七年级数学8.1幂的运算讲解与例题
沪科版数学七年级下册8.1《幂的运算》教学设计

沪科版数学七年级下册8.1《幂的运算》教学设计一. 教材分析《幂的运算》是沪科版数学七年级下册第8.1节的内容,主要介绍了同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等运算规则。
这部分内容是初中学段数学的重要基础,也是后续学习代数式、函数等知识的前提。
教材通过具体的例子引导学生掌握幂的运算规律,培养学生的逻辑思维能力和运算能力。
二. 学情分析七年级的学生已经掌握了整数、分数和小数的四则运算,对于幂的概念和简单的幂运算可能还比较陌生。
因此,在教学过程中,需要通过生动的例子和生活中的实际问题,激发学生的学习兴趣,引导学生理解和掌握幂的运算规律。
同时,七年级学生的抽象思维能力正在发展,需要通过大量的练习和操作活动,来巩固和提高幂的运算能力。
三. 教学目标1.理解幂的运算概念,掌握同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等运算规则。
2.培养学生的逻辑思维能力和运算能力。
3.能够运用幂的运算知识解决生活中的实际问题。
四. 教学重难点1.重点:同底数幂的乘除法、幂的乘方与积的乘方、合并同类项等幂的运算规则。
2.难点:理解幂的运算规律,能够灵活运用幂的运算知识解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过设置问题和情境,引导学生探究幂的运算规律。
2.运用直观教具和多媒体辅助教学,帮助学生形象地理解幂的运算概念。
3.采用分组讨论和合作学习的方式,培养学生的团队协作能力和沟通能力。
4.注重练习和操作活动,提高学生的运算能力和解决问题的能力。
六. 教学准备1.准备相关的教学材料和课件,如PPT、教案、练习题等。
2.准备一些实际问题,用于引导学生运用幂的运算知识解决实际问题。
3.准备一些直观教具,如幂的运算图表、幂的运算模型等。
七. 教学过程1.导入(5分钟)通过设置一个实际问题,如“一个正方形的边长是2,求这个正方形的面积”,引导学生思考如何计算面积。
然后引出幂的运算概念,告诉学生,面积可以表示为边长的平方,即2的平方。
七年级数学下册《第八章 幂的运算》复习教案 (新版)苏科版

第八章幂的运算课题:幂的运算的小结与思考教学目标:1、能说出幂的运算的性质;2、会运用幂的运算性质进行计算,并能说出每一步的依据;3、能说出零指数幂、负整数指数幂的意义,能用熟悉的事物描述一些较小的正数,并能用科学记数法表示绝对值小于1的数;4、通过具体例子体会本章学习中体现的从具体到抽象、特殊到一般的思考问题的方法,渗透转化、归纳等思想方法,发展合情推理能力和演绎推理能力。
教学重点:运用幂的运算性质进行计算教学难点:运用幂的运算性质进行证明规律教学方法:引导发现,合作交流,充分体现学生的主体地位一、系统梳理知识:幂的运算:1、同底数幂的乘法2、幂的乘方3、积的乘方4、同底数幂的除法:(1)零指数幂(2)负整数指数幂请你用字母表示以上运算法则。
