苏教版 高考数学 一轮复习 讲义---第10章 学案56 线性回归方程

合集下载

高三数学一轮复习课件:线性回归方程

高三数学一轮复习课件:线性回归方程

课堂互动讲练
(3)若由线性回归方程得到的估计数据与 所选出的检验数据的误差均不超过2人, 则认为得到的线性回归方程是理想的, 试问该小组在(2)中所得线性回归方程是 否理想?
课堂互动讲练
解:(1)设“抽到相邻2个月的数据”为事件 A.因为从6组数据中选取2组数据共有15 种情况,每种情况都是等可能出现的, 其中抽到相邻两个月的数据的情况有5种, 所以P(A)= = .4分 1 5 15 3
,a= y -b x .其中
a,b是由观察值按最小二乘法求得 的估计值 ,也叫 回归系数 .
三基能力强化
1.下列关系中,是相关关系的为 ________. ①学生的学习态度与学习成绩之间的关 系; ②教师的执教水平与学生的学习成绩之 间的关系;
三基能力强化
③学生的身高与学生的学习成绩之间的 关系; ④家庭的经济条件与学生的学习成绩之 间的关系. 答案:①②
(1)判断家庭平均收入与月平均生活支出是否相关? (2)若二者线性相关,求回归直线方程.
课堂互动讲练
【思路点拨】 利用散点图观察 收入x和支出y是否线性相关,若呈线性相 关关系,可利用公式来求回归系数,然 后获得回归直线方程.
课堂互动讲练
【解】 (1)作出散点图:
课堂互动讲练
观察发现各个数据对应的点都在一条 直线附近,所以二者呈线性相关关系. (2) = (0.8+1.1+1.3+1.5+1.5+ 1 1.8+2.0+ 2.2 +2.4+2.8)=1.74, x 10 = (0.7+1.0+1.2+1.0+1.3+1.5 1 +1.3+ 1.7 +2.0+2.5)=1.42, y 10
课堂互动讲练
i= 1 i i
∑ x y =0.8×0.7+1.1×1.0+1.3×1.2+

高中数学《线性回归方程》教案

高中数学《线性回归方程》教案

线性回归方程教学目标:(1)了解非确定性关系中两个变量的统计方法; (2)掌握散点图的画法及在统计中的作用; (3)掌握回归直线方程的实际应用。

教学重点: 线性回归方程的求解。

教学难点: 回归直线方程在现实生活与生产中的应用。

教学过程: 一、复习练习1.下例说法不正确的是( B )A.在线性回归分析中,x 和y 都是变量;B.变量之间的关系若是非确定关系,那么x 不能由y 唯一确定;C.由两个变量所对应的散点图,可判断变量之间有无相关关系;D.相关关系是一种非确定性关系.2.已知回归方程81.05.0ˆ-=x y,则x =25时, y 的估计值为__11.69____. 3.三点)24,11(),20,7(),10,3(的线性回归方程是 ( D ) A x y 75.175.1ˆ-= B x y 75.575.1ˆ+=C x y 75.575.1ˆ-=D x y 75.175.1ˆ+=4.我们考虑两个表示变量x 与y 之间的关系的模型,δ为误差项,模型如下: 模型1:x y 46+=:;模型2:e x y ++=46. (1)如果1,3==e x ,分别求两个模型中y 的值; (2)分别说明以上两个模型是确定性模型还是随机模型. 解 (1)模型1:y=6+4x=6+4×3=18; 模型2:y=6+4x+e=6+4×3+1=19.(2)模型1中相同的x 值一定得到相同的y 值.所以是确定性模型;模型2中相同的x 值,因 δ不同,且δ为误差项是随机的,所以模型2是随机性模型。

