三角形的外角练习题及标准答案

合集下载

三角形的外角练习题及标准答案

三角形的外角练习题及标准答案

7.2.2 三角形的外角基础过关作业1.若三角形的外角中有一个是锐角,则这个三角形是________三角形.2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).3.如图1,x=______.(1) (2) (3)4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.6.如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高,H是BD、•CE的交点,求∠BHC的度数.综合创新作业7.如图所示,在△ABC中,AB=AC,AD=AE,∠BAD=60°,则∠EDC=______.8.一个零件的形状如图7-2-2-6所示,按规定∠A应等于90°,∠B、∠D应分别是30°和20°,李叔叔量得∠BCD=142°,就断定这个零件不合格,你能说出道理吗?9.(1)如图7-2-2-7(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(2)如图7-2-2-7(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.10.(易错题)三角形的三个外角中最多有_______个锐角.培优作业11.(探究题)(1)如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠BDC与∠A之间的数量关系.(2)如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D,试探索∠BDC与∠A之间的数量关系.12.(趣味题)如图,在绿茵场上,足球队员带球进攻,总是向球门AB冲近,说明这是为什么?数学世界七桥问题18世纪在哥尼斯堡城的普莱格尔河上有七座桥,将河中的两个岛和河岸连接.如图所示.城中的居民经常沿河过桥散步,于是就提出一个问题:•能否一次不重复地把这七座桥走遍?可是,走来走去,这个愿望还是无法实现.该怎样走才好呢?•这就是著名的哥尼斯堡七桥问题.••好奇的人把这个问题拿给当时的大数学家欧拉(1707~1783).欧拉以深邃的洞察力很快证明了这样的走法不存在.你知道欧拉是根据什么道理证明的吗?答案:1.钝角2.直角点拨:∵∠C-∠B=∠A,∴∠C=∠A+∠B.又∵(∠A+∠B)+∠C=180°,∴∠C+∠C=180°,∴∠C=90°,∴△ABC的外角中最小的角是直角.3.60 点拨:由题意知x+80=x+(x+20).解得x=60.4.∠1>∠2>∠3点拨:∵∠1是∠2的外角,∠2是∠3的外角,∴∠1>∠2>∠3.5.解:∠BAC=180°-(∠B+∠C)=180°-(52°+78°)=50°.∵AE是∠BAC的平分线,∴∠BAE=∠CAE=12∠BAC=25°.∴∠AEB=∠CAE+∠C=25°+78°=103°.6.解:在△ACE中,∠ACE=90°-∠A=90°-60°=30°.而∠BHC是△HDC的外角,所以∠BHC=∠HDC+∠ACE=90°+30°=120°.7.30°点拨:设∠CAD=2a,由AB=AC知∠B=12(180°-60°-2a)=60°-•a,•∠ADB=180°-∠B-60°=60°+a,由AD=AE知,∠ADE=90°-a,所以∠EDC=180°-∠ADE-∠ADB=30°.8.解法1:如答图1,延长BC交AD于点E,则∠DEB=∠A+∠B=90°+30°=•120°,从而∠DCB=∠DEB+∠D=120°+20°=140°.若零件合格,∠DCB应等于140°.李叔叔量得∠BCD=142°,因此可以断定该零件不合格.(1) (2) (3)点拨:也可以延长DC与AB交于一点,方法与此相同.解法2:如答图2,连接AC并延长至E,则∠3=∠1+∠D,∠4=∠2+∠B,因此∠DCB=∠1+∠D+∠2+∠B=140°.以下同方法1.解法3:如答图3,过点C作EF∥AB,交AD于E,则∠DEC=90°,∠FCB=∠B=•30°,所以∠DCF=∠D+∠DEC=110°,从而∠DCB=∠DCF+∠FCB=140°.以下同方法1.说明:也可以过点C作AD的平行线.点拨:上述三种解法应用了三角形外角的性质:三角形的一个外角等于它不相邻的两个内角的和.9.解:(1)由图知∠A+∠F=∠OQA,∠B+∠C=∠QPC,∠D+∠E=∠EOP.而∠OQA、•∠QPC、∠EOP是△OPQ的三个外角.∴∠OQA+∠QPC+∠EOP=360°.∴∠A+∠B+∠C+∠D+∠E+∠F=∠OQA+∠QPC+∠EOP=360°.(2)360°点拨:方法同(1).10.1 点拨:本题易因混淆内角、外角的概念,而误填为3.11.解:(1)∠BDC=90°-12∠A.理由:∠ABC+∠ACB=180°-∠A.∠EBC+∠FCB=(180°-∠ABC)+(180°-∠ACB)=360°-(∠ABC+∠ACB)=180°+∠A.∵BD、CD分别为∠EBC、∠FCB的平分线,∴∠CBD=12∠EBC,∠BCD=12∠FCB.∴∠CBD+∠BCD=12(∠EBC+∠FCB)=12×(180°+∠A)=90°+12∠A.在△BDC中,∠BDC=180°-(∠CBD+∠BCD)=180°-(90°+12∠A)=90°-12∠A.(2)∠BDC=12∠A.理由:∵∠ACE是△ABC的外角,∴∠ACE=∠A+∠ABC,∵CD是∠ACE的平分线,BD是∠ABC的平分线,∴∠DCE=12∠ACE=12∠A+12∠ABC,∠DBC=12∠ABC.∵∠DCE是△BCD的外角,∴∠BDC=∠DCE-∠DBC=12∠A+12∠ABC-12∠ABC=12∠A.12.解:如图,设球员接球时位于点C,他尽力向球门冲近到D,此时不仅距离球门近,射门更有力,而且对球门AB的张角也扩大,球就更容易射中.理由说明如下:延长CD到E,则∠ADE>∠ACE,∠BDE>∠BCE,∴∠ADE+∠BDE>∠ACE+∠BCE,即∠ADB>∠ACB.点拨:解此题关键是将生活中的问题抽象为数学问题.数学世界答案:欧拉将七桥布局转化为图所示的简单图形,于是七桥问题就变成一个一笔画的问题.这个图形显然无法一笔画出,也就是说,•要想一次无重复地走遍这七座桥是办不到的.。