你认为本章的学习中应该注意哪些问题?二、例题精讲:例1 判断下列等式是否成立:①(-x)2=-x2,②(-x3)=-(-x)3,③(x-y)2=(y-x)2,④(x-y)3=(y-x)3,⑤x-a-b=x-(a+b),⑥x+a-b=x-(b-a).解:③⑤⑥成立.例2 已知10m=4,10n=5,求103m+2n的值.解:因为103m=(10m)3=43 =64,102n=(10n)2=52=25.所以103m+2n=103m×102n=64×25=1680例3 若x=2m+1,y=3+4m,则用x的代数式表示y为______.解:∵2m=x-1,∴y=3+4m=3+22m.=3+(2m)2=3+(x-1)2=x2-2x+4.例4设<n>表示正整数n的个位数,例如<3>=3,<21>=1,<13×24>=2,则<210>=______.解210=(24)2·22=162·4,∴ <210>=<6×4>=4例5 1993+9319的个位数字是( )A.2 B.4C.6 D.8解1993+9319的个位数字等于993+319的个位数字.∵ 993=(92)46·9=8146·9.319=(34)4·33=814·27.∴993+319的个位数字等于9+7的个位数字.则 1993+9319的个位数字是6.三、随堂练习:1、已知a=355,b=444,c=533,则有()A.a<b<c B.c<b<aC.c<a<b D.a<c<b2、已知3x=a,3y =b,则32x-y等于 ( )3、试比较355,444,533的大小.4、已知a=-0.32,b=-3-2,c=(-1/3)-2d=(-1/3)0,比较a、b、c、d的大小并用“,〈”号连接起来。
初中数学沪科版七年级下册第8章 整式乘法与因式分解8.1 幂的运算-章节测试习题(17)

章节测试题1.【题文】已知2x=a,4y=b,8z=ab,试猜想x,y,z之间的数量关系,并说明理由.【答案】x+2y=3z【分析】观察等式2x=a,4y=b,8z=ab,易得前两个等式相乘右边可得ab,与第三个等式右边相等,可得等式“2x·4y=8z”,对等式进一步变形;可得2x+2y=23z,即得出含x、y、z的幂的等式,从而得出结果.【解答】解:猜想x+2y=3z.理由:因为2x·4y=ab,8z=ab,所以2x·4y=8z,即2x+2y=23z.所以x+2y=3z.2.【题文】已知2x+5y-9=0,求4x·32y的值.【答案】512【分析】根据幂的乘方,同底数幂的乘法,化要求的式子为已知条件,把已知代入即可得出结果.【解答】解:4x·32y=22x·25y=22x+5y.因为2x+5y-9=0,所以2x+5y=9.所以原式=29=512.3.【题文】已知x+4y=5,求4x·162y的值.【答案】1024【分析】根据积的乘方的逆用,把4x·162y化为4x+4y,代入即可.【解答】解:∵x+4y=5, ∴4x·162y=4x·44y=4x+4y=45=1 0244.【题文】已知(2x)n=22n(n为正整数),求正数x的值.【答案】2【分析】根据幂的乘方运算法则可得;再根据相等幂的指数相同,则底数也相等得关于x的方程,求解即可.【解答】解:由题意知(2x)n=22n=4n.又因为x为正数,所以2x=4,即x=2.5.【题文】计算: (x-y)3·(y-x)2·(x-y)4.【答案】(x-y)9【分析】按照同底数幂的运算法则进行运算即可.【解答】解:6.【题文】若x m=2,求x4m的值【答案】16【分析】根据幂的乘方法则可完成此题.【解答】解::x m =2,∵x4m=(x m)4,∴x4m的值为16.7.【题文】a3表示3个a相乘,(a3)4表示4个_____相乘,•因此(a3)4•=•____=____,由此推得(a m)n=______,其中m,n都是正整数,并利用你发现的规律计算:(1)(a4)5;(2)[(a+b)4] 5.8.【题文】阅读下列解题过程:试比较2100与375的大小.解:∵2100=(24)25=1625375=(33)25=2725而16<27,∴2100<375.请根据上述解答过程解答:比较255、344、433的大小.