二、典例分析例1、一个车间为了规定工时定额,需要确定加工零件所花费的时间.为此进行了10次试验,测得数据如下:零件个数x (个) 10 20 30 40 50 607080 90 100加工时间y (分)62 68 75 81 89 95 102 108 115 122请判断y 与x 是否具有线性相关关系,如果y 与x 具有线性相关关系,求线性回归方程.解:在直角坐标系中画出数据的散点图,直观判断散点在一条直线附近,故具有线性相关关系.由测得的数据表可知:1010102211155,91.7,38500,87777,55950i i i i i i i x y x y x y ========∑∑∑1011022211055950105591.70.66838500105510i ii i i x y x yb x x==--⨯⨯∴==≈-⨯-∑∑91.70.6685554.96a y bx =-=-⨯≈因此,所求线性回归方程为0.66854.96y bx a x =+=+ 例2、已知10只狗的血球体积及红血球数的测量值如下:x45 42 46 48 42 35 58 40 39 50y6.53 6.30 9.527.50 6.99 5.90 9.49 6.20 6.598.72x (血球体积,ml ),y (红血球数,百万)(1)画出上表的散点图;(2)求出回归直线方程并画出图形.解:1(45424648423558403950)44.5010x =+++++++++=1(6.53 6.309.527.50 6.99 5.909.49 6.20 6.558.72)10y =+++++++++=7.37设回归直线方程为y bx a =+则10110221100.17510i ii ii x y x yb xx==-==-∑∑ a y bx =-= -0.418所以所求回归直线的方程为0.1750.148y x =-例3、以下是收集到的新房屋销售价格y 与房屋的大小x 的数据:房屋大小x (2m ) 80 105 110 115] 135 销售价格y (万元)18.42221.624.829.2(1)画出数据的散点图;(2)用最小二乘法估计求线性回归方程,并在散点图中加上回归直线;(3)计算此时(,)Q a b 和(2,0.2)Q 的值,并作比较. 解:(1)(2)55115,545,109,116,23.2,i i i i n x x y y =======∑∑5521160952,12952ii i i i xx y ====∑∑25129525451160.1962,23.20.1962109 1.8166560952545b a ⨯-⨯=≈=-⨯≈⨯-所以,线性回归方程为0.1962 1.8166y x =+ (3) (1.8166,0.1962) 5.171,(2,0.2)7.0Q Q ≈≈由此可知,求得的 1.8166,0.9162a b ==是函数Q(a,b)取最小值的a ,b 值.三、课堂练习1.为了考察两个变量x 和y 之间的线性相关性,甲乙两位同学各自独立做了10次和15次实验,并且利用线性回归直线分别为1l ,2l ,已知两人获得的实验数据中,变量x 和y 的数据平均值都相等,且分别为s,t 那么下例说话正确的是( )A .直线1l 和2l 一定有公共点(s,t)B .直线1l 和2l 相交,但交点不一定是(s,t)销售价格y(万元)05101520253035050100150销售价格y(万元)C .必有1l // 2lD .1l 和2l 与必定重合2.已知关于某设备的使用年限x 与所支出的维修费用y (万元),有如下统计资料: 使用年限x 2 3 4 5 6 维修费用y2.23.85.56.57.0设y 对x 程线性相关关系.试求:(1)线性回归方程ˆy bx a =+的回归系数a,b ; (2)估计使用年限为10年时,维修费用多少?四、回顾小结:求线性回归方程的步骤:(1)x y (2)x y x y (3)i i i i 计算平均数、,计算与的积,求,计算,,∑∑∑x y ii 22(4)将上述有关结果代入公式,求b ,a 写出回归直线方程. 五、课外作业: 课本第82页第9题.。

