初二数学复习巩固经典 幂的运算(基础)知识讲解

合集下载

初二数学上-幂的运算

初二数学上-幂的运算

幂的运算一、数学家的幽默一名统计学家遇到一位数学家,统计学家调侃数学家说道:你们不是说若X=Y且Y=Z,则X=Z吗!那么想必你若是喜欢一个女孩,那么那个女孩喜欢的男生你也会喜欢罗!?"数学家想了一下反问道:那么你把左手放到一锅一百度的开水中,右手放到一锅零度的冰水里想来也没事吧!因为它们平均不过是五十度而已!"二、幂的运算性质知识要点◆要点1 同底数幂的乘法:a m ·a n =a m +n (m ,n 都是正整数) 可扩展为a m ·a n ·a p =a m+n +p ★说明:幂的底数相同时,才可运用此法则。

◆要点2 幂的乘方与积的乘方(1) 幂的乘方:(a m )n =a mn (m ,n 都是正整数),可推广为()[]mnp p n m a a =(2) 积的乘方:(ab )n =a n b n (n 为正整数),可扩展为(abc )n =a n b n c n易错易混点(1) 将幂的意义与乘法的意义相混淆; (2) 不能正确理解幂的运算性质,而导致错误; (3) 忽略零指数幂、负整数指数幂的规定中底数不等为零的条件。

◆要点3 同底数幂的除法a m ÷a n =a m -n (a ≠0,m ,n 都是正整数,并且m >n )◆要点4 零指数与负整数指数的意义(两个规定)(1) 零指数: a 0=1 (a ≠0)(2) 负整数指数:p p aa 1=-(a ≠0,p 是正整数) 即任何一个不等于0的数的-p (p 为正整数)次幂等与这个数的p 次幂的倒数。

也可变形为:pp p a a a ⎪⎭⎫ ⎝⎛==-11 (观察前后幂的底数、指数变化) ★说明:(1)在幂的性质运算中,幂的底数字母a 、b 可以是单项式或多项式,运算法则皆可逆向应用;(2) 零指数幂和负整数指数幂中,底数都不能为0,即a ≠0;(3) 规定了零指数和负整数指数的意义后,正整数指数幂的运算性质,就可以推广到整数指数幂;(4) 在运算当中,要找准底数(即要符合同底数),如果出现底数互为相反数,或其他不同,则应根据有关理论进行变形,变形要注意指数的奇偶性。

6分钟搞定一种题型丨初中数学专题复习之幂的运算

6分钟搞定一种题型丨初中数学专题复习之幂的运算

6分钟搞定一种题型丨初中数学专题复习之幂的运算
每天一起涨知识!
作为整式乘除的前奏,幂的运算看似非常简单,实际运用起来却灵活多变。

不过,只要熟悉运算的一些基本方法原则,问题就迎刃而解了。

而且通过这些方法原则的学习,不但能使我们熟悉幂的运算,还可得到全面的思维训练。

幂的运算的基本知识就四条性质,写作四个公式:
只要理解掌握公式的形状特点,熟悉其基本要义,直接应用一般都容易,即使运用公式求其中的未知指数难度也不大。

如果你还是有所疑惑,那就一起跟傲德老师学习技巧吧~
(建议在WiFi条件下观看)
怎么样?今日份的知识点get了没?
老套路——豆姐会在每周三选择初中某个科目的知识点或者题型,以视频的形式推送给大家。