(完整版)三角形的外角习题及答案

(完整版)三角形的外角习题及答案

三角形的外角(习题)➢ 例题示范例1:已知:如图,点E 是直线AB ,CD 外一点,连接DE 交AB 于点F ,∠D =∠B +∠E . 求证:AB ∥CD .D CEA B F①读题标注 ②梳理思路要证AB ∥CD ,需要考虑同位角、内错角、同旁内角. 因为已知∠D =∠B +∠E ,而由外角定理得∠AFE =∠B +∠E ,故∠D =∠AFE ,所以AB ∥CD . ③过程书写 证明:如图,∵∠AFE 是△BEF 的一个外角(外角的定义)∴∠AFE =∠B+∠E (三角形的外角等于与它不相邻的两个内角的和)∵∠D =∠B +∠E (已知) ∴∠AFE =∠D (等量代换)∴AB ∥CD (同位角相等,两直线平行)➢ 巩固练习1. 如图,在△ABC 中,∠1是它的一个外角,∠1=115°,∠A =40°,∠D =35°,则∠2=________.21E F DCBADC EA BF2. 已知:如图,在△ABC 中,∠BAC =50°,∠C =60°,AD ⊥BC ,BE 是∠ABC 的平分线,AD ,BE 交于点F ,则∠AFB 的度数为____________.F BAEC Dα第2题图 第3题图3. 将一副直角三角板按如图所示的方式叠放在一起,则图中∠α的度数为( ) A .45°B .60°C .75°D .904. 如图,已知∠A =25°,∠EFB =95°,∠B =40°,则∠D 的度数为_____________.FEDCB AD CEAB第4题图 第5题图5. 如图,已知AD 是△ABC 的外角∠CAE 的平分线,∠B =30°,∠DAE =50°,则∠D =_______,∠ACB =_______.6. 如图,在△ABC 中,∠A =40°,∠ABC 的平分线BD 交AC 于点D ,∠BDC =70°,求∠C 的度数. 解:如图,∵∠BDC 是△ABD 的一个外角 (_____________________) ∴∠BDC =∠A +∠ABD(_____________________) ∵∠A =40°,∠BDC =70° (_____________________)∴∠ABD =_______-________=________-________ =________(_____________________)第4题图DCAB∵BD 平分∠ABC (_____________________)∴∠ABC =2∠ABD=_____×______ =__________ (_____________________)∴∠C =180°-∠A -∠ABC=180°-________-_______ =________(_____________________)7. 已知:如图,CE 是△ABC 的一个外角平分线,且EF ∥BC 交AB 于点F ,∠A =60°,∠E =55°,求∠B 的度数.8. 已知:如图,在△ABC 中,BD 平分∠ABC ,交AC 于点D ,DE ∥BC 交AB 于点E ,∠A =45°,∠BDC =60°,求∠AED 的度数.EDCBAFEDC B A➢思考小结1.在证明过程中:(1)要证平行,找_______角、_______角、_______角.(2)要求一个角的度数:①由平行,想_______相等、________相等、__________互补;②由直角考虑互余,由平角考虑_______,由对顶角考虑____________;③若把一个角看作三角形的内角,考虑_______________________________;④若把一个角看作三角形的外角,考虑__________________________________________.2.