2024年高考数学一轮复习课件(新高考版) 第10章 §10.8 概率与统计的综合问题

2024年高考数学一轮复习课件(新高考版)  第10章 §10.8 概率与统计的综合问题

X012 3
P
27 27 9 64 64 64
1 64
则 E(X)=3×14=34.
思维升华
高考常将独立性检验与分布列等交汇在一起进行考查,解决独立性检 验问题,要注意过好“三关”:假设关、公式关、对比关.解决概率 问题要准确地把握题中所涉及的事件,明确所求问题所属的事件类型.
跟踪训练3 (2023·昆明模拟)2022年,举世瞩目的冬奥会在北京举行,冬 奥会吉祥物“冰墩墩”和“雪容融”有着可爱的外表和丰富的寓意,自 亮相以来就好评不断,深受各国人民的喜爱.某市一媒体就本市小学生是 否喜爱这两种吉祥物对他们进行了一次抽样调查,列联表如下(单位:人):
2024年高考数学一轮复习课件(新高考版)
第十章 计数原理、概率、随机变量及其分布
§10.8 概率与统计 的综合问题
题型一 频率分布直方图与分布列的综合问题
例1 2022年是中国共产主义青年团成立100周年,为引导和带动青少年 重温共青团百年光辉历程,某校组织全体学生参加共青团百年历史知识 竞赛,现从中随机抽取了100名学生的 成绩组成样本,并将得分分成以下6组: [40,50),[50,60),[60,70),…,[90,100], 统计结果如图所示. (1)试估计这100名学生得分的平均数;
^
^
,a= y -b x .
n
x2i -n x 2
i=1
由题意得, x =1+2+3+10…+9+10=5.5,
10
10
又 y =1.5,xiyi=89.1,x2i =385,
i=1
i=1
10
xiyi-10 x y
^ i=1
所以b=
10
=89.318-5-101×0×5.55×.521.5=0.08,

线性回归方程-高中数学知识点讲解

线性回归方程-高中数学知识点讲解

线性回归方程
1.线性回归方程
【概念】
线性回归是利用数理统计中的回归分析,来确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法之一,运用十分广泛.分析按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析.如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析.如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析.变量的相关关系中最为简单的是线性相关关系,设随机变量与变量之间存在线性相关关系,则由试验数据得到的点将散布在某一直线周围.因此,可以认为关于的回归函数的类型为线性函数.
【实例解析】
例:对于线性回归方程푦=1.5푥+45,푥1∈{1,7,5,13,19},则푦=
解:푥=1+7+5+13+19
5
=
9,因为回归直线必过样本中心(푥,푦),
所以푦=1.5×9+45=13.5+45=58.5.
故答案为:58.5.
方法就是根据线性回归直线必过样本中心(푥,푦),求出푥,代入即可求푦.这里面可以看出线性规划这类题解题方法比较套路化,需要熟记公式.
【考点点评】
这类题记住公式就可以了,也是高考中一个比较重要的点.
1/ 1。

数学苏教版教学案:第部分第章线性回归方程

数学苏教版教学案:第部分第章线性回归方程

房地产涨价一直是受关注的民生问题之一,以下是某房地产开发商在2013年前两季度销售的新楼盘中的销售价格y(单位:万元)与房屋面积x(单位:m2)的数据。

x1151108013510 5y 49.643。

238.858.444问题1:在平面直角坐标系中,以x为横坐标,y为纵坐标作出表示以上数据的点.提示:问题2:从上图中发现x,y有何关系?是函数关系吗?提示:从图中发现x逐渐增大时,y逐渐增大,但有个别情况.不是函数关系.1.变量间的常见关系(1)函数关系:变量之间的关系可以用函数表示,是一种确定性关系.(2)相关关系:变量之间有一定的联系,但不能完全用函数来表达.2.散点图从一个统计数表中,为了更清楚地看出变量x 与变量y 是否有相关关系,常将x 的取值作为横坐标,将y 的相应取值作为纵坐标,将表中数据构成的数对所表示的点在坐标系内标出,我们称这样的图形叫做散点图.某小卖部为了了解热茶销售量与气温之间的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温的对照表:气温/℃26 18 13 10 4-1杯数 20 24 34 38 50 64问题1:判断气温与杯数是否有相关关系? 提示:作散点图可知具有相关关系.问题2:若某天的气温是-5℃,能否根据这些数据预测小卖部卖出热茶的大体杯数?提示:可以.根据散点图作出一条直线,求出直线方程后可预测.1.线性相关关系:能用直线错误!=bx+a近似表示的相关关系.2.线性回归方程:设有n对观察数据如下:x x1x2x3…x ny y1y2y3…y n当a,b使Q=(y1-bx1-a)2+(y2-bx2-a)2+…+(y n-bx n-a)2取得最小值时,就称方程错误!=bx+a为拟合这n对数据的线性回归方程,该方程所表示的直线称为回归直线.3.用回归直线进行数据拟合的一般步骤:(1)作出散点图,判断散点是否在一条直线附近.(2)如果散点在一条直线附近,用公式错误!求出a,b,并写出线性回归方程.1.函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系,如试验田的施肥量x与水稻的产量y.当自变量x 每取一确定值时,因变量y的取值带有一定的随机性,即还受其他环境因素的影响.2.用最小平方法求回归直线的方程的前提是先判断所给数据具有线性相关关系(可用散点图判断).否则求出的线性回归方程是无意义的.[例1] 关于人体的脂肪含量(百分比)与年龄关系的研究中,得到如下一组数据:年龄2327394145495053脂肪9。