(所有科目都可以哦,快点来留言啦~)。

幂运算中考知识点总结

幂运算中考知识点总结

幂运算中考知识点总结一、指数和底数在幂运算中,指数和底数是两个非常重要的概念。

指数表示底数相乘的次数,底数则是进行乘方运算的数。

例如,在表达式a的n次幂中,n就是指数,a就是底数。

指数有几个基本的概念需要了解:1. 正指数和负指数正指数表示底数相乘的次数是正整数,负指数表示底数相乘的次数是负整数。

当指数为0时,任何非零数的零次幂都等于1,0的零次幂没有意义。

2. 零指数任何非零数的零次幂都等于1。

3. 幂与乘积的关系a的m次幂和a的n次幂的乘积等于a的m+n次幂。

即a的m次幂乘以a的n次幂等于a的m+n次幂。

4. 幂与幂的关系a的m次幂的n次幂等于a的m×n次幂。

即a的m次幂的n次幂等于a的m×n次幂。

二、幂运算的基本性质1. 乘方的取消律对于任意非零数a,b以及任意整数m,n,有以下基本性质:a的m次幂和b的m次幂相等,则a和b互为m次方根;a的m次幂和a的n次幂相等,那么m和n相等。

(前提是a不等于0)2. 乘方的运算规律对于任何非零数a和整数m,n,p,有以下基本性质:a的m次幂的n次幂等于a的m×n次幂;a的m次幂和a的n次幂的p次幂等于a的m×p次幂;a的m次幂的p次幂和a的n次幂的p次幂等于a的m+n次幂。

3. 乘方的分配律对于任何非零数a和b以及整数m,n,有以下基本性质:a和b相乘后再进行m次幂等于a的m次幂和b的m次幂相乘;a的m次幂和a的n次幂相乘等于a的m+n次幂。

三、幂运算的应用幂运算在实际生活和数学中有着丰富的应用,常见的应用有以下几种:1. 计算面积和体积在几何中,幂运算可以用来计算三角形、矩形、圆等的面积,以及立方体、球体等的体积。

2. 科学计数法幂运算在科学计数法中有着重要的应用,可以帮助我们用较小的数字表示非常大的数,或者较大的数字表示非常小的数。

3. 概率和统计在概率和统计中,幂运算可以用来计算事件发生的可能性,以及表示数据之间的关系。

新人教版八年级上册数学[幂的运算(基础)知识点整理及重点题型梳理]

新人教版八年级上册数学[幂的运算(基础)知识点整理及重点题型梳理]

新人教版八年级上册数学知识点梳理及巩固练习重难点突破课外机构补习优秀资料幂的运算(基础)【学习目标】1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.【要点梳理】【幂的运算 知识要点】要点一、同底数幂的乘法性质+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加. 要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式.(2)三个或三个以上同底数幂相乘时,也具有这一性质,即m n p m n p a a a a ++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。

