5.静态基线处理
GNSS大地测量中基线测量和基线处理方法详解

GNSS大地测量中基线测量和基线处理方法详解GNSS是全球导航卫星系统的缩写,是一种利用卫星和地面测量设备实现高精度定位的技术。
在测绘和地理信息领域,GNSS被广泛应用于大地测量中。
大地测量中的基线测量和基线处理方法是保证测量数据精度的关键环节。
本文将详细介绍GNSS大地测量中的基线测量和基线处理方法,以及其中涉及的相关知识。
1. GNSS基本原理GNSS是通过接收地面上的卫星信号来测量接收器与卫星之间的时间差,从而计算出接收器的位置。
卫星发射的信号经由大气层传播到达接收器,其中包含导航消息和时间信息。
接收器接收到信号后,通过计算信号传播时间以及接收到的多个卫星的位置,可以确定接收器的位置。
GNSS技术的精度取决于测量的基线长度和数据处理方法。
2. 基线测量方法基线指的是测量点之间的距离,基线测量方法就是通过GNSS技术测量两个或多个站点之间的距离。
常用的基线测量方法包括静态测量、快速静态测量和动态测量。
静态测量是最常用和精度较高的一种基线测量方法。
在静态测量中,观测者将接收器放置在需要测量的站点上,进行长时间观测。
观测时间越长,得到的数据精度越高。
快速静态测量是一种缩短观测时间的方法,通过增加接收器接收到的卫星数量,提高测量的精度。
而动态测量则是在移动状态下进行的,主要应用于需要实时动态定位的场景。
3. 基线处理方法基线测量完成后,需要进行基线处理以获得最终的测量结果。
基线处理是指将观测的GNSS数据进行解算和处理,得出测量结果的过程。
基线处理的方法主要有单点解、差分解和相对定位解。
单点解是将每个接收器作为一个独立的测量点,没有考虑到其他接收器的数据。
差分解是以某个接收器的测量结果为基准,将其他接收器的测量结果与之进行差分处理,得出相对位置。
相对定位解则是通过同时解算多个接收器的测量结果,得出各个接收器的相对位置。
对于基线处理来说,数据的质量和精度对结果影响较大。
常用的数据处理方法包括平差法、滤波法和Kalman滤波法。
原子吸收光谱仪检定规程

原子吸收光谱仪检定规程 JJG——023-19961 前言本规程参照国际法制计量组织(OIML)技术工作导则第二部分:OIML国际建议和国际文件起草与表述规则、JJG1002-84国家计量检定规程编写规则和GB3100-93国际单位制及其应用编写的。
下列标准包含的条文,通过在本检定规程中引用而构成为本检定规程的条文。
JJG694-90原子吸收分光光度计检定规程GB/T6682分析实验室用水规格和试验方法GB/T602化学试剂杂质测定用标准溶液的制备GB/T603化学试剂试验方法中所用制剂和制品的制备2 范围本规程适用于新购置、使用中的和检修后的各种类型的原子吸收光谱仪(以下简称仪器)的检定。
2.1原理原子吸收光谱法是基于蒸气相中被测元素的基态原子对来自光源特征辐射的共振吸收,其吸收值(吸光度)与试样中被测组分的浓度的关系,遵循光吸收定律:(1)式中A——吸光度I0——入射辐射(光)强度I——透射辐射(光)强度ε——摩尔吸收系数c——试样中被测组分的浓度L——光通过原子化器的光程2.2 构成仪器按光束形式分为单光束型与双光束型仪器,按照原子化器的不同,分为火焰与无火焰仪器,有些仪器同时配备有两种原子化器。
仪器由光源、原子化器、单色器、检测器、背景校正系统与信号放大、显示、处理系统组成。
光源的功能是发射被测元素的特征共振辐射,原子化器是提供能量,使样品原子化,单色器的作用是将欲检测的特征辐射分离开来,5.5.1.外观与初步检查:仪器外观应符合5.1的要求。
仪器各旋纽与功能键应能正常工作;配备微机的仪器,由键盘输入指令时,各相应的功能应正常。
5.5.2 波长示值误差检定用汞灯或一组空心阴极灯的特征谱线进行检定。