【答案】255<433<344【分析】根据题目中所给的方法,由幂的乘方的逆运算,把各数化为指数相同、底数不同的形式,再根据底数的大小比较即可.【解答】解:∵,且32<64<81,∴.9.【题文】若n为正整数,且x2n=4,求(3x3n)2-4(-x2)2n的值.【答案】512【分析】【解答】解:原式=9x6n-4x4n=9(x2n)3-4(x2n)2.∵x2n=4,∴原式=9×43-4×42=512.10.【答题】计算(﹣x3)2所得结果是()A. x5B. ﹣x5C. x6D. ﹣x6【答案】C【分析】根据幂的乘方法则计算即可.【解答】(﹣x3)2=x6,选C.11.【答题】下列运算中,正确的个数是()①;②;③;④;⑤A. 1个B. 2个C. 3个D. 4个【答案】A【分析】根据幂的乘方法则和有理数的运算计算即可.【解答】①不是同类项,不能够合并;②根据幂的乘方的运算法则可得原式=;③原式=1×2-1=2-1=1;④原式=-5+3=-2;⑤原式=;正确的只有②,选A.12.【答题】若5x=125y,3y=9z,则x:y:z等于()A. 1:2:3B. 3:2:1C. 1:3:6D. 6:2:1【答案】D【分析】根据幂的乘方法则计算即可.【解答】∵5x=(53)y=53y,3y=(32)z=32z,∴x=3y,y=2z,即x=3y=6z;设z=k,则y=2k,x=6k;(k≠0)∴x:y:z=6k:2k:k=6:2:1选D.13.【答题】下列运算正确的是()A. x2+x3=x5B. (﹣a3)•a3=a6C. (﹣x3)2=x6D. 4a2﹣(2a)2=2a2【答案】C【分析】根据整式的加减和幂的乘方法则计算即可.【解答】A选项: x2和x3不是同类项,不能直接相加,故是错误的;B选项: (﹣a3)•a3=-a6,故是错误的;C选项: (﹣x3)2=x6,计算正确;D选项: 4a2﹣(2a)2=0;选C.14.【答题】对于等式:(1);(2)判断正确的是()A. (1)正确B. (2)正确C. 都正确D. 无法判断【答案】B【分析】根据幂的乘方法则计算即可.【解答】解:(1)若n为奇数、m为偶数,则而故(1)错误;(2)由故(2)正确;选B.15.【答题】计算,正确结果是()A.B.C.D.【答案】B【分析】根据幂的乘方法则计算即可.【解答】解:=a6.16.【答题】已知,,则可以表示为().A.B.C.D.【答案】A【分析】根据幂的乘方法则计算即可.【解答】解:∵,,∴.故选.17.【答题】已知,,则等于()A.B.C. 17【答案】A【分析】根据幂的乘方法则计算即可.【解答】∵x a=2,x b=3,∴x3a−2b=(x a)3÷(x b)2=8÷9= ,选A.18.【答题】(a m)m•(a m)2不等于()A. (a m+2)mB. (a m•a2)mC.D. (a m)3•(a m﹣1)m【答案】C【分析】根据幂的乘方法则计算即可.【解答】因为(a m)m•(a m)2=,选C.19.【答题】(﹣a m)5•a n=()A. ﹣a5+mB. a5+mC. a5m+nD. ﹣a5m+n【答案】D【分析】根据幂的乘方法则和同底数幂的乘法法则计算即可. 【解答】解:(-a m)5•a n=-a5m+n.选D.20.【答题】已知a m=2,a n=3,则a3m+2n的值是()A. 24B. 36C. 72D. 48【答案】C【分析】根据幂的乘方法则计算即可.【解答】∵,∴. 选C.。
【中小学资料】七年级数学下册 8.1 同底数幂的乘法 怎样理解“同底数幂相乘,底数不变,指数相加”素材 (

中小学最新教育资料
怎样理解“同底数幂相乘,底数不变,指数相加”?