阅读材料欧几里得公理体系几何学创建的初期,内容是繁杂和混乱的.人们进行几何推理时,总是拿自己掌握的一些“基本事实”作为大前提去进行推理,而每个人心中的“基本事实”不尽相同.这就导致很多内容无法沟通,也没有统一的标准.这时,有必要将几何的内容,用逻辑的“锁链”整理、穿连起来.第一个完成这件工作的是古希腊数学家欧几里得(Euclid).欧几里得知识渊博,数学造诣精湛,尤其擅长几何证明.当他意识到几何学有必要做出系统整理的时候,就开始着手编写自己的著作《原本》了.他的思路是这样的:首先给出一些最基本的定义,如“点是没有部分的”,“线是没有宽度的”等;接着他列出了5条公设和5条公理作为推理的基本事实,而之后所有的推理都必须建立在这5条公设和5条公理基础上来进行.5条公设是:(1)从任意点到任意点作直线是可能的.(2)把有限直线不断沿直线延长是可能的.(3)以任意点为中心和任意距离为半径作一圆是可能的.(4)所有直角彼此相等.(5)若一直线与两条直线相交,且若同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的另一点.5条公理是:(1)跟同一件东西相等的一些东西,它们彼此也是相等的.(2)等量加等量,总量仍相等.(3)等量减等量,余量仍相等.(4)彼此重合的东西是相等的.(5)整体大于部分.其中5条公设主要对作图进行了相应的规范,而5条公理则主要从代数推理上进行规定.欧几里得基于上述这些公设和公理,推导出了平面几何中几乎所有的结论,从而构成了一个完整的几何体系,我们称之为欧氏几何.而他的著作《原本》中关于平面几何的部分,被翻译成中文叫做《几何原本》,正是我们平面几何的原型.而欧几里得这种对几何知识进行系统化、理论化的总结方法就被称之为公理法,而《原本》正是公理化体系的最好阐释.【参考答案】➢巩固练习1.40°2.125°3.C4.20°5.20°,70°6.∵∠BDC是△ABD的一个外角(外角的定义)∴∠BDC=∠A+∠ABD(三角形的外角等于与它不相邻的两个内角的和)∵∠A=40°,∠BDC=70°(已知)∴∠ABD=∠BDC-∠A=70°-40°=30°(等式的性质)∵BD平分∠ABC(已知)-40°-60°=80°(三角形的内角和等于180°)7.解:如图,∵EF∥BC(已知)∴∠ECD=∠E(两直线平行,内错角相等)∵∠E=55°(已知)∴∠ECD=55°(等量代换)∵CE是△ABC的一个外角平分线(已知)∴∠ACD=2∠ECD=2×55°=110°(角平分线的定义)∵∠ACD是△ABC的一个外角(外角的定义)∴∠ACD=∠A+∠B(三角形的外角等于与它不相邻的两个内角的和)∵∠A=60°(已知)∴∠B=∠ACD-∠A=110°-60°=50°(等式的性质)8.解:如图,∵∠BDC是△ABD的一个外角(外角的定义)∴∠BDC=∠ABD+∠A(三角形的外角等于与它不相邻的两个内角的和)∵∠A=45°,∠BDC=60°(已知)∴∠ABD=∠BDC-∠A=60°-45°=15°(等式的性质)∵BD平分∠ABC(已知)∴∠ABC=2∠ABD=2×15°=30°(角平分线的定义)∵DE∥BC(已知)∴∠AED=∠ABC(两直线平行,同位角相等)∴∠AED=30°(等量代换)➢思考小结1.(1)同位、内错、同旁内.(2)①同位角、内错角、同旁内角;②互补,对顶角相等;③三角形的内角和等于180°.④三角形的外角等于与它不相邻的两个内角的和.。