即m n m n a a a +=⋅(,m n 都是正整数).要点二、幂的乘方法则()=m n mn a a (其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n p mnp a a(0≠a ,,,m n p 均为正整数) (2)逆用公式: ()()n m mn m n a a a ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.要点三、积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅n n n nabc a b c (n 为正整数).(2)逆用公式:()n n n a b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭要点四、注意事项(1)底数可以是任意实数,也可以是单项式、多项式.(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要遗漏.(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方.(5)灵活地双向应用运算性质,使运算更加方便、简洁.(6)带有负号的幂的运算,要养成先化简符号的习惯.【典型例题】类型一、同底数幂的乘法性质 1、计算:(1)234444⨯⨯;(2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+. 【答案与解析】解:(1)原式234944++==.(2)原式34526177772222a a a a a a a +++=+-=+-=.(3)原式11211222()()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体.举一反三:【变式】计算:(1)5323(3)(3)⋅-⋅-;(2)221()()p p p x x x +⋅-⋅-(p 为正整数);(3)232(2)(2)n ⨯-⋅-(n 为正整数).【答案】解:(1)原式532532532103(3)333333++=⋅-⋅=-⋅⋅=-=-. (2)原式22122151()p p p p p p p x xx x x +++++=⋅⋅-=-=-. (3)原式525216222(2)22n n n +++=⋅⋅-=-=-. 2、已知2220x +=,求2x 的值.【思路点拨】同底数幂乘法的逆用:22222x x +=⋅【答案与解析】解:由2220x +=得22220x ⋅=.∴ 25x =.【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m n m n a a a +=⋅.类型二、幂的乘方法则3、计算:(1)2()m a ;(2)34[()]m -;(3)32()m a -.【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-.【答案与解析】解:(1)2()m a 2m a =. (2)34[()]m -1212()m m =-=. (3)32()m a -2(3)62m m a a --==.【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.4、(2016春•湘潭期末)已知a x =3,a y =2,求a x +2y 的值.【思路点拨】 直接利用同底数幂的乘法运算法则将原式变形进而将已知代入求出答案.【答案与解析】 解:∵a x =3,a y =2,∴a x +2y =a x ×a 2y =3×22=12.【总结升华】本题考查同底数幂的乘法,幂的乘方,解题时记准法则是关键. 举一反三:【变式1】已知2a x =,3b x =.求32a b x+的值. 【答案】解:32323232()()238972a b a b a b x x x x x +===⨯=⨯=.【396573 幂的运算 例3】【变式2】已知84=m ,85=n ,求328+m n 的值.【答案】解:因为3338(8)464===m m , 2228(8)525===n n .所以323288864251600+=⨯=⨯=m n m n .类型三、积的乘方法则5、指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.【答案与解析】解:(1)错,这是积的乘方,应为:222()ab a b =.(2)对.(3)错,系数应为9,应为:326(3)9x x -=.【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方.(2)注意系数及系数符号,对系数-1不可忽略.举一反三:【变式】(2015春•铜山县校级月考)(﹣8)57×0.12555.【答案】解:(﹣8)57×0.12555=(﹣8)2×[(﹣8)55×]=﹣64.。

初中数学专题复习资料-----幂的运算性质

初中数学专题复习资料-----幂的运算性质

初中数学专题复习资料-----幂的运算性质【知识梳理】1、知识结构2、知识要点(1)同底数幂相乘,底数不变,指数相加,即 ←→a m+n =a m ·a nnm nma a a +=⋅(2)幂的乘方,底数不变,指数相乘,即←→a mn =(a m )n =(a n )m()mnnm aa=(3)积的乘方,等于每个因式分别乘方,即←→a n b n =(ab)n()nn nb a ab =(4)同底数幂相除,底数不变,指数相减,即 ←→a m-n =a m ÷a n (a ≠0)nm n ma a a -=÷(5)零指数和负指数:规定,(其中a ≠0,p 为正整数)(其中,m 、n 均为整数)10=a ppa a1=-3、中考预测对于幂的运算性质的考查,在中考中多以选择题和填空题出现,以考查对该性质的掌握,题目侧重于基础知识的掌握和运用,以及对该性质的理解,题目不会很难,但是会有一定的综合性,应准确把握和理解幂的运算性质,防止混淆。

(一)同底数幂的乘法【解题讲解-------基础训练】【例1】 1、(-)2×(-)3= 。

2、(-b )2·(-b )4·(-b)= ,(m+n )5·(n+m )8= 1212。

3、a 16可以写成( ) A .a 8+a 8; B .a 8·a 2 ; C .a 8·a 8 ; D .a 4·a 4。

4、下列计算正确的是( ) A .b 4·b 2=b 8 B .x 3+x 2=x 6 C .a 4+a 2=a 6 D .m 3·m =m 4【解题讲解-------能力提升】【例2】1、下面的计算错误的是( )A .x 4·x 3=x 7B .(-c )3·(-c )5=c 8C .2×210=211D .a 5·a 5=2a 102、x 2m+2可写成( ) A .2x m+2 Bx 2m +x 2 C .x 2·x m+1 D .x 2m ·x 23、若x ,y 为正整数,且2x ·2y =25,则x ,y 的值有( )对。