幂的运算性质的表达式是a m·a n =a m+n(m,n均为正整数)
(1)左边两个幂的底数相同,而且是相乘的关系;右边所得到的一个幂,底数仍不变,指数相加。
可见,这一性质由乘法运算降为加法运算(指数相加)。
对于这一性质,不仅要记住结论,更重要的是掌握结论导出过程。
因为这个推导过程体现了“由特殊到一般的数学思想方法”。
掌握这一方法对于学好数学(当然也包括其他学科)是非常重要的。
(2)公式中的字母a既可以表示数,也可以表示单项式,还可表示多项式。
(3)当三个或三个以上同底数幂相乘时,法则仍成立,即a m·a n·a p=a m+n+p(m,n,p 都是正整数)。
(4)只有“同底数”的幂相乘才能用这个法则。
千万不要出现类似下面的错误:a2·(-a)3=a5。
这里出错的原因是因为这两个底数不同,一个是a,一个是-a,而强用了法则。
(5)注意可逆用公式a m+n=a m·a n(m,n都是正整数)。
中小学最新教育资料。
七年级下册数学第8章《幂的运算》考点+易错讲义

第8章《幂的运算》考点+易错知识梳理重难点分类解析考点1 运用幂的基本性质进行运算【考点解读】掌握幂的基本性质是解决问题的关键,要根据算式的特点确定运算的顺序,并选择幂的基本性质进行正确计算,不要混淆同底数幂的乘法、积的乘方以及幂的乘方. 例1 (2017·江西)下列运算正确的是( )A. 5210()a a -=B. 22236a a a =gC. 23a a a -+=-D. 623623a a a -÷=-分析: 5210()a a -=,故选项A 正确;23236a a a =g,故选项B 错误;2a a a -+=-,故选项C 错误;624623a a a -÷=-,故选项D 错误.答案:A【规律·技法】根据合并同类项、幂的乘方及同底数幂的乘法的定义解答. 【反馈练习】1.下列计算正确的是( )A. 224x x x +=B. 3332x x x -=C. 236x x x =g D. 236()x x =点拨:正确应用各类计算法则计算. 2.计算:201320111(3)()3-⨯-= .点拨:应用积的乘方的逆运算,把2013(3)-折分成20112(3)(3)-⨯-.考点2 运用零指数、负整数指数幂的意义进行运算【考点解读】明确零指数、负整数指数幂的规定,同时区分一些形式上相似而实质上不一样的算式,如03与03-,12-与12--等. 例2 计算0112()2-+的结果是 . 分析:0112()1232-+=+=.答案:3 【规律·技法】本题考查了0次幂和负整数指数幂的意义,解答本题的关键是熟记相关法则. 【反馈练习】3.计算018()2---的结果是( )A. 7-B. 7C. 172D. 9 点拨:018()8172---=-=. 4.计算2133-⨯的结果是( )A. 3B. 3-C. 2D. 2- 点拨: 1133-=. 考点3 用科学记数法表示数【考点解读】要善于总结用科学记数法表示数的一般性规律,如:40.000110-=,50.0000110-=,60.00000110-=,70.000000110-=等.例3 (2017·济宁)某桑蚕丝的直径为0.000 016 m ,将0.000 016用科学记数法表示是() A. 41.610-⨯ B. 51.610-⨯ C. 61.610-⨯ D. 61610-⨯ 分析:绝时值小于1的正数也可以利用科学记数法表示,一般形式为10na -⨯,与较大数的科学记数法不同的是其所使用的是负整数幂,指数由原数左边起第一个不为零的数字前面0的个数所决定,则50.000016 1.610-=⨯.答案:B【规律·技法】用科学记数法表示较小的数,一般形式为10na -⨯,其中110a ≤<,n 由原数左边起第一个非零数字前面0的个数所决定. 【反馈练习】5.生物学家发现了一种病毒,其长度为0.000 000 32 mm ,数据0.000 000 32用科学记数法表示正确的是( )A. 73.210⨯ B. 53.210-⨯ C. 73.210-⨯ D. 83.210-⨯ 点拨:确定科学记数法表示较小的数的一般形式10na -⨯中a 和n 的值.6.蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000 073 m ,将0.000 073用科学记数法表示为 .点拨:确定科学记数法表示较小的数的一般形式10na -⨯中a 和n 的值.考点4 幂的相关运算【考点解读】熟练掌握有关幂的运算法则. 例4 下列运算正确的是( )A. 320a a -=B. 23a a a =gC. 432a a a ÷= D. 325()a a =分析:32a a a -=,故选项A 不正确;23a a a =g ,故选项B 正确;43a a a ÷=,故选项C 不正确;326()a a =,故选项D 不正确.答案:B【规律·技法】本题考查了同底数幂的除法、合并同类项、同底数幂的乘法、幂的乘方,这些运算很容易混淆,一定要记准不同的运算法则. 【反馈练习】7.下列计算结果正确的是( )A. 842a a a ÷=B. 236a a a =g C. 248()a a = D. 236(2)8a a -= 点拨mnm na a a-÷=;m n m na a a+⨯= ;()m n mna a=(m ,n 是整数).8.下列运算正确的是( )A. 5210()a a = B. 1644x x x ÷=C. 224235a a a +=D. 3332b b b =g点拨m n m na a a-÷=;m n m na a a+⨯= ;()m n mna a=(m ,n 是整数).易错题辨析易错点 1 运用同底数幂的乘法法则计算时,漏掉了指数是“1”的因式例1计算: 32m m m ∙g . 错误解答: 32325m m m mm +∙==g s.错因分析:本题错在忽视最后一个因式m 的指数是1,误认为它的指数是0. 正确解答:323216m m m mm ++∙==g .易错辨析:单个字母的指数是1而不是0,只不过指数为1时可以省略不写,但不能认为指数是0.易错点2 运算法则使用不当例2计算:(1) 43(3)xy -; (2) 22(3)a b . 错误解答:(1) 4312(3)3xy xy -=-. (2) 2242(3)6a b a b =.错因分析:积的乘方是将积中的每一个因式分别乘方,而(1)中只将最后一个因式乘方,忽略了3-,x 两个因式的乘方,而(2)中错误地将乘方的次数乘以系数了. 正确解答:(1) 43312(3)27xy x y -=-. (2) 2242(3)9a b a b =.易错辨析:运用积的乘方法则时,要注意不能遗漏因式.易错点3 错用合并同类项法则例3计算: 3223()()x x +.错误解答: 32236612()()x x x x x +=+=.错因分析:本题错在将合并同类项法则与同底数幂乘法法则相混淆,错解中既运用了合并同类项法则,又运用了同底数幂相乘的法则.本题实际上是合并同类项,利用合并同类项法则将系数相加作为和的系数,字母和字母指数不变. 正确解答:3223666()()2x x x x x +=+=. 易错辨析:正确区分合并同类项与同底数幕乘法.易错点4 错用同底数幂除法法则例4计算:62x x ÷. 错误解答: 62623x x xx ÷÷==.错因分析:上面的解法用错了法则,同底数幂相除,底数不变,指数相减,而不是相除. 正确解答: 62624x x xx -÷==.易错辨析:同底数幕除法法则为mnm na a a -÷= (其中m ,n 是整数),注意m n -不能写成m n ÷.易错点5 运算中符号出错例5 计算:62()()y y -÷-. 错误解答:626244()()()()y y y y y --÷-=-=-=-.错因分析: 44444()(1)(1)y y y y -=-=-=g g . 正确解答:626244()()()()y y y y y --÷-=-=-=.易错辨析:当n 为奇数时,()nna a -=-;当n 为偶数时,()nna a -=.反馈练习1.给出下列算式:①43272()()a a c a c --=-g ;②326()a a -=-;③3342()a a a -÷=;④633()()a a a -÷-=-.其中正确的有( )A. 4个B. 3个C. 2个D. 1个 点拨:注意运算的顺序,正确运用法则运算.2.