若用汞空心阴极灯的谱线进行检查,按该灯上规定的工作的电流(或最大的电流的1/2~1/3)点亮它,对253.7nm、365.0nm、435.8nm、546.1nm、640.2nm、724.5nm和871.6nm各谱线分别进行三次测量,以给出最大能量的波长示值作为测量值(注:若汞灯的640.2nm、724.5nm、和871.6nm谱线的能量太弱,则用K766.5nm、Cs852.1谱线);若用一组空心阴极灯的特征谱线进行检定,则将As、Cd、Cu、Ca、Na、K与Cs各空心阴极灯点亮,对As 193.7nm,Cd 228.8nm,Cu 324.8nm,Ca 422.7nm,Na 589.0nm,K 766.5nm,Cs 852.1nm 各谱线分别进行三次测量。
【专业】静态数据解算:基线处理网平差

【专业】静态数据解算:基线处理网平差HGO数据处理软件包是中海达GPS解算软件必备的软件包,用于GPS解算软解可直接安装,适用于对静态采集的GPS数据进行系统处理,得到较好的基线解算结果。
文件名:HGO数据处理软件包V2.0.4软件大小:73.6 MB (77,271,283 字节)1、新建项目:输入项目名选择保存路径项目属性:输入项目基本信息,限差项选择相应测量规范及控制等级提示:仪器精度:表示仪器硬件自身的误差精度比例误差(ppm):表示仪器硬件与距离之间的一个误差比例精度坐标系统椭球:选择源椭球与目标椭球投影:选择投影方法、设置中央子午线2、导入数据:可以多选导入、导入目录、导入手簿项目(做PPK 解算时候用),导入数据时,软件信息状态栏会进行相应提示及观测位置单点定位自动纠正。
通过软件查看静态观测值好坏3、①单点定位与质检:可以查看质量检查栏是否提示指标超限或通过,以及其他指标初步判断数据好坏②观测序列图:可以查看卫星的观测序列图完整情况判断数据的好坏;③卫星图:可以通过卫星查看观测位置卫星被遮挡情况、及信噪比图判断静态数据的好坏;4、软件自动处理基线有时会出现基线、重复基线、同步环、闭合环不合格的情况,对于不合格的基线、重复基线、同步环、闭合环,单独处理对应的基线,直到全部符合项目属性设置的规范要求为止。
基线处理详细步骤:① '基线处理'设置'解算设置'参数,保存至全部a. 可点击菜单栏的“基线处理”选择“处理全部基线”,软件自动解算全部基线;b. 也可点击导航栏的“处理基线”选择“处理全部”,软件自动解算全部基线;处理基线时,主要看两个指标:ratio值、rms值Ratio值>2,越大越好,最大99Rms值基线中误差,越小越好,一般调整<8mm考核基线质量的附加条件有:重复基线、同步环、异步环②继续处理软件自动解算不合格基线、同步环、异步环、重复基线(需反复处理基线)基线处理方法一:通过“解算设置”参数,即调整高度截止角、采样间隔、最少历元数、GNSS卫星系统(尝试某一卫星系统不参与解算、BDS或GLONASS不参与解算,或单GPS解算),然后保存至“选中”,点击菜单栏“基线处理”选择“处理选定基线”;或点击导航栏“处理基线”选择“处理”;或点击鼠标右键选择“解算”,直到该条基线合格为止基线处理:方法二:有时通过设置“解算设置”参数,发现基线还是不合格,则可结合调整基线残差序列来进行交叉处理,这是基线质量处理的强大工具。
LGO软件静态后处理及坐标转换操作流程

LGO软件静态后处理及坐标转换操作流程LGO软件是一款专业的测量数据处理软件,用于处理全站仪、GPS仪等测量设备采集到的原始测量数据。
在使用LGO软件进行数据处理时,通常需要进行静态后处理和坐标转换操作。
下面是LGO软件静态后处理及坐标转换的简要操作流程。
1.导入数据首先,将采集到的原始测量数据导入LGO软件。
可以通过设备连接电脑,直接导入或通过存储介质(如U盘)导入数据。
2.创建观测项目在LGO软件中,需要创建一个新的观测项目来管理相关的测量文件和数据。
可以根据实际需要命名观测项目,并选择数据类型(如全站仪、GPS等)。
3.添加观测文件在创建的观测项目中,需要添加采集到的观测文件。
可以通过“导入”或“拖拽”方式将原始测量文件添加到项目中。