八年级上册数学人教版课时练《 三角形的外角》 试题试卷 含答案解析(2)

八年级上册数学人教版课时练《 三角形的外角》 试题试卷 含答案解析(2)

《11.2.2三角形的外角》课时练命题点1三角形外角的概念及性质1.如图下列角中是△ACD的外角的是()A.∠EAD B.∠BAC C.∠ACB D.∠CAE2.如图∠ACD是△ABC的外角若∠ACD=110°∠B=50°则∠A等于()A.40°B.50°C.55°D.60°3.将一副三角尺按如图所示的方式摆放则∠α的大小为()A.85°B.75°C.65°D.60°4.如图点E在BC上点D在AE上∠A=20°∠B=30°∠C=50°则∠ADB的度数是() A.50°B.100°C.70°D.80°5.如图∠BCD=150°则∠A+∠B+∠D的度数为()A.110°B.120°C.130°D.150°6.如图将一张三角形纸片ABC的一角折叠使点A落在△ABC外的A'处折痕为DE.如果∠A=α∠CEA'=β∠BDA'=γ那么下列式子中正确的是()A.γ=2α+βB.γ=α+2βC.γ=α+βD.γ=180°-α-β7.如图已知D为BC上一点∠B=∠1∠BAC=64°则∠2的度数为()A.37°B.64°C.74°D.84°8.如图BE平分∠ABCCE平分△ABC的外角∠ACD若∠A=70°则∠E=°.9.如图所示在△ABC中D是BC边上一点∠1=∠2∠3=∠4∠BAC=63°求∠DAC的度数.10.我们知道三角形的外角等于与它不相邻的两个内角的和.那么三角形的一个内角同与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图∠DBC∠BCE为△ABC的两个外角则∠A与∠DBC+∠BCE的数量关系为请证明你的结论.命题点2三角形内角和定理及其推论的综合应用11.一副三角板如图所示摆放则∠α与∠β的数量关系为()A.∠α+∠β=180°B.∠α+∠β=225°C.∠α+∠β=270°D.∠α=∠β12.如图在△ABC中∠C=36°将△ABC沿着直线l折叠点C落在点D的位置则∠1-∠2的度数是.13.如图已知∠BOF=120°则∠A+∠B+∠C+∠D+∠E+∠F=.14.如图CE是△ABC的外角∠ACD的平分线且CE交BA的延长线于点E.(1)若∠B=35°∠E=25°求∠BAC的度数;(2)请你写出∠BAC∠B∠E三个角之间存在的等量关系并说明理由.15.如图在Rt△ABC中∠C=90°AD平分∠BACBD平分∠CBEAF平分∠DABBF平分∠ABD 求∠F的度数.16.(1)如图①是一个五角星则∠A+∠B+∠C+∠D+∠E=°.(2)将图①中的点A向下移到BE上时如图②所示五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有没有变化?说明你的结论的正确性.(3)将图②中的点C向上移到BD上时如图③所示五个角的和(即∠CAD+∠B+∠ACE+∠D+∠E)有没有变化?说明你的结论的正确性.参考答案1.C2.D3.B4.B5.D6.A7.B8.359.解:∵∠3=∠1+∠2∠3=∠4∠1=∠2∴∠4=∠1+∠2=2∠2.∵∠BAC+∠2+∠4=180°即3∠2+63°=180°∴∠2=39°.∴∠1=39°.∴∠DAC=∠BAC-∠1=63°-39°=24°.10.解:∠A=∠DBC+∠BCE-180°证明:∵∠DBC=∠A+∠ACB∠BCE=∠A+∠ABC∴∠DBC+∠BCE=∠A+∠ACB+∠A+∠ABC.∵∠ACB+∠A+∠ABC=180°∴∠DBC+∠BCE=∠A+180°即∠A=∠DBC+∠BCE-180°.11.B12.72°13.240°14.解:(1)∵∠ECD=∠B+∠E∠B=35°∠E=25°∴∠ECD=60°.∵CE平分∠ACD∴∠ACE=∠ECD=60°.∴∠BAC=∠ACE+∠E=60°+25°=85°.(2)结论:∠BAC=∠B+2∠E.理由:∵CE平分∠ACD∴∠ACE=∠ECD.∵∠BAC=∠ACE+∠E∠ACE=∠ECD=∠B+∠E∴∠BAC=∠B+∠E+∠E=∠B+2∠E.15.解:如图∵AD平分∠BACBD平分∠CBE∴∠DAB=12∠BAC∠DBE=12∠CBE.∵∠C+∠BAC=∠CBE∴12∠C+12∠BAC=12∠CBE.∴12∠C+∠DAB=∠DBE.∴12∠C=∠DBE-∠DAB=∠D.∵∠C=90°∴∠D=45°.∵AF平分∠DABBF平分∠ABD∴∠1=12∠DAB∠2=12∠ABD.∴∠F=180°-∠1-∠2=180°-12∠DAB-12∠ABD=180°-12(∠DAB+∠ABD)=180°-12(180°-∠D)=90°+12∠D=112.5°.16.解:(1)180(2)没有变化.根据平角的定义得∠BAC+∠CAD+∠DAE=180°.∵∠BAC=∠C+∠E∠DAE=∠B+∠D∴∠CAD+∠B+∠C+∠D+∠E=∠BAC+∠CAD+∠DAE=180°.(3)没有变化.根据平角的定义得∠ACB+∠ACE+∠ECD=180°.∵∠ACB=∠CAD+∠D∠ECD=∠B+∠E∴∠CAD+∠B+∠ACE+∠D+∠E=∠ACB+∠ACE+∠ECD=180°.。

三角形的外角(理由挖空)(一)(通用版)(含答案)

三角形的外角(理由挖空)(一)(通用版)(含答案)