若20.3a =-,23b -=-,21()3c -=-,01()3d =-,则( )A. a b c d <<<B. b a d c <<<C. a d c b <<<D. c a d b <<<点拨:分别计算出,,,a b c d 的值,比较即可.3.给出下列各式:①523[()]a a --g;②43()a a -g ;③2332()()a a -g ;④43[()]a --.其中计算结果为12a -的有( )A.①和③B.①和②C.②和③D.③和④点拨:注意“偶次方”和“奇次方”的符号处理. 4.计算: 23()()p p --=g ;231()2a b -= . 点拨:正确运用法则计算,最后结果化为最简形式.5.计算: 2018201952()()25-⨯-= . 点拨:把20192()5-分解为201822()()55--g 即可。
七级数学下册 8.1 幂的运算《同底数幂的乘法》教案1 (新版)沪科版

《同底数幂的乘法》教学目标:1、经历探索同底数幂乘法运算性质的过程,发展符号感和推理意识.2、能用符号语言和文字语言表述同底数幂乘法的运算性质,会根据性质计算同底数幂的乘法.教学重点:同底数幂的乘法运算法则.教学难点:同底数幂的乘法运算法则的灵活运用.教学过程设计一、复习旧知a n表示的意义是什么?其中a、n、a n分别叫做什么?a n= a× a× a×… a(n个a相乘)25表示什么?10×10×10×10×10可以写成什么形式?10×10×10×10×10 =?式子103×102的意义是什么?这个式子中的两个因式有何特点?二、探究新知1、探究算法103×102=(10×10×10)×(10×10)(乘方意义)=10×10×10×10×10(乘法结合律)=105 (乘方意义)2、寻找规律请同学们先认真计算下面各题,观察下面各题左右两边,底数、指数有什么关系?①103×102= ②23×22= ③a3×a2=归纳规律:底数不变,指数相加.3、定义法则①你能根据规律猜出答案吗?猜想:a m·a n=?(m、n都是正整数)写出计算过程,证明你的猜想是正确的.a m·a n=(aa…a)·(aa…a)(乘方意义)n个a= aa…a(m+n)个a(乘法结合律)=a m+n(乘方意义)即:a m·a n= a m+n(m、n都是正整数)②用自己的语言归纳法则A、a m·a n是什么运算?——乘法运算B、数a m、a n形式上有什么特点?——都是幂的形式C、幂a m、a n有何共同特点?——底数相同D、所以a m·a n叫做同底数幂的乘法.引出课题:这就是这节课要学习的内容《同底数幂的乘法》它的运算法则应该是同底数幂相乘,底数不变,指数相加.幂的底数必须相同,相乘时指数才能相加.例如:43×45=43+5=484、知识应用计算(1)32×35(2)(-5)3×(-5)5练习一例1:计算:(抢答)105×106当三个或三个以上同底数幂相乘时,是否也具有这一性质呢?怎样用公式表示?例2:计算(1)a8·a3·a (2)(a+b)2(a+b)3底数也可以是一个多项式.例3:世界海洋面积约为3.6亿平方千米,约等于多少平方米?练习二下面的计算对不对?如果不对,怎样改正?(1)b5· b5= 2b5()(2)b5+ b5 = b10()(3)x5·x5= x25()(4)y5· y5= 2y10()(5)c· c3= c3()(6)m + m3= m4()。
[数学]-专题8.1 幂的运算【八大题型】(举一反三)(苏科版)(原版)
![[数学]-专题8.1 幂的运算【八大题型】(举一反三)(苏科版)(原版)](https://img.taocdn.com/s3/m/7def4bf31b37f111f18583d049649b6648d7099c.png)