高考数学一轮复习第10章算法初步与统计第4课时线性回

高考数学一轮复习第10章算法初步与统计第4课时线性回

(4)某同学研究卖出的热饮杯数y与气温 x(℃)之间的关系,得 回归方程 y =-2.352x+147.767,则气温为2 ℃时,一定可卖出 143杯热饮. (5)事件X,Y关系越密切,则由观测数据计算得到的K2的观 测值越大. (6)由独立性检验可知,在犯错误的概率不超过1%的前提下 认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他 有99%的可能物理优秀.

直线方程: y =0.254x+0.321.由回归直线方程可知,家庭年收入 每增加1万元,年饮食支出平均增加________万元.
2 n ( ad - bc ) 构造一个随机变量 K 2 = , ( a+ b)( c+d )(a + c)( b +d )
其中 n=a+b+ c+d 为样本容量.
(3)独立性检验. 利用随机变量 K2 来确定是否能有一定把握认为“两个分类 变量有关系”的方法称为两个分类变量的独立性检验.
1.判断下面结论是否正确(打“√”或“×”). (1)相关关系与函数关系都是一种确定性的关系,也是一种 因果关系. (2)“名师出高徒”可以解释为教师的教学水平与学生的水 平成正相关关系. (3)只有两个变量有相关关系,所得的回归模型才有预测价 值.
答案
C
解析 由已知,变量 x,y 成负相关,排除 A,B. ∵回归直线 - 必过点(x,y),经验算可知,选项 C 满足.
4.(2018· 河南开封一模)下列说法错误的是(
)
A.自变量取值一定时,因变量的取值带有一定随机性的两 个变量之间的关系叫做相关关系 B.在线性回归分析中,相关系数 r 的值越大,变量间的相 关性越强 C.在残差图中,残差点分布的带状区域的宽度越狭窄,其 模型拟合的精度越高 D.在回归分析中,R2 为 0.98 的模型比 R2 为 0.80 的模型拟 合的效果好

苏教版 线性回归优秀课件

苏教版  线性回归优秀课件

1.正方形面积S与边长x之间的关系: 确定关系 正方形边长x 面积S x 2 2.一块农田的水稻产量与施肥量之间的关系: 气候情况 施肥量 不确定关系 水稻产量
浇水
除虫
与函数关系不同,相关关系是一种非确定
性关系.对具有相关关系的两个变量进行统
计分析的方法叫做回归分析. 在现实生活中存在着大量的相关关系.人 的身高与年龄、产品的成本与生产数量、商品
组数据求得一个回归直线方程.这显然是
毫无意义的.于是提出一个
问题:所求得的回归直线方
程,在什么情况下才能对相 应的一组观测值具有代表意 义呢?
对于变量y与x的一组观测值来说,我们把
r
( x x )( y y )
i 1 i i
n
(x x ) ( y y)
2 i 1 i i 1 i

这里,我们将所得到的方程叫做回归直
线方程,相应的直线叫做回归直线,而对
两个变量所进行的上述统计分析叫做线性
回归分析.我们看到,求出了这种具有两
个变量的回归直线后,就可以根据其部分
观测值,获得对这两个变量之间整体关系
的了解.
下面根据公式④,来求前面例子水稻产量与施肥 量中的回归直线方程.
例如:在7块并排、形状大小相同的试验田上进行 施肥量对水稻产量影响的试验,得到如下所示以前学
过.函数关系是一种确定性关系.例如正
方形的面积 S 与边长 x 之间的关系 S=x2
就是一种确定性关系,即对于自变量边长
的每一个确定的值,都有唯一确定的面积
的值与之对应.
两个变量之间的关系还有另外一种情 况.我们来看看一块农田的水稻产量与施 肥量之间的关系.在这个问题里,水稻产 量不仅受到施肥量的影响,还受到其他不 少因素(诸如气候情况、浇水、除虫等) 的影响.因此,当施肥量一定时,水稻产 量在取值上带有一定的随机性.像这种自 变量取值一定时,因变量的取值带有一定 随机性的两个变量之间的关系叫做相关关 系.