三角形的外角(理由挖空)(一)(通用版)试卷简介:利用三角形外角定理进行角的计算,并借助三角形外角定理训练学生有理有据的推理和证明,重点考查学生对每一步推理依据的掌握情况.一、单选题(共10道,每道10分)1.如图,直线∥,若∠1=150°,∠2=70°,则∠3的度数为( )A.70°B.80°C.65°D.60°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理2.如图,已知∠A=35°,∠B=20°,∠C=25°,则∠BDC的度数为( )A.55°B.60°C.80°D.90°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理3.已知:如图,CE是△ABC的一个外角平分线,且EF∥BC交AB于点F,∠A=50°,∠E=55°,则∠B的度数为()A.70°B.60°C.55°D.50°答案:B解题思路:试题难度:三颗星知识点:平行线的判定、性质4.一副三角板按如图所示叠放在一起,则图中α的度数为( )A.90°B.105°C.120°D.135°答案:B解题思路:试题难度:三颗星知识点:三角形外角定理5.如图,P为△ABC内任一点,延长CP交AB于点D,则下列结论一定正确的是( )A.∠1=∠2+∠3B.∠1=∠2+∠A+∠ACDC.∠2=∠A+∠ACDD.∠3=∠A+∠ACD答案:D解题思路:试题难度:三颗星知识点:三角形外角定理6.已知△ABC中,∠BAC=50°,∠ABC=60°,AD⊥BC,BE⊥AC,垂足分别分D,E,AD,BE相交于点H,则∠AHB的度数为( )A.90°B.100°C.110°D.120°答案:C解题思路:试题难度:三颗星知识点:三角形外角定理7.已知:如图,点D在CA的延长线上,点E在AB的延长线上,点F在BC的延长线上.求证:∠ACF+∠BAD+∠CBE=360°.证明:如图,∵∠ACF是△ABC的一个外角(外角的定义)∴∠ACF=∠1+∠2(_______________________)∵∠BAD是△ABC的一个外角(外角的定义)∴∠BAD=∠2+∠3(三角形的一个外角等于和它不相邻的两个内角的和)∵∠CBE是△ABC的一个外角(外角的定义)∴∠CBE=∠1+∠3(三角形的一个外角等于和它不相邻的两个内角的和)∵∠1+∠2+∠3=180°(_______________________)∴∠ACF+∠BAD+∠CBE=∠1+∠2+∠2+∠3+∠1+∠3=2(∠1+∠2+∠3)=360°(等式的性质)①同角或等角的余角相等;②同角或等角的补角相等;③三角形的内角和是180°;④三角形的一个外角等于和它不相邻的两个内角的和;⑤平角的定义.以上空缺处依次所填正确的是( )A.④⑤B.②③C.④③D.①⑤答案:C解题思路:试题难度:三颗星知识点:三角形外角定理8.已知:如图,AB∥CD,∠EBA=60°,∠D=50°,求∠E的度数.解:如图,∵AB∥CD(已知)∴∠EBA=∠EFC(两直线平行,同位角相等)∵∠EBA=60°(已知)∴∠EFC=60°(等量代换)∵∠EFC是△EDF的一个外角(外角的定义)∴∠EFC=∠D+∠E(_______________________)∵∠D=50°(已知)∴∠E=∠EFC-∠D=60°-50°=10°(_______________________)①三角形的内角和是180°;②同角或等角的补角相等;③三角形的一个外角等于和它不相邻的两个内角的和;④等式的性质;⑤等量代换.以上空缺处依次所填正确的是( )A.③④B.③⑤C.②④D.①⑤答案:A解题思路:试题难度:三颗星知识点:三角形外角定理9.已知:如图,在△ABC中,AD是∠BAC的角平分线,∠B=∠1,∠ADC=80°.求∠C的角度.解:如图,∵∠ADC是△ABD的一个外角(外角的定义)∴∠ADC=∠1+∠B(_______________________)∵∠B=∠1(已知)∴∠ADC=2∠1(等式的性质)∵∠ADC=80°(已知)∴∠1=∠ADC=40°(_______________________)∵AD是∠BAC的角平分线(已知)∴∠2=∠1=40°(角平分线的定义)∴∠C=180°-∠2-∠ADC=180°-40°-80°=60°(_______________________)①三角形的内角和是180°;②同角或等角的补角相等;③三角形的一个外角等于和它不相邻的两个内角的和;④等式的性质;⑤等量代换.以上空缺处依次所填正确的是( )A.②④①B.③④①C.③②①D.②⑤④答案:B解题思路:试题难度:三颗星知识点:三角形外角定理10.已知:如图,AB∥EF,∠E=∠CAE,∠DAB=65°.求∠ACF的度数.解:如图,∵AB∥EF(已知)∴∠DAB=∠E(_______________________)∵∠DAB=65°,(已知)∴∠E=65°(等量代换)∵∠E=∠CAE(已知)∴∠CAE=65°(_______________________)∵∠ACF是△ACE的一个外角(外角的定义)∴∠ACF=∠E+∠CAE=65°+65°=130°(_______________________)①两直线平行,同位角相等;②同位角相等,两直线平行;③等量代换;④等式的性质;⑤三角形的一个外角等于和它不相邻的两个内角的和;⑥三角形的内角和是180°.以上空缺处依次所填正确的是( )A.①③⑤B.①③⑥C.②③⑤D.②④⑥答案:A解题思路:试题难度:三颗星知识点:三角形外角定理第11页共11页。

初中数学:三角形的外角检测题(含答案)

初中数学:三角形的外角检测题(含答案)