专题8.1 幂的运算【八大题型】【苏科版】【题型1 幂的基本运算】 (1)【题型2 幂的运算法则逆用(比较大小)】 (2)【题型3 幂的运算法则逆用(求代数式的值)】 (2)【题型4 幂的运算法则逆用(整体代入)】 (2)【题型5 幂的运算法则逆用(求参)】 (3)【题型6 幂的运算法则逆用(代数式的表示)】 (3)【题型7 幂的运算法则(混合运算)】 (3)【题型8 幂的运算法则(新定义问题)】 (4)【题型1 幂的基本运算】【例1】(2022•谷城县二模)下列各选项中计算正确的是( )A .m 2n ﹣n =n 2B .2(﹣ab 2)3=﹣2a 3b 6C .(﹣m )2m 4=m 8D .x 6y x 2=x 3y 【变式1-1】(2022秋•南陵县期末)(512)2005×(225)2004=( )A .1B .512C .225D .(512)2003 【变式1-2】(2022秋•孝南区月考)计算x 5m +3n +1÷(x n )2•(﹣x m )2的结果是( )A .﹣x 7m +n +1B .x 7m +n +1C .x 7m ﹣n +1D .x 3m +n +1【变式1-3】(2022秋•温江区校级期末)下列等式中正确的个数是( )①a 5+a 5=a 10;②(﹣a )6•(﹣a )3•a =a 10;③﹣a 4•(﹣a )5=a 20;④25+25=26.A.0个B.1个C.2个D.3个【题型2 幂的运算法则逆用(比较大小)】【例2】(2022春•宣城期末)已知a=8131,b=2741,c=961,则a、b、c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b【变式2-1】(2022春•晋州市期中)阅读:已知正整数a,b,c,若对于同底数,不同指数的两个幂a b和a c(a≠1),当b>c时,则有a b>a c;若对于同指数,不同底数的两个幂a b和c b,当a>c时,则有a b>c b,根据上述材料,回答下列问题.(1)比较大小:520420,9612741;(填“>”“<”或“=”)(2)比较233与322的大小;(3)比较312×510与310×512的大小.[注(2),(3)写出比较的具体过程]【变式2-2】(2022秋•滨城区月考)已知a=3231,b=1641,c=821,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>a>c【变式2-3】(2022春•泰兴市校级月考)若a=2555,b=3444,c=4333,d=5222,试比较a、b、c、d的大小.(写出过程)【题型3 幂的运算法则逆用(求代数式的值)】【例3】(2022春•巨野县期中)已知:52n=a,9n=b,则154n=.【变式3-1】(2022秋•西青区期末)若2x=a,16y=b,则22x+4y的值为.【变式3-2】(2022春•萧山区期中)若x m=5,x n=14,则x2m﹣n=()A.52B.40 C.254D.100【变式3-3】(2022春•高新区校级月考)已知32m=a,27n=b.求:(1)34m的值;(2)33n的值;(3)34m﹣6n的值.【题型4 幂的运算法则逆用(整体代入)】【例4】(2022•铁岭模拟)若a+3b﹣2=0,则3a•27b=.【变式4-1】(2022秋•淇滨区校级月考)当3m+2n﹣3=0时,则8m•4n=8.【变式4-2】(2022春•东台市期中)已知a﹣2b﹣3c=2,则2a÷4b×(18)c的值是.【变式4-3】(2022春•昌平区期末)若5x﹣2y﹣2=0,则105x÷102y=.【题型5 幂的运算法则逆用(求参)】【例5】(2022秋•西城区校级期中)若a5•(a y)3=a17,则y=,若3×9m×27m=311,则m的值为.【变式5-1】(2022春•建湖县期中)规定a*b=2a×2b,例如:1*2=21×22=23=8,若2*(x+1)=64,则x的值为.【变式5-2】(2022秋•卫辉市期末)已知2m=4n﹣1,27n=3m﹣1,则n﹣m=.【变式5-3】(2022春•兴化市期中)若(2m)2•23n=84,其中m、n都是自然数,则符合条件m、n的值有____组.【题型6 幂的运算法则逆用(代数式的表示)】【例6】(2022秋•崇川区校级期中)若a 2m+3y=a m+1x=1.(1)请用含x的代数式表示y;(2)如果x=4,求此时y的值.【变式6-1】(2022•高新区校级三模)已知m=89,n=98,试用含m,n的式子表示7272.【变式6-2】(2022•高新区校级三模)(1)若x=2m+1,y=3+4m,用x的代数式表示y.(2)若x=2m+1,y=3+4m,用x的代数式表示y.