线性回归ppt 苏教版

线性回归ppt 苏教版

因此,所求的回归直线方程是

=1.215x+0.972.
阅读P38 例
i x y 1 32.2 25.0 2 31.1 30.0 3
练习:P40
4 35.8 37.0 5 37.1 39.0 6 38.9 41.0 7 38.0 42.0 8 39.0 44.0 9 43.0 48.0 10 44.6 51.0 32.9 34.0
ˆ 0 . 3 t 5 . 542 . 回归直线方程为 y

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
46.凡事不要说"我不会"或"不可能",因为你根本还没有去做! 47.成功不是靠梦想和希望,而是靠努力和实践. 48.只有在天空最暗的时候,才可以看到天上的星星. 49.上帝说:你要什么便取什么,但是要付出相当的代价. 50.现在站在什么地方不重要,重要的是你往什么方向移动。 51.宁可辛苦一阵子,不要苦一辈子. 52.为成功找方法,不为失败找借口. 53.不断反思自己的弱点,是让自己获得更好成功的优良习惯。 54.垃圾桶哲学:别人不要做的事,我拣来做! 55.不一定要做最大的,但要做最好的. 56.死的方式由上帝决定,活的方式由自己决定! 57.成功是动词,不是名词! 28、年轻是我们拼搏的筹码,不是供我们挥霍的资本。 59、世界上最不能等待的事情就是孝敬父母。 60、身体发肤,受之父母,不敢毁伤,孝之始也; 立身行道,扬名於后世,以显父母,孝之终也。——《孝经》 61、不积跬步,无以致千里;不积小流,无以成江海。——荀子《劝学篇》 62、孩子:请高看自己一眼,你是最棒的! 63、路虽远行则将至,事虽难做则必成! 64、活鱼会逆水而上,死鱼才会随波逐流。 65、怕苦的人苦一辈子,不怕苦的人苦一阵子。 66、有价值的人不是看你能摆平多少人,而是看你能帮助多少人。 67、不可能的事是想出来的,可能的事是做出来的。 68、找不到路不是没有路,路在脚下。 69、幸福源自积德,福报来自行善。 70、盲目的恋爱以微笑开始,以泪滴告终。 71、真正值钱的是分文不用的甜甜的微笑。 72、前面是堵墙,用微笑面对,就变成一座桥。 73、自尊,伟大的人格力量;自爱,维护名誉的金盾。 74、今天学习不努力,明天努力找工作。 75、懂得回报爱,是迈向成熟的第一步。 76、读懂责任,读懂使命,读懂感恩方为懂事。 77、不要只会吃奶,要学会吃干粮,尤其是粗茶淡饭。 78、技艺创造价值,本领改变命运。 79、凭本领潇洒就业,靠技艺稳拿高薪。 80、为寻找出路走进校门,为创造生活奔向社会。 81、我不是来龙飞享福的,但,我是为幸福而来龙飞的! 82、校兴我荣,校衰我耻。 83、今天我以学校为荣,明天学校以我为荣。 84、不想当老板的学生不是好学生。 85、志存高远虽励志,脚踏实地才是金。 86、时刻牢记父母的血汗钱来自不易,永远不忘父母的养育之恩需要报答。 87、讲孝道读经典培养好人,传知识授技艺打造能人。 88、知技并重,德行为先。 89、生活的理想,就是为了理想的生活。 —— 张闻天 90、贫不足羞,可羞是贫而无志。 —— 吕坤
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案56 线性回归方程导学目标: 1.会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.自主梳理1.相关关系:两个变量之间的关系可能是________关系(如:函数关系),或__________关系.当自变量取值一定时,因变量也确定,则为确定性关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系.相关关系是一种非确定性关系.2.散点图:将各数据在平面直角坐标系中的对应点画出来,得到表示两个变量的一组数据的图形,这样的图形叫做散点图.3.回归直线(1)定义:如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有________________,这条直线叫做回归直线.(2)最小二乘法:通过求Q =∑ni =1 (y i -bx i -a )2的最小值而得出回归直线的方法,即求回归直线,使得样本数据的点到它的距离的平方和______,这一方法叫做最小二乘法. (3)线性回归方程方程y ^=bx +a 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的线性回归方程,其中a ,b 是待定参数.错误!. 自我检测1.