4.数据校正6.基线处理基线处理是静态测量中重要的一步,可以根据基线的几何关系进行数据处理。
在LGO软件中,可以选择合适的处理方法,如最小二乘法、平差法等,并进行计算。
7.坐标计算根据测量数据和基线处理的结果,可以进行坐标计算。
LGO软件提供了多种坐标计算方法,如三角高程法、体积计算法等。
用户可以根据实际需求选择合适的计算方法。
8.坐标转换在实际测量中,可能需要将测量数据转换到不同的坐标系或投影系统。
LGO软件提供了强大的坐标转换功能,可以实现不同坐标系之间的转换,并进行相应的处理。
9.结果输出最后,将处理和计算的结果进行输出。
LGO软件提供了丰富的输出选项,可以生成多种格式的报告和图表,满足用户的需求。
总结:。
静态数据后处理基线解算步骤

静态数据后处理基线解算及坐标投影1.运行“南方GPS数据处理”程序,点击“文件”菜单中的“新建”菜单,在弹出的对话框中输入“项目名称”并选定投影坐标系(一般情况为北京54坐标3度带坐标系统);2.点击“数据输入”菜单下的“增加观测数据文件”菜单,找到存放观测数据的文件夹,点击右上方的“全选”按钮然后单击确定导入观测数据;3.点击“数据输入”菜单下的“坐标数据录入”,在弹出的对话框中选择已知点点号后输入相应的已知点坐标数据(至少两个已知点数据);4.点击“基线解算”菜单下的“全部解算”菜单,等待程序对基线进行自动进行解算;5.点击左屏幕中的“基线简表”子项,查看基线解算是否全部通过(方差小于3时系统会自动提示解算不通过),如果有未解算通过的基线边可在相应的基线解算数据行上单击右键,在弹出的对话框中增加或者减少“高度截止角”和“历元间隔”反复解算直到基线的方差比大于3为止,特殊情况下可选择参考卫星。
6.点击左屏幕中的“闭合环”子项查看同步环和异步环的闭合精度是否合格(如果精度太低系统将会提示);7.点击左屏幕中的“重复基线”子项查看重复基线的精度情况,如果精度太低系统将会自动删除不合格的重复基线;8.以上工作确保无误的情况下,点击“平差处理”菜单下的网平差,系统将自动对GPS网进行平差计算和坐标成果解算。
如果系统提示已知点坐标与坐标系统设置差异太大:首先请检查已知点的坐标数据是否正确;其次如果确认已知点坐标数据无误后还会出现该提示,说明所提供的已知点坐标数据不是北京54坐标系,点击“平差处理”菜单下的“平差参数设置”在弹出的对话框中将“进行已知点与坐标系匹配检查”一项变为不选中再进行网平差即可。
9.自定义坐标系时先选择相应的坐标系统参数再点新建,并注意坐标投影高(如果有两个以上已知点,可不考虑投高度)。
10.点击“成果”菜单下的“成果报告打印”,设置纸张为A4然后系统将自动打印出成果报告。
gps碎步测量

中海达数据处理实习报告一、实验目的:1. 了解 GPS 测量数据的处理过程;2 掌握 HDS2003 处理 GPS 测量数据的基本流程;3. 熟悉 GPS 基线解算方法与技巧;4. 掌握 GPS 网平差方法;5. 熟悉软件操作和一些处理技巧;6 .熟练掌握 GPS 碎步测量过程;二、实验仪器:中海达 GPS 、计算机、中海达 GPS 使用软件及使用说明书。
三、实验内容:使用 GPS 软件处理碎步测量的实验数据,学习并掌握 GPS 的操作。
四、实验原理: GPS 定位的原理是 GPS 卫星发射的测距信号和导航电文 , 导航电文中含有卫星位置的信息 , 用户用 GPS 接收机在某一时刻接收三颗或三颗以上的 GPS 卫星 , 测出测站点 (GPS 天线中心 ) 到卫星的距离并解算出该时刻卫星的空间位置根据距离 , 并解算出卫星的空间位置 , 根据距离交会法求测站点坐标 . 其基本思想为 : 在基准站上安置一台 GPS 接收机 , 对所有可见卫星进行连续观测并将其观测数据通过无线电传输设备实时地发送给用户观测站 , 用户站在接收 GPS 卫星信号的同时 , 通过无线电接收机设备接收基准站传输的观测数据 ,实时计算测站点的三维坐标 .五、指导老师:赵飞燕六、实习人员:李华鹏( 25 )号七、中海达 GPS 碎步测量过程:1. )基站架设:对中、整平基座‘连接好 GPS 各连接线。
