1
e5
x
,
x 0;
0, x 0.
该顾客未得到服务事件为{X>10},其概率为
p

P{X
10} 1 P{X
10} 1 F(10)
3
f (x)dx
3
f (x)dx
1
3 1dx 0 5 .


26
6
《概率统计》
返回
下页
结束
2.指数分布 若随机变量X的密度函数为
ex , x 0
f (x)
,
0,
x0
则称X服从参数为的指数分布, 记作X~E[] . >0为常数.
分布函数为
F
(
x)

2

A=1 .
《概率统计》
返回
下页
结束
四、常见连续型随机变量的分布
1.均匀分布
如果随机变量X的概率密度为
f
(x)

b
1
a
,
0,
a xb 其它
则称X在区间[a,b]上服从均匀分布, 记为X~U[a,b].
0,
xa
分布函数为
F
(x)


x b

a a
a xb
《概率统计》
返回
下页
结束
三、分布函数求法 例1.设随机变量X的密度函数为
f
(x)

八大分布函数表

八大分布函数表

八大分布函数表在学习统计学时,概率函数是我们必须掌握的重要概念。

它用于表示一个随机变量的概率分布情况,比如说我们可以得到一个随机变量的期望值或者方差等信息,而这些都是基于概率函数的。

概率函数有很多种,其中最常用的就是八大分布函数表。

八大分布函数表是概率分布函数的最重要的表示形式。

它们之所以被称为“八大”,是因为它们包含概率分布函数中最常见的八种函数。

它们分别为:正态分布函数,卡方分布函数,指数分布函数,Beta 分布函数,泊松分布函数,F分布函数,t分布函数和τ函数。

它们的具体的表达形式如下:1.态分布函数:f(x) = 1/(σ√2π) * e^-(x-μ)^2/2σ^22.方分布函数:f(x) = 1/(2^(k/2) (k/2))x^(k/2-1)e^-x/23.数分布函数:f(x) =e^-λx4. Beta分布函数:f(x) = (α +) / (α) (β) x^(α - 1) (1 - x)^(β - 1) 5.松分布函数:f(x) =^x / x! e^-λ6. F分布函数:f(x) = (Γ ((m+n)/2)/Γ (m/2)Γ (n/2)) (m/n)^(m/2)x^((m-2)/2) (1+m/nx)^(-(m+n)/2)7. t分布函数:f(x) = ( (ν+1) / 2) / (π^(1/2) (ν /2)) (1 + (x^2 /))^(- (ν +1) /2)8.函数:f(x) = (1/(π))^(1/2) (1 + (x/ν))^(-1/2)以上就是八大分布函数表的定义。

虽然它们的表达形式有所不同,但它们的特征都是由参数,σ,λ,α,β,k,ν决定的。

在统计学中,八大分布函数表被广泛应用。

它们可以用来描述一组样本数据的概率分布情况,也可以用来估算样本数据的期望值或样本方差等概率特性。

此外,八大分布函数表还可以用来建立多项式拟合模型,用来描述和估算离散变量的变化趋势。

随机变量及其分布

随机变量及其分布
A = {ω | X(ω) ∈ L} = {X ∈ L}
也可以是等式或是不等式。 X ∈ L 也可以是等式或是不等式。
如在掷骰子试验中,用X表示出现的点数,则 如在掷骰子试验中, 表示出现的点数, A=“出现偶数点”可表示为: X=2} X=4} X=6} A=“出现偶数点”可表示为:{X=2}∪ {X=4} ∪{X=6} 出现偶数点 B=“出现的点数小于4 可表示为: 4} {X≤ B=“出现的点数小于4”可表示为:{X< 4}或{X≤3} 出现的点数小于
F(x) = P( X ≤ x)
为随机变量X的分布函数 随机变量X
F(x)是一个 F(x)是一个 普通的函数! 值域为 值域为 [0,1]。
定义域为 定义域为
(-∞,+ ); (- ,+∞); ,+
分布函数的性质
单调不减性 右连续性 非负有界性 规范性
若x1 < x2 , 则F ( x1 ) ≤ F ( x2 )
2)
∑p
k =1

k = 1, 2,
k
=1
设离散型随机变量X的分布律为 例3 设离散型随机变量 的分布律为 P(X= xi) = pi i = 1、2、… ( 、 、 其中 0 < p <1 ,求 p 值。
解:
1= ∵ ∑ P ( X = xi )
i =1
+∞
p =∑p = 1 p i =1
i
一般地, 一般地,对离散型随机变量 X~P(X= xk)= k, k=1, 2, … ~ ( )=p = 其分布函数为
F ( x) = P ( X ≤ x ) =
k : xk ≤ x

pk
分布律确定事件的概率 例2中,得到 的分布律为 中 得到X的分布律为

随机变量的分布函数

随机变量的分布函数
下页
x0 0 x2 x2
结束
引例.靶子是半径2米的圆盘,设击中靶上任一同心圆盘上的点与
该圆盘的面积成正比,并设射击都能中靶.以X表示弹着点与圆心 的距离,求X的分布函数. 易证,F(x)是一个连续函数,可表示为
F ( x)
其中
x
-
f (t )dt
x , f ( x) 2 0,
下页 结束
例 2.
随机变量 X 的概率分布为 2 1/2
X 0 1 P 1/3 1/6 试求(1)X 的分布函数 F(x),并作出 F(x)的图形; (2) P{ X },
1 2
3 P{1 X }, 2
3 P{1 X } 2
(2)
1 1 1 P{ X } F 2 2 3 3 3 1 1 P{1 X } F - F (1) - 0 2 2 2 2 3 3 1 P{1 X } F - F (1) P{ X 1} 2 6 2
x
《概率统计》 返回 下页 结束
§2.3
随机变量的分布函数
一、定义 设X为随机变量,对于任意实数x,称函数
F ( x) P{X x} (- x )
为随机变量X的分布函数. 重要公式
(1) P{ X a} 1 - F (a).
(2) P{a X b} P{ X b} - P{ X a} F (b) - F (a)
pk P{X xk }.
《概率统计》
返回
下页
结束
§2.4
连续型随机变量
引例.靶子是半径2米的圆盘,设击中靶上任一同心圆盘上的点与
该圆盘的面积成正比,并设射击都能中靶.以X表示弹着点与圆心 的距离,求X的分布函数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档