初中数学:三角形的外角检测题(含答案)总分100分时间40分钟一、选择题(每题5分)1、若一个三角形的一个外角小于与它相邻的内角,则这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.无法确定【答案】C【解析】试题分析:三角形的一个外角和与它相邻的内角互补,当外角小于与它相邻的内角时,所以这个内角是钝角.解:如下图所示,∠ACD<∠ACB,∵∠ACB+∠ACD=180°,∴∠ACB>90°.∴△ACB是钝角三角形.故应选C.考点:三角形的外角2、已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为( )A.90°B.110°C.100°D.120°【答案】C【解析】试题分析:根据三角形的三个外角的度数比为2:3:4,设三角形的三个外角是2x、3x、4x,根据三角形外角和是360°列方程求出x的值,求出每个外角的度数,根据外角的度数求出三角形的内角度数.解:设三角形的三个外角是2x、3x、4x,根据题意可得:x+3x+4x=360°,解得:x=40°,∴三角形最小的外角的度数是2x=80°,∴三角形最大的内角的度数是180°-80°=100°.考点:三角形外角的性质3、已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形【答案】C【解析】试题分析:根据三角形的一个外角是120°,求出三角形的一个内角是60°,根据有一个角是60°的等腰三角形是等边三角形判定结果.解:如下图所示,∵∠ACD=120°,∴∠ACB=60°,又∵△ABC是等腰三角形,∴△ABC是等边三角形.故应选C.考点:1.三角形外角的性质;2.等腰三角形的判定.二、填空题(每题8分)4、如图,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA 到E,连EF,则∠1,∠2,∠3的大小关系是______【答案】∠1>∠2>∠3【解析】试题分析:根据三角形外角大于与它不相邻的任何一个内角.解:∵∠1是△ABC的外角,∴∠1>∠2,∵∠2是△AEF的外角,∴∠2>∠3,∴∠1>∠2>∠3.考点:三角形外角的性质5、△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”)。

三角形的外角练习题

三角形的外角练习题

三角形的外角练习题一、选择题1. 三角形的一个外角等于与它不相邻的两个内角的和,这个说法是:A. 正确B. 错误2. 一个三角形的外角和等于多少度?A. 360度B. 180度C. 90度D. 120度3. 如果一个三角形的两个内角分别是40度和60度,那么第三个内角的度数是:A. 40度B. 60度C. 80度D. 100度4. 一个三角形的外角等于它相邻内角的补角,这个说法是:A. 正确B. 错误5. 直角三角形的外角中,最大的外角是:A. 45度B. 90度C. 135度D. 180度二、填空题6. 如果三角形的一个内角是50度,那么它的一个外角是________度。

7. 一个三角形的三个内角之和是________度。

8. 如果一个三角形的外角是120度,那么它相邻的内角是________度。

9. 等边三角形的每个外角是________度。

10. 已知三角形的一个外角是70度,那么它相邻的内角是________度。

三、判断题11. 一个三角形的外角可以大于90度。

()12. 一个三角形的外角可以小于60度。

()13. 等腰三角形的两个底角的外角相等。

()14. 直角三角形的一个锐角的外角等于它的邻角。

()15. 一个三角形的外角和内角的和总是等于180度。

()四、计算题16. 已知三角形ABC中,角A是45度,角B是75度,求角C的度数以及角C的外角。

17. 如果一个三角形的内角之和为180度,且其中一个内角为70度,求另外两个内角的度数,并计算这两个内角的外角。

18. 在三角形DEF中,如果角D是90度,角E是30度,求角F的度数以及角F的外角。

19. 已知三角形GHI的三个内角分别为60度,60度,60度,求这个三角形的外角和。

20. 如果一个三角形的外角和为360度,且其中一个外角为80度,求相邻内角的度数。

五、简答题21. 解释为什么三角形的外角和总是等于360度。

22. 描述在已知三角形一个内角的情况下,如何计算它的外角。

三角形的外角(习题及答案)

三角形的外角(习题及答案)
DE∥BC交AB于点E,∠A=45°,∠BDC=60°,求∠AED的
度数.
ED
BC
3
思考小结
8.在证明过程中:
(1)要证平行,找_______角、_______角、_______角.
(2)要求一个角的度数:
①由平行,想_______相等、________相等、__________互补;
②由直角考虑互余,由平角考虑_______,由对顶角考虑
的度数为()
A.45°B.60°C.75°D.90
4.如图,已知∠A=25°,∠EFB=95°,∠B=40°,则∠D的度数为
_____________.
E
D
C
A
F
ACD
B
EB
第4题图第5题图
5.如图,已知AD是△ABC的外角∠CAE的平分线,∠B=30°,
∠DAE=50°,则∠D=_______,∠ACB=_______.
三角形的外角(习题)
例题示范
例1:已知:如图,点E是直线AB,CD外一点,连接DE交
AB于点F,∠D=∠B+∠E.
求证:AB∥CD.
E
E
AFBAFB
CDCD
①读题标注
②梳理思路
要证AB∥CD,需要考虑同位角、内错角、同旁内角.
因为已知∠D=∠B+∠E,而由外角定理得∠AFE=∠B+∠E,
故∠D=∠AFE,所以AB∥CD.
∠D=35°,则∠2=________.
D
C
2 E
1
ABF
1
2. 已知:如图,在△ABC中,∠BAC=50°,∠C=60°,AD⊥BC,
BE是∠ABC的平分线,AD,BE交于点F,则∠AFB的度数