且基站架设应注意事项:a. 高度角在 15 度以上开阔、五大行遮挡物;b. 无限磁波干扰( 200 米内部能有微波炉、手机信号站等, 50 米内无高压线)。
c. 位置比较高,基准站到移动站之间最好无大型遮挡物,否则查分传播距离迅速缩短。
2. )手薄与 GPS 基准站主机的连接:打开 GPS 主机,双击手薄桌面的“ Haidartk”图标,点击“设置 / 连接”即可》3. ) RTK GPS 碎步测量注意事项: a. 先开机,再连接手薄; b. 手薄连接前,要将端口设为“ COM 5 ”; c. 手薄与 GPS 主机距离最好在 10 米内,且其周围 30 米内无其他蓝牙设备; d. 手薄与主机间无太大的障碍物。
3-2中海达GPS静态(全球版)的使用

中海达GPS静态的使用静态机外业操作步骤:测站点选择应尽可能的远离高压线,大功力无线电发射塔,大树或高楼附近。
1.安装仪器,对中整平,量出仪器天线高。
2.按电源键开机,开机按F 键3秒,三个灯同时闪两下,进入设置模式,来调整主机工作方式。
调到三个灯(卫星灯,接收灯,状态灯)全亮之后,再短按电源键确定,此时主机工作模式为静态模式。
3.观察卫星灯,接收灯,状态灯,电源灯的变化情况。
电源灯:电源灯隔一段时间闪几下,闪的次数表示电量的多少,四次表示电量很足,三下其次,当电源灯快闪时表示电量很低,须尽快更换电池。
卫星灯:卫星灯快闪表示主机还未锁定卫星,锁定卫星之后卫星灯隔约半分钟闪几下,闪的次数表示接收卫星的多少。
锁定卫星之后,状态灯是隔一段时间(采样间隔设置的多少就隔多少秒闪一下),而接收灯是不会亮的。
静态数据的传输:插好数据线,开机把接收机改为静态模式(若是静态机则开机即可),打开HDS2003数据处理软件点【工具】→【HitMon数据传输】——进入数据传输软件,点【连接】→【计算机通讯设置】——设置通讯串口及传输的波特率一般为115200点【连接】→【连接】或直接点工具栏上的连接快捷键(若用USB传输线则插上后直接点连接即可),连上后在对话框右下角显示仪器号,读取接收机数据后在主界面显示观测的数据,点【文件】→【设置卸载文件的存储目录】或直接点工具栏左侧的 Path 快捷键——设置接收机传出文件的存储目录,设置好后界面刷新一下,在对话框下方显示下载的路径,选择需要下载的文件右键→【输入测站信息】——输入点名、时段、仪器高等,确定后再输入右键选择下一个文件,都输入好后,点【编辑】→【刷新】或直接点工具栏右侧的 Refreft 快捷键,界面刷新一下把改后的数据在写入仪器内,(软件默认点名为四位若不够四位软件自动在点名后加“_”下划线补齐,若仪器高输错,第二次修改时需把点名后的“_”下划线删除,不然所改的数据不能传入到接收机里)刷新后在界面里就可以看到改后的文件的点名和仪器高了,选中需要下载的数据,右键→【数据导出】——把所测的数据导入到指定的文件夹里,导出后点【连接】→【断开】或直接点工具栏上的断开快捷键,就可拨下数据线进行下一台接收机的数据传输。
GPS测量数据处理中的基线解算与坐标转换方法

GPS测量数据处理中的基线解算与坐标转换方法GPS(全球定位系统)是一种使用卫星技术进行地理测量和定位的先进工具。
在实际的测绘和测量工作中,GPS测量数据处理是一个重要的环节。
其中,基线解算与坐标转换方法是其中的核心内容之一。
基线解算是指根据通过GPS观测得到的卫星观测数据,计算出两个或多个测站之间的距离和方向的过程。
对于两个测站之间的基线,首先需要解算出基线长度,即测站之间的直线距离。
然后,根据相同的基线长度,可以得到基线的坐标方向。
基线解算方法主要有静态基线解算、动态基线解算和RTK(实时动态差分)基线解算。
静态基线解算是利用长时间内(通常为几个小时到一天)的GPS观测数据,通过一些统计学方法计算出基线的精度。