初中数学幂的运算性质公式

初中数学幂的运算性质公式

初中数学幂的运算性质公式
幂的运算性质是指在进行幂的运算过程中,幂与幂之间、幂与数之间
可以进行一系列的运算操作,满足一定的规律和公式。

下面将介绍幂数的
运算性质公式,包括幂数的乘积、幂数的积的幂、幂数的幂的乘积、除法、负指数、零指数等各个方面。

一、幂数的乘积:
在幂数的乘积中,如果底数相同,则指数相加。

例如:a^m*a^n=a^(m+n)
二、幂数的积的幂:
在幂数的积的幂中,先对每一个幂数求幂,再把结果相乘。

例如:(a^m*b^n)^p=(a^m)^p*(b^n)^p=a^(m*p)*b^(n*p)
三、幂数的幂的乘积:
在幂数的幂的乘积中,如果底数相同,则指数相乘。

例如:(a^m)^n=a^(m*n)
四、幂数的除法:
在幂数的除法中,如果底数相同,则指数相减。

例如:a^m/a^n=a^(m-n)
五、负指数:
一个数的负指数等于其倒数的正指数。

例如:a^(-m)=1/a^m
六、零指数:
一个非零数的零指数等于1
例如:a^0=1(其中a不等于0)
七、唯一性:
幂运算满足唯一性,即一个数的幂运算结果只有唯一确定的值。

如果
一个数有两个不同的幂运算结果相等,则这两个幂运算结果必定相等。

例如:若a^m=a^n,则m=n
八、法则的运用:
在运用幂运算性质公式时,可以根据需要将多项幂运算结合起来,进
一步简化计算。

以上是初中数学中幂的运算性质公式的一些基本内容。

在实际运用中,还需要综合运用这些公式,灵活应用于解决各种具体问题。

八年级上册数学幂的乘方知识点

八年级上册数学幂的乘方知识点

八年级上册数学幂的乘方知识点稿子一嗨呀,亲爱的小伙伴们!今天咱们来聊聊八年级上册数学里超有趣的幂的乘方知识点哟!啥是幂的乘方呢?简单说就是,一个幂再去做乘方运算。