三角形的外角定理练习题

三角形的外角定理练习题

三角形的外角定理练习题下面是三角形的外角,三角形外角定理的相应练习题。

有兴趣的同学可以做一做。

熟悉关于三角形外角的各种等量关系。

①如图,两个直角三角板的直角的顶点重合在一起,∠B=90°,∠A=45°,∠D=30°,求∠AEF的度数。

②如图一个五角星,已知∠B=∠E=27°,∠C=∠D=31°,求∠A的度数。

③如图,∠A=33°,∠C=44°,∠E=55°,求∠DFE的度数。

④如图,凹四边形ABCD,∠BCD=75°,∠B=21°,∠D=23°,求∠A的度数。

⑤如图等边三角形ABC,已知∠BAD=∠CDE,求∠ADE的度数。

⑥如图,计算∠A+∠B+∠C+∠D+∠E+∠F的度数。

①答案:15°解析:根据三角形外角定理,∠BFE=∠A+∠AEF∠BFE=90°-∠D=90°-30°=60°所以∠AEF=∠BFE-∠A=60°-45°=15°②答案:64°解析:根据三角形外角定理∠AFG=∠C+∠E;∠AGF=∠B+∠D;∠AFG+∠AGF+∠A=180°所以∠A+∠B+∠C+∠D+∠E=180°∠A=180°-∠B-∠C-∠D-∠E=180°-27°-31°-31°-27°=64°③答案:48°解析:∠A,∠C,∠E比较分散,利用外角把它们集中到一个三角形∠ABE=∠C+∠E,根据三角形ABF内角和,∠A+∠ABE+∠AFB=180°∠DFE=∠AFB=180°-∠A-∠ABE=180°-33°-44°-55°=48°④答案:31°解析:延长DC交AB与点E根据三角形外角定理,∠BED=∠A+∠D;∠BCD=∠BED+∠B=∠A+∠D+∠B;所以∠A=∠BCD-∠D-∠B=75°-21°-23°=31°⑤答案:60°解析:因为ΔAB C是等边三角形,所以∠A=∠B=∠C=60°根据三角形外角定理,∠ADC=∠B+∠BAD由于∠ADC=∠ADE+∠CDE,∠BAD=∠CDE所以∠ADE=∠B=60°⑥答案:360°解析:∠BGD=∠A+∠B;∠DHF=∠C+∠D;∠CNE=∠E+∠F;∠BGD=180°-∠HGN;∠DHF=180°-∠GHN;∠CNE=180°-∠HNG;根据ΔGHN内角和是180°,∠BGD+∠DHF+∠CNE=180°-∠HGN+180°-∠GHN+180°-∠HNG=360°∠A+∠B+∠C+∠D+∠E+∠F=360°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.2.2 三角形的外角
基础过关作业
1.若三角形的外角中有一个是锐角,则这个三角形是________三角形.
2.△ABC中,若∠C-∠B=∠A,则△ABC的外角中最小的角是______(填“锐角”、“直角”或“钝角”).
3.如图1,x=______.
(1) (2) (3)
4.如图2,△ABC中,点D在BC的延长线上,点F是AB边上一点,延长CA到E,连EF,则∠1,∠2,∠3的大小关系是_________.
5.如图3,在△ABC中,AE是角平分线,且∠B=52°,∠C=78°,求∠AEB的度数.6.如图,在△ABC中,∠A=60°,BD、CE分别是AC、AB上的高,H是BD、•CE的交点,求∠BHC的度数.
综合创新作业
7.如图所示,在△ABC中,AB=AC,AD=AE,∠
BAD=60°,则∠EDC=______.
8.一个零件的形状如图7-2-2-6所示,按规定∠A
应等于90°,∠B、∠D应分别是30°和20°,
李叔叔量得∠BCD=142°,就断定这个零件不合
格,你能说出道理吗
9.(1)如图7-2-2-7(1),求出∠A+∠B+∠C+∠D+∠E+∠F的度数;
(2)如图7-2-2-7(2),求出∠A+∠B+∠C+∠D+∠E+∠F的度数.
10.(易错题)三角形的三个外角中最多有_______个锐角.
培优作业
11.(探究题)(1)如图,BD、CD分别是△ABC的两个外角∠CBE、∠BCF•的平分线,试探索∠BDC与∠A之间的数量关系.
(2)如图,BD为△ABC的角平分线,CD为△ABC的外角∠ACE的平分线,它们相交于点D,试探索∠BDC与∠A之间的数量关系.
12.(趣味题)如图,在绿茵场上,足球队员带球进攻,总是向球门AB冲近,说明这是为什么
数学世界
七桥问题