这种方法适用于不需要实时性的测量任务,例如大范围的地形测量和控制网的建立。
静态基线解算的优点是计算结果精度高,但缺点是耗时较长。
动态基线解算是利用运动中的GPS接收机,通过较短时间内的观测数据,计算出基线的精度。
这种方法适用于需要实时性的测量任务,例如航空和航海等应用。
动态基线解算的优点是计算速度快,但相对于静态基线解算,精度稍低。
RTK(实时动态差分)基线解算是一种利用两个或多个接收机之间的无线电链路,进行实时差分校正的方法。
这种方法适用于需要高精度和实时性的测量任务,例如建筑物和道路测量。
RTK基线解算的优点是计算精度高且实时性强,但缺点是对设备的要求较高。
坐标转换是指将GPS观测得到的坐标转换为地理坐标系统或工程坐标系统中的相应坐标的过程。
常用的坐标转换方法有七参数法、四参数法和三参数法等。
七参数法是指通过观测得到的七个参数,包括三个旋转参数、三个平移参数和一个尺度参数,来实现坐标转换的方法。
这种方法适用于大范围的坐标转换,例如全球定位系统和国家坐标系之间的转换。
七参数法的优点是转换精度高,但缺点是计算复杂。
四参数法是指通过观测得到的四个参数,包括两个平移参数和两个尺度参数,来实现坐标转换的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章静态基线处理基线处理软件的优劣不但影响着GPS相对静态测量的精度,而且也影响着相对静态测量可靠性、所需观测时间等。
对于一个商业用途的基线处理软件而言,不但要求能准确、可靠地处理出基线向量,而且要求软件对用户友好、易于使用。
HDS2003 数据处理软件很好地实现了复杂的基线处理理论与简易的软件使用的有机统一。
对于正常的观测数据,通常不需人工干预,就能很快得到准确的结果。
而对于观测质量比较差的数据,用户也可以根据各种基线处理的输出信息,进行人工干预,使基线的处理结果符合工程的要求。
§5.1 基线处理的过程按指定的数据类型录入GPS观测数据后,软件会自动分析各点位采集到的数据内在的关系,并形成静态基线后,就可以进行基线处理了。
基线处理的过程可分为如下几个主要部分:一、设定基线解算的控制参数基线解算的控制参数,用以确定数据处理软件采用何种处理方法来进行基线解算。
设定基线解算的控制参数是基线解算时的一个非常重要的环节。
通过控制参数的设定可以实现基线的优化处理。
控制参数在“基线解算设置”中进行设置,主要包括“数据采样间隔”、“截止角”、“参考卫星”及其电离层和解算模型的设置等。
二、外业输入数据的检查与修改在录入了外业观测数据后、在基线解算之前,需要对观测数据进行必要的检查。
检查的项目包括测站名点号、测站坐标、天线高等。
对这些项目进行检查的目的是为了避免外业操作时的误操作。
三、基线解算基线解算的过程一般是自动进行的,无需人工干预。
基线解算有分为如下几步:1)基线解算自检基线解算之前,软件会检查基线解算控制参数的设置、观测数据及星历文件、起算坐标等等。
2)读入星历数据星历数据的格式可以为RINEX格式,也可以为中海达自定义的二进制格式(*.zhd),也可以为SP3格式的精密星历。
3)读入观测数据HDS2003 GPS 数据处理软件进行单基线处理时,首先需要读取原始的GPS 观测值数据,一般来说各接收机厂商随接收机一起提供的数据处理软件都可以直接处理从接收机中传输出来的GPS 原始观测值数据,而由第三方所开发的数据处理软件则不一定能对各接收机的原始观测数据进行处理。
HDS2003 GPS 数据处理软件能处理的数据已经在第十章作了全面介绍。
读入起始站和终点站的观测数据,其中还包括观测时记录的单点定位坐标、观测时刻、C/A码伪距、载波相位,若单点定位坐标不正确,则需要进行单点定位计算,以将起算坐标用于后续的解算,起算坐标也可由外部输入。
在读入的同时,组成单差观测值,并寻找一个合适的参考卫星。
4)三差解算将双差观测值在历元间进行相减,组合成三差观测值,建立观测方程,进行解算,得到三差解。