比如说,(a 的 m 次方)的 n 次方,这就是幂的乘方啦。

那它的运算规则是啥呢?记住咯,底数不变,指数相乘。

就像(a 的 m 次方)的 n 次方等于 a 的(m×n)次方。

来,咱们举个例子。

比如说(2 的 3 次方)的 2 次方,底数 2 不变,指数3×2 = 6,结果就是 2 的 6 次方,也就是 64 哟。

这知识点在做题的时候可有用啦!比如说让你计算(3 的 2 次方)的 3 次方,那就是 3 的 6 次方,等于 729 。

而且哦,幂的乘方还能和同底数幂的乘法、除法结合起来考呢。

这时候可别晕头转向,只要牢记规则,就能轻松应对。

怎么样,是不是觉得幂的乘方也没那么难啦?多做几道题,熟练掌握,数学就能变得超简单哟!稿子二嘿,小伙伴们!咱们又见面啦,今天来唠唠八年级上册数学的幂的乘方。

你想啊,幂的乘方就好像给幂穿上了一层又一层的“魔法外衣”。

比如说(a^m)^n ,这就是幂的乘方。

那这“魔法外衣”怎么穿呢?记住哦,底数 a 可不会变,变的是指数,要把 m 和 n 相乘。

举个好玩的例子,(5^2)^3 ,底数 5 不动,2×3 = 6 ,所以结果就是 5^6 。

幂的乘方用处可大啦!做题的时候,它能帮咱们快速算出复杂的式子。

再比如说,给你个式子(x^3)^4 × x^5 ,先算幂的乘方,得到x^12 × x^5 ,然后同底数幂相乘,底数不变指数相加,就是x^17 。

还有哦,如果遇到像(2^4)^(1/2)这样的,也别害怕。

指数4×(1/2)= 2 ,结果就是 2^2 = 4 。

学会了幂的乘方,数学的世界就像打开了一扇新的大门,是不是很有趣呀?加油多练习,数学会越来越好玩的!。

2024版人教版八年级(上)数学幂的乘方

2024版人教版八年级(上)数学幂的乘方
n}$。
2024/1/28
幂的乘方性质
幂的乘方具有一些重要的性质,如 正整数指数幂的乘法法则、零指数 幂和负整数指数幂的定义等。
典型例题解析
通过解析典型例题,学生应能够掌 握幂的乘方的计算方法和技巧。
24
学生自我评价报告
知识掌握情况
学生应能够熟练掌握幂的 乘方法则和性质,并能够 运用它们进行简单的计算。
任何非零数的0次幂都等于1。即a^0 = 1(a≠0)。
负整数指数幂表示的是该数的倒数的正整数次幂。即a^(-n) = 1/a^n(a≠0)。
分数指数幂表示的是开方和乘方的复合运算。即a^(m/n) = √n(a^m)(n为正整数,且a>0)。
在进行幂的运算时,应遵循先乘方、后乘除、最后加减的运算顺 序;同级运算从左到右依次进行;有括号时先算括号里面的。
高阶幂运算的应用
高阶幂运算在数学、物理、工程等领 域有着广泛的应用,如计算复杂函数 的值、解决微分方程等。
高阶幂运算的性质
高阶幂运算具有一些独特的性质,如 指数的乘法法则在高阶幂运算中的应 用等。
2024/1/28
26
谢谢您的聆听
THANKS
2024/1/28
27
人教版八年级(上)数学幂的乘方
2024/1/28
1
2024/1/28
CONTENTS
• 幂的基本概念和性质 • 幂的乘方运算 • 幂的乘方在生活中的应用 • 典型例题解析与练习 • 幂的乘方与其他知识点的联系 • 课堂小结与拓展延伸
2
2024/1/28
01
幂的基本概念和性质
3
幂的定义与表示方法
应用举例
计算表达式如(2x^2y)^3,运用积的乘方 与幂的乘方综合应用公式得出结果。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算(基础)
【学习目标】
1. 掌握正整数幂的乘法运算性质(同底数幂的乘法、幂的乘方、积的乘方);
2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算. 【要点梳理】
【高清课堂396573 幂的运算 知识要点】 要点一、同底数幂的乘法性质
+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.
要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、
多项式.
(2)三个或三个以上同底数幂相乘时,也具有这一性质,
即m
n
p
m n p
a a a a
++⋅⋅=(,,m n p 都是正整数).
(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数
与原来的底数相同,它们的指数之和等于原来的幂的指数。