18世纪在哥尼斯堡城的普莱格尔河上有七座桥,将河中的两个岛和河岸连接.如图所示.城中的居民经常沿河过桥散步,于是就提出一个问题:•能否一次不重复地把这七座桥走遍可是,走来走去,这个愿望还是无法实现.该怎样走才好呢•这就是着名的哥尼斯堡七桥问题.••好奇的人把这个问题拿给当时的大数学家欧拉(1707~1783).欧拉以深邃的洞察力很快证明了这样的走法不存在.
你知道欧拉是根据什么道理证明的吗
答案:
1.钝角
2.直角点拨:∵∠C-∠B=∠A,∴∠C=∠A+∠B.
又∵(∠A+∠B)+∠C=180°,∴∠C+∠C=180°,∴∠C=90°,
∴△ABC的外角中最小的角是直角.
3.60 点拨:由题意知x+80=x+(x+20).解得x=60.
4.∠1>∠2>∠3
点拨:∵∠1是∠2的外角,∠2是∠3的外角,∴∠1>∠2>∠3.
5.解:∠BAC=180°-(∠B+∠C)=180°-(52°+78°)=50°.∵AE是∠BAC的平分线,
∴∠BAE=∠CAE=1
2
∠BAC=25°.
∴∠AEB=∠CAE+∠C=25°+78°=103°.
6.解:在△ACE中,∠ACE=90°-∠A=90°-60°=30°.而∠BHC是△HDC的外角,
所以∠BHC=∠HDC+∠ACE=90°+30°=120°.
7.30°点拨:设∠CAD=2a,由AB=AC知∠B=1
2
(180°-60°-2a)=60°-•a,•
∠ADB=180°-∠B-60°=60°+a,由AD=AE知,∠ADE=90°-a,
所以∠EDC=180°-∠ADE-∠ADB=30°.
8.解法1:如答图1,延长BC交AD于点E,
则∠DEB=∠A+∠B=90°+30°=•120°,
从而∠DCB=∠DEB+∠D=120°+20°=140°.
若零件合格,∠DCB应等于140°.
李叔叔量得∠BCD=142°,
因此可以断定该零件不合格.
(1) (2) (3)
点拨:也可以延长DC与AB交于一点,方法与此相同.
解法2:如答图2,连接AC并延长至E,则∠3=∠1+∠D,∠4=∠2+∠B,因此∠DCB=∠1+∠D+∠2+∠B=140°.以下同方法1.
解法3:如答图3,过点C作EF∥AB,交AD于E,
则∠DEC=90°,∠FCB=∠B=•30°,所以∠DCF=∠D+∠DEC=110°,
从而∠DCB=∠DCF+∠FCB=140°.以下同方法1.
说明:也可以过点C作AD的平行线.
点拨:上述三种解法应用了三角形外角的性质:三角形的一个外角等于它不相邻的两个内角的和.
9.解:(1)由图知∠A+∠F=∠OQA,∠B+∠C=∠QPC,∠D+∠E=∠EOP.而∠OQA、•∠QPC、∠EOP是△OPQ的三个外角.
∴∠OQA+∠QPC+∠EOP=360°.
∴∠A+∠B+∠C+∠D+∠E+∠F=∠OQA+∠QPC+∠EOP=360°.
(2)360°点拨:方法同(1).
10.1 点拨:本题易因混淆内角、外角的概念,而误填为3.
11.解:(1)∠BDC=90°-1
2
∠A.
理由:∠ABC+∠ACB=180°-∠A.
∠EBC+∠FCB=(180°-∠ABC)+(180°-∠ACB)=360°-(∠ABC+∠ACB)=180°+∠A.∵BD、CD分别为∠EBC、∠FCB的平分线,
∴∠CBD=1
2
∠EBC,∠BCD=
1
2
∠FCB.
∴∠CBD+∠BCD=1
2
(∠EBC+∠FCB)=
1
2
×(180°+∠A)
=90°+1
2
∠A.
在△BDC中,∠BDC=180°-(∠CBD+∠BCD)=180°-(90°+1
2
∠A)=90°-
1
2
∠A.
(2)∠BDC=1
2
∠A.
理由:∵∠ACE是△ABC的外角,
∴∠ACE=∠A+∠ABC,
∵CD是∠ACE的平分线,BD是∠ABC的平分线,
∴∠DCE=1
2
∠ACE=
1
2
∠A+
1
2
∠ABC,∠DBC=
1
2
∠ABC.
∵∠DCE是△BCD的外角,
∴∠BDC=∠DCE-∠DBC=1
2
∠A+
1
2
∠ABC-
1
2
∠ABC=
1
2
∠A.
12.解:如图,设球员接球时位于点C,他尽力向球门冲近到D,
此时不仅距离球门近,射门更有力,而且对球门AB的张角也扩大,球就更容易射中.理由说明如下:
延长CD到E,则∠ADE>∠ACE,∠BDE>∠BCE,
∴∠ADE+∠BDE>∠ACE+∠BCE,即∠ADB>∠ACB.
点拨:解此题关键是将生活中的问题抽象为数学问题.
数学世界答案:
欧拉将七桥布局转化为图所示的简单图形,于是七桥问题就变成一个一笔画的问题.这个图形显然无法一笔画出,也就是说,•要想一次无重复地走遍这七座桥是办不到的.。

相关文档
最新文档