但对于短边,三差解的精度往往不高1,通常三差解的目的在于得到比较近似的基线边,便于进行周跳修复。
1一般认为,对于短边,双差固定解的精度最高,对于长边,往往也利用三差解。
图5-1 单基线解算的主要步骤5)周跳修复基线解算的关键在于找到正确的整周模糊度,能够求解整周模糊度的前提是接收机对载波相位的连续跟踪,但是接收机不可能总是连续跟踪载波相位,遮挡、干扰等都会造成对载波相位的跟踪中断,从而使历元之间的载波相位观测值出现所谓的周跳,如何探测并修复周跳,往往是基线处理软件需要解决的主要问题。
6)进行双差浮点解算若共观测到N颗卫星的信号,则双差观测方程组将比三差观测方程组增加N-1个未知数,双差解得到更进一步的未知点坐标和以浮点数表示的整周模糊度。
理论上,整周模糊度应为整数,但由于其在解算时吸收了观测噪声以及其它未模型化的误差,因此通常只能得到一个浮点数。
该浮点数往往与实际的整数有一定的偏差,有时偏差甚至达到几周。
7)整周模糊度分解一般说来,在足够长的同步观测时间和得到足够多的观测数据的情况下,仅靠取整也可以得到正确的整周模糊度,但采用快速求解整周模糊度(FARA, Fast Ambiguity Resolution Approach)方法和LAMBDA方法,可以大大地缩短观测时间,提高工作效率。
8)进行双差固定解算在整周模糊度得到正确的固定后,进行双差固定解算,双差固定解的精度最高。
但若整周模糊度不正确,双差固定解的精度当然也不正确。
四、基线质量的检验基线解算完毕后,基线结果并不能马上用于后续的处理,还必须对基线的质量进行检验。
只有质量合格的基线才能用于后续的处理,如果不合格则需要对基线进行重新解算或重新测量。
基线的质量检验需要通过RATIO、RDOP、RMS、同步环闭合差、异步环闭合差和重复基线较差来进行。
§5.2 基线处理的设置作基线向量处理前,要进行“基线向量处理设置”,执行菜单“静态基线”下的“基线处理设置”,出现如图(5-2)的对话框:图5-2 基线处理设置对话框共由三页组成,分别为常用设置、对流层和电离层设置、高级设置。
下面分别对话框中各项的意义做简要的介绍:§5.2.1常用设置一、历元间隔所谓历元间隔,就是在基线处理时,软件从原始观测数据中抽取数据的间隔。
如图(10-3)所示:图5-3 历元间隔比如,两台仪器在作静态观测时,设置为每5秒采集一组数据,但在内业处理时,这么高密度的的观测数据通常并不能显著提高基线的精度,反而会大大增加基线处理的时间。
因此,为提高基线处理的速度,用户可适当增大数据处理的采样间隔。
那么,多大的采样间隔合适呢?通常认为,对于短边,且观测时间较短时,可适当缩小采样间隔,而对于长边,可适当增大采样间隔。
比如,对于2公里以内的静态基线,而观测时间又在20分钟以内时,我们可设置采样间隔为5秒。
但基线较长时,通常可增大采样间隔,可达到60秒或120秒。
那么,为什么还需要在野外观测时,设置比较小的采样间隔呢?这是因为,当遇到不太好的数据时,由于观测数据具有一定的随机性以及软件本身的功能所限,通过修改历元间隔后重新处理基线,往往能改善处理结果。
软件缺省的历元间隔是60秒。
二、高度截止角高度截止角用来限制高度比较低的卫星数据,使其不参与基线解算。
由于大气层对高度比较低的卫星信号的影响比较复杂,难以用模型进行改正,又由于高度比较低的信号容易受到如多路径、电磁波等各种因素的影响,因此,它们的信号质量通常也比较低。
所以,在数据处理中,通常将它们剔除。
如单从大气层折射的角度来看,对于短距离的观测,可以降低高度截止角;而对于长距离的观测,应该加大高度截止角,因为距离越短,大气折射影响越容易相互抵消。
当然,高度截止角的设置要还要视观测站点周围的环境如何。
在野外观测时,应根据卫星分布状况降低高度截止角,以采集尽量多的数据,方便处理。
图5-4高度截止角默认的高度截止角为20度。