下列有关线性回归的说法,正确的序号是________. ①相关关系的两个变量不一定是因果关系; ②散点图能直观地反映数据的相关程度;③回归直线最能代表线性相关的两个变量之间的关系; ④任一组数据都有线性回归方程. 2.下列关系:①人的年龄与其拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一树木,其截面直径与高度之间的关系;⑤学生的身高与其学号之间的关系,其中有相关关系的是________(填序号).3.(2010·银川模拟)下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是y ^=-0.7x +a ,则a =________.4.如图所示,有5组(x ,y )数据,去掉________组数据后,剩下的4组数据的线性相关性最大.5.(2010·金陵中学三模)已知三点(3,10),(7,20),(11,24)的横坐标x 与纵坐标y 具有线性关系,则其线性回归方程是________________.探究点一利用散点图判断两个变量的相关性例1有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出热饮杯数与当天气温的对比表:变式迁移1某班5个学生的数学和物理成绩如表:探究点二求线性回归方程例2假设关于某设备的使用年限x和所支出的维修费用y(万元)有以下统计资料:若由资料知y对x呈线性相关关系.试求线性回归方程y=bx+a.变式迁移2 已知变量x 与变量y 有下列对应数据:且y 对x 呈线性相关关系,求y 对x 的线性回归方程.探究点三 利用线性回归方程对总体进行估计例3 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对照数据.(1)(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y ^=bx +a ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)变式迁移3 (2010·盐城期末)某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:由表中数据得线性回归方程y =bx +a 中b =-2,预测当气温为-4℃时,用电量的度数约为________.1.相关关系与函数关系不同.函数关系中的两个变量间是一种确定性关系.而相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.2.线性回归方程:设x 与y 是具有相关关系的两个变量,且相应于n 个观测值的n 个点大致分布在某一条直线的附近,就可以认为y 对x 的线性回归函数的类型为直线型:y ^=bx +a .我们称这个方程为y 对x 的线性回归方程.其中x =1n ∑n i =1x i ,y =1n ∑ni =1y i.3.线性回归方程只适用于我们所研究的样本的总体,而且一般都有时间性.样本的取值范围一般不能超过线性回归方程的适用范围,否则没有实用价值.(满分:90分)一、填空题(每小题6分,共48分)1.命题:①路程与时间、速度的关系是相关关系;②同一物体的加速度与作用力是函数关系;③产品的成本与产量之间的关系是函数关系;④圆的周长与面积的关系是相关关系;⑤广告费用与销售量之间的关系是相关关系.其中正确的命题序号是________.2.(2011·陕西改编)设(x 1,y 1),(x 2,y 2),…,(x n ,y n )是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是________.(填序号)①x 和y 的相关系数为直线l 的斜率; ②x 和y 的相关系数在0到1之间;③当n 为偶数时,分布在l 两侧的样本点的个数一定相同;④直线l 过点(x ,y ).3.已知一组观测值具有线性相关关系,若对于y ^=bx +a ,求得b =0.51,x =61.75,y =38.14,则线性回归方程为__________________.4.某地区近几年居民的年收入x 与支出y 之间的关系,大致符合y ^=0.8x +0.1(单位:亿元).预计今年该地区居民收入为15亿元,则年支出估计是________亿元.5.根据两个变量x ,y 之间的观测数据画成散点图如图,则这两个变量________线性相关关系(填“具有”或“不具有”).6.若施化肥量x 与水稻产量y 的线性回归方程为y ^=5x +250,当施化肥量为80 kg 时,预计水稻产量为________kg.7.