m n m n a a a +=⋅(,m n 都是正整数).
要点二、幂的乘方法则 ()=m n
mn
a a
(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.
要点诠释:(1)公式的推广:(())=m n p
mnp
a a
(0≠a ,,,m n p 均为正整数)
(2)逆用公式: ()()
n
m
mn
m n a
a
a ==,根据题目的需要常常逆用幂的乘
方运算能将某些幂变形,从而解决问题. 要点三、积的乘方法则
()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,
再把所得的幂相乘.
要点诠释:(1)公式的推广:()=⋅⋅n
n
n
n
abc a b c (n 为正整数).
(2)逆用公式:()n n n
a b ab =逆用公式适当的变形可简化运算过程,尤其
是遇到底数互为倒数时,计算更简便.如:1010
101122 1.22⎛⎫⎛⎫
⨯=⨯= ⎪ ⎪⎝⎭⎝⎭
要点四、注意事项
(1)底数可以是任意实数,也可以是单项式、多项式.
(2)同底数幂的乘法时,只有当底数相同时,指数才可以相加.指数为1,计算时不要
遗漏.
(3)幂的乘方运算时,指数相乘,而同底数幂的乘法中是指数相加.
(4)积的乘方运算时须注意,积的乘方要将每一个因式(特别是系数)都要分别乘方. (5)灵活地双向应用运算性质,使运算更加方便、简洁.
(6)带有负号的幂的运算,要养成先化简符号的习惯. 【典型例题】
类型一、同底数幂的乘法性质
1、计算:
(1)2
3
4
444⨯⨯;(2)3
4
5
2
6
22a a a a a a ⋅+⋅-⋅; (3)1
1211()()()()()n
n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.
【答案与解析】 解:(1)原式23494
4++==.
(2)原式34
526177772222a
a a a a a a +++=+-=+-=.
(3)原式11
211222()
()()()2()n n m n m n m n m n m x y x y x y x y x y +++-++-+++=+++=+++=+.
【总结升华】(2)(3)小题都是混合运算,计算时要注意运算顺序,还要正确地运用相应的运算法则,并要注意区别同底数幂的乘法与整式的加减法的运算法则.在第(2)小题中a 的指数是1.在第(3)小题中把x y +看成一个整体. 举一反三: 【变式】计算:
(1)5
3
2
3(3)(3)⋅-⋅-; (2)221()
()p
p
p x x x +⋅-⋅-(p 为正整数);
(3)232(2)(2)n
⨯-⋅-(n 为正整数). 【答案】
解:(1)原式5
3
2
5
3
2
532
103(3)33333
3++=⋅-⋅=-⋅⋅=-=-.
(2)原式22122151()p p
p p p p p x x x x x +++++=⋅⋅-=-=-. (3)原式5
25216222
(2)22n
n n +++=⋅⋅-=-=-.
2、已知2
2
20x +=,求2x 的值.
【思路点拨】同底数幂乘法的逆用:22222x x +=⋅ 【答案与解析】 解:由2
2
20x +=得22220x ⋅=.
∴ 25x
=.
【总结升华】(1)本题逆用了同底数幂的乘法法则,培养了逆向思维能力.(2)同底数幂的乘法法则的逆运用:m n
m n a
a a +=⋅.
类型二、幂的乘方法则
3、计算:
(1)2
()m a ;(2)34
[()]m -;(3)32
()m a
-.
【思路点拨】此题是幂的乘方运算,(1)题中的底数是a ,(2)题中的底数是m -,(3)题中的底数a 的指数是3m -,乘方以后的指数应是2(3)62m m -=-. 【答案与解析】
解:(1)2
()m a 2m
a =.
(2)34
[()]m -1212
()m m =-=.
(3)32
()m a
-2(3)62m m a a --==.
【总结升华】运用幂的乘方法则进行计算时要注意符号的计算及处理,一定不要将幂的乘方与同底数幂的乘法混淆.幂的乘方法则中的底数仍可以为单个数字、字母,也可以是单项式或多项式.
4、已知25m
x
=,求61
55
m x -的值.
【答案与解析】 解:∵ 25m
x
=,∴
6233111
5()55520555
m m x x -=-=⨯-=. 【总结升华】(1)逆用幂的乘方法则:()()mn
m n n m a a a ==.(2)本题培养了学生的整体
思想和逆向思维能力. 举一反三:
【变式1】已知2a x =,3b x =.求32a b
x +的值.
【答案】 解:32323232()()238972a b
a b a b x
x x x x +===⨯=⨯=g g .
【高清课堂396573 幂的运算 例3】 【变式2】已知84=m ,85=n ,求328+m n
的值.
【答案】 解:因为3338
(8)464===m
m , 2228(8)525===n n .
所以32328
8864251600+=⨯=⨯=m n
m n .
类型三、积的乘方法则
5、指出下列各题计算是否正确,指出错误
并说明原因:
(1)2
2
()ab ab =; (2)3
33
(4)64ab a b =; (3)32
6
(3)9x x -=-. 【答案与解析】
解:(1)错,这是积的乘方,应为:2
22
()ab a b =. (2)对.
(3)错,系数应为9,应为:32
6
(3)9x x -=.
【总结升华】(1)应用积的乘方时,特别注意观察底数含有几个因式,每个因式都分别乘方. (2)注意系数及系数符号,对系数-1不可忽略.。

相关文档
最新文档