三、参考卫星由于双差观测值是单差观测值在卫星之间进行差分形成的,所以在组成双差观测值时,为了方便处理,软件采用选取参考卫星的方法。
默认的设置是自动方式。
这时,软件会选取观测数据最多、而且高度角较高的卫星作参考卫星。
但由于观测条件的影响,这样的选择未必最合理,当参考卫星选取不当时,会影响基线处理结果。
这时,就需要用户根据观测数据状况重设参考卫星。
在重设参考卫星时,首先根据卫星预报、野外观测记录、前面基线处理的结果状况综合进行选择。
如任意选择一颗根本没有观测到的卫星是没有意义的。
四、粗差容忍系数在数据处理的过程中,常常要将一些不合格的数据当作粗差剔除。
当观测值偏离模型值超过(粗差容忍系数×RMS)时,就认为这组观测值为粗差。
可见,这个系数太大或者太小都会影响观测数据剔除的标准。
通常情况下,不需要修改这个参数。
默认的设置为3.5。
五、最小历元数由于在观测过程中,接收机必须观测到连续的载波相位,如一段数据连续出现周跳,则这一段数据的质量通常是很差的,常常影响基线处理的质量,因此,通常应该将其剔除。
因此,在基线处理过程中,软件会将观测连续历元数不超过最小历元数的数据段剔除。
软件要求最小历元数大于或等于2。
默认值为5。
六、最大历元数最大历元数与软件在基线处理时分配的内存有关。
默认值为999。
§5.2.2对流层、电离层设置下图所示为对流层、电离层设置对话框。
一般情况下,不需要更改其设置。
图5-5对流层、电离层设置§5.2.3高级设置下图所示为高级设置对话框。
在通常情况下,处理单频数据时,不需要更改其内容。
在处理双频数据时,则要经常修改对话框中的“观测组合方案”多选框,观测数据各种组合的含义请参见相关资料。
图5-6 高级设置§5.3基线处理作好上述准备后,执行“基线处理”菜单下的“处理全部基线”,程序开始依次逐条处理全部基线并出现信息框,如下图(图5-7)所示:在对话框中分别列出了各条解算基线的名称、基线解算的进度、以及各条基线解算的信息。
基线解算是以多线程方式在后台运行的。
在运行过程中,在计算区中点击右键,弹出菜单中可选择“停止”,从而停止基线的解算。
图5-7 基线处理过程基线解算完后,将在计算窗口得到基线解的结果。
如下图(5-8)所示:图5-8 基线处理警告会有警告信息,双击警告信息就可以在列表中显示是对应基线。
图5-9基线解结果在计算区中点击信息标签,就可以查看到基线的详细解算情况。
基线解的处理结果还可以通过点击“处理报告“中的“静态基线“生成基线报告。
如图图5-10基线处理报告§5.4 基线处理结果检验§5.4.1 基线质量控制基线解算后,可以通过RATIO 、RDOP 、RMS 和数据删除率这几个质量指标来衡量基线解算的质量。
通常认为,若RMS 偏大,则说明观测值质量较差。
若RDOP 值较大则说明观测条件较差。
需要说明的是,它们只具有某种相对意义,即它们数值的高低不能绝对的说明基线质量的高低。
一、 RMSRMS 即均方根误差(Root Mean Square ),即:fn PV V RMS T -= 其中:V 为观测值的残差;P 为观测值的权;n-f 为观测值的总数减去未知数个数。
RMS 表明了观测值的质量。
RMS 越小,观测值质量越好;反之,表明观测值质量越差。
它不受观测条件(如卫星分布好坏)的影响。
依照数理统计的理论,观测值误差落在1.96 倍RMS 的范围内的概率是95%。
二、 RATIORATIO 即整周模糊度分解后,次最小RMS 与最小RMS 的比值。
即:minsec RMS RMS RATIO = RATIO 反映了所确定出的整周未知数参数的可靠性,这一指标取决于多种因素,既与观测值的质量有关,也与观测条件的好坏有关。
RATIO 是反映基线质量好坏的最关键值,通常情况下,要求RATIO 值大于3。
三、数据删除率在基线解算时,如果观测值的改正数大于某一个阈值时,则认为该观测值含有粗差,则需要将其删除。
被删除观测值的数量与观测值的总数的比值就是所谓的数据删除率。