已知线性回归方程y ^=4.4x +838.19,则可估计x 与y 的增长速度之比约为________. 8.(2010·青岛模拟)为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立做了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1、l 2,已知两人所得的试验数据中,变量x 和y 的数据的平均值都相等,且分别是s 、t ,那么下列说法中正确的是________(填上正确的序号).①直线l 1和l 2一定有公共点(s ,t );②直线l 1和l 2相交,但交点不一定是(s ,t ); ③必有l 1∥l 2;④l 1与l 2必定重合.二、解答题(共42分) 9.(14分)(2010·威海模拟)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:(1)(2)求出y 关于x 的线性回归方程y ^=bx +a ,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少时间?(注:b =∑ni =1x i y i -n x y∑ni =1x 2i -n x2,a =y -b x )10.(14分)(2010·潍坊模拟)某种产品的宣传费支出x 与销售额y (单位:万元)之间有如下对应数据:(1)画出散点图; (2)求线性回归方程;(3)试预测宣传费支出为10万元时,销售额多大?11.(14分)(1)(2)指出产量每增加1 000件时,单位成本平均变动多少? (3)假定产量为6 000件时,单位成本为多少元?学案56 线性回归方程答案自主梳理1.确定性 非确定性 3.(1)线性相关关系 (2)最小 (3)∑ni =1(x i -x )(y i -y )∑ni =1(x i -x )2∑n i =1x i y i -n x y∑ni =1x 2i -n x2y -b x自我检测 1.①②③解析 根据两个变量相关关系的概念,可知①正确,散点图能直观地描述呈相关关系的两个变量的相关程度,且回归直线最能代表它们之间的相关关系,所以②、③正确.只有线性相关的数据才有线性回归直线方程,所以④不正确. 2.①③④ 3.5.25解析x =2.5,y =3.5,∵线性回归方程过定点(x ,y ),∴3.5=-0.7×2.5+a .∴a =5.25. 4.D解析 因为A 、B 、C 、E 四点分布在一条直线附近且贴近某一直线,D 点离得远. 5.y ^=74x +234解析 ∵∑3i =1x i y i =434,x =7,y =18,∑3i =1x 2i=179, ∴b =∑3i =1x i y i -3x y∑3i =1x 2i -3x 2=74. a =y -b x=18-74×7=234,∴线性回归方程为y ^=74x +234.课堂活动区例1 解题导引 判断变量间是否线性相关,一种常用的简便可行的方法就是作散点图.解 (1)以x 轴表示温度,以y 轴表示热饮杯数,可作散点图,如图所示.(2)从图中可以看出,各点散布在从左上角到右下角的区域里,因此,气温与热饮销售杯数之间是负相关关系,即气温越高,卖出去的热饮杯数越少.从散点图可以看出,这些点大致分布在一条直线附近,所以两变量之间具有相关关系. 变式迁移1 解 以x 轴表示数学成绩,y 轴表示物理成绩,可得相应的散点图如下图所示:由散点图可见,两者之间具有相关关系.例2 解题导引 求线性回归方程,关键在于正确求出系数a ,b ,由于计算量较大,所以计算时要仔细谨慎,分层进行,避免因计算产生失误,特别注意,只有在散点图大体呈线性时,求出的线性回归方程才有意义.解 制表如下:i 1 2 3 4 5 合计 x i 2 3 4 5 6 20 y i 2.2 3.8 5.5 6.5 7.0 25 x i y i 4.4 11.4 22.0 32.5 42.0 112.3 x 2i4 9 16 25 36 90 x =4;y =5;于是有b =112.3-5×4×590-5×42=12.310=1.23;a =y -b x =5-1.23×4=0.08.∴线性回归方程为y ^=1.23x +0.08.变式迁移2 解 x =1+2+3+44=52,y =12+32+2+34=74,∑n i =1x 2i=12+22+32+42=30,∑ni =1x i y i=1×12+2×32+3×2+4×3=432, ∴b =∑ni =1x i y i-n x y ∑n i =1x 2i -n x 2=432-4×52×7430-4×254=0.8,a =y -b x =74-0.8×52=-0.25,∴y ^=0.8x -0.25.例3 解题导引 利用线性回归方程可以进行预测,线性回归方程将部分观测值所反映的规律进行延伸,是我们对有线性相关关系的两个变量进行分析和控制,依据自变量的取值估计和预报因变量值的基础和依据,有广泛的应用.解 (1)散点图:(2)x =3+4+5+64=4.5,y =2.5+3+4+4.54=3.5,∑4i =1x i y i =3×2.5+4×3+5×4+6×4.5=66.5.∑4i =1x 2i =32+42+52+62=86, ∴b =∑4i =1x i y i -4x y ∑4i =1x 2i -4x 2=66.5-4×4.5×3.586-4×4.52=0.7, a =y -b x =3.5-0.7×4.5=0.35. ∴所求的回归方程为y ^=0.7x +0.35.(3)现在生产100吨甲产品用煤y ^=0.7×100+0.35=70.35, ∴降低90-70.35=19.65(吨标准煤). 变式迁移3 68解析 x =10,y =40, 回归方程过点(x ,y ), ∴40=-2×10+a .∴a =60. ∴y ^=-2x +60.令x =-4,y ^=(-2)×(-4)+60=68. 课后练习区 1.②⑤ 2.④解析 因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近1,两个变量的线性相关程度越强,所以①②错误.③中n 为偶数时,分布在l 两侧的样本点的个数可以不相同,所以③错误.根据线性回归方程一定经过样本中心点可知④正确.3.y ^=0.51x +6.65解析 a =y -b x =38.14-0.51×61.75≈6.65. ∴y ^=0.51x +6.65. 4.12.1解析 ∵y ^=0.8x +0.1,∴当x =15时,y ^=0.8×15+0.1=12.1. 5.不具有 6.650解析 将x =80代入y ^=5x +250中,即可得水稻的产量约为650 kg. 7.522解析 x 与y 的增长速度之比即为回归方程的斜率的倒数14.4=1044=522.8.①解析 线性回归方程为y ^=bx +a .而a =y -b x , 即a =t -bs ,t =bs +a .∴(s ,t )在回归直线上.∴直线l 1和l 2一定有公共点(s ,t ). 9.解(1)散点图如图所示.(4分) (2)由表中数据得∑4i =1x i y i=52.5,x =3.5,y =3.5,∑4i =1x 2i=54, ∴b ^=0.7.(7分) ∴a ^=y -b ^x =1.05.∴y ^ =0.7x +1.05.回归直线如图中所示.(10分) (3)将x =10代入线性回归方程, 得y =0.7×10+1.05=8.05(小时),∴预测加工10个零件需要8.05小时.(14分) 10.解 (1)根据表中所列数据可得散点图如图所示:(4分)(2)计算得:x =255=5,y =2505=50, ∑5i =1x 2i =145,∑5i =1x i y i =1 380. 于是可得b =∑5i =1x i y i -5x y ∑5i =1x 2i -5x 2=1 380-5×5×50145-5×52=6.5,(7分)a =y -b x =50-6.5×5=17.5, 因此,所求线性回归方程是y ^=6.5x +17.5.(10分)(3)由上面求得的线性回归方程可知,当宣传费支出为10万元时, y ^=6.5×10+17.5=82.5(万元), 即这种产品的销售大约为82.5万元.(14分)11.解 (1)n =6,∑6i =1x i =21,∑6i =1y i=426,x =3.5,y =71, ∑6i =1x 2i =79,∑6i =1x i y i=1 481, b =∑6i =1x i y i -6x y ∑6i =1x 2i -6x 2=1 481-6×3.5×7179-6×3.52≈-1.82.(5分)a =y -b x =71+1.82×3.5=77.37.∴线性回归方程为y ^=a +bx =77.37-1.82x . (8分)(2)因为单位成本平均变动b =-1.82<0,且产量x 的计量单位是千件,所以根据回归系数b 的意义有:产量每增加一个单位即1 000件时,单位成本平均减少1.82元. (12分)(3)当产量为6 000件时,即x =6,代入线性回归方程:y ^=77.37-1.82×6=66.45(元).∴当产量为6 000件时,单位成本为66.45元.(14分)实用文档祝你高考成功!11。

相关文档
最新文档