【变式6-3】(2022春•新泰市期末)若a m=a n(a>0,a≠1,m、n都是正整数),则m=n,利用上面结论解决下面的问题:(1)如果2x•23=32,求x的值;(2)如果2÷8x•16x=25,求x的值;(3)若x=5m﹣2,y=3﹣25m,用含x的代数式表示y.【题型7 幂的运算法则(混合运算)】【例7】(2022春•沭阳县校级月考)计算:(1)(﹣a)2•a3(2)(﹣8)2013•(18)2014(3)x n•x n+1+x2n•x(n是正整数)( 4 )(a2•a3)4.【变式7-1】(2022秋•道外区校级月考)计算:(1)y3•y2•y(2)(x 3)4•x 2(3)( a 4•a 2)3•(﹣a )5(4)(﹣3a 2)3﹣a •a 5+(4a 3)2.【变式7-2】(2022春•太仓市期中)用简便方法计算下列各题(1)(45)2015×(﹣1.25)2016.(2)(318)12×(825)11×(﹣2)3.【变式7-3】(2022春•漳浦县期中)计算(1)(m ﹣n )2•(n ﹣m )3•(n ﹣m )4(2)(b 2n )3(b 3)4n ÷(b 5)n +1(3)(a 2)3﹣a 3•a 3+(2a 3)2;(4)(﹣4a m +1)3÷[2(2a m )2•a ].【题型8 幂的运算法则(新定义问题)】【例8】(2022春•大竹县校级期中)我们知道,同底数幂的乘法法则为a m •a n =a m +n (其中a ≠0,m 、n 为正整数),类似地我们规定关于任意正整数m 、n 的一种新运算:h (m +n )=h (m )•h (n );比如h(2)=3,则h (4)=h (2+2)=3×3=9,若h (2)=k (k ≠0),那么h (2n )•h (2022)的结果是( )A .2k +2021B .2k +2022C .k n +1010D .2022k 【变式8-1】(2022•兰山区二模)一般的,如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N .例如:由于23=8,所以3是以2为底8的对数,记作log 28=3;由于a 1=a ,所以1是以a 为底a 的对数,记作log a a =1.对数作为一种运算,有如下的运算性质:如果a >0,且a ≠1,M >0,N >0,那么(1)log a (M •N )=log a M +log a N ;(2)log a M N =log a M ﹣log a N ;(3)log a M n =n log a M .根据上面的运算性质,计算log 2(23×8)﹣log 2165−log 210的结果是 .【变式8-2】(2022春•泰兴市期中)规定两数a ,b 之间的一种运算,记作a ※b :如果a c =b ,那么a ※b =c .例如:因为32=9,所以3※9=2(1)根据上述规定,填空:2※16= , ※136=−2,(2)小明在研究这种运算时发现一个现象:3n ※4n =3※4,小明给出了如下的证明:设3n ※4n =x ,则(3n )x =4n ,即(3x )n =4n所以3x=4,即3※4=x,所以3n※4n=3※4.请你尝试运用这种方法解决下列问题:①证明:6※7+6※9=6※63;②猜想:(x﹣1)n※(y+1)n+(x﹣1)n※(y﹣2)n=※(结果化成最简形式).【变式8-3】(2022秋•南宁期末)规定两数a,b之间的一种运算,记作(a,b),如果a c=b,那么(a,b)=c.我们叫(a,b)为“雅对”.例如:∵23=8,∴(2,8)=3.我们还可以利用“雅对”定义证明等式(3,3)+(3,5)=(3,15)成立.证明如下:设(3,3)=m,(3,5)=n,则3m=3,3n=5.∴3m•3n=3m+n=3×5=15.∴(3,15)=m+n,即(3,3)+(3,5)=(3,15).(1)根据上述规定,填空:(2,4)=;(5,25)=;(3,27)=.(2)计算:(5,2)+(5,7)=,并说明理由.(3)记(3,5)=a,(3,6)=b,(3,30)=c.求证:a+b=c。
初一幂运算经典例题

初一幂运算经典例题好吧,今天咱们聊聊幂运算。
说到这,可能有的小伙伴就要皱眉头了,哎呀,这又是什么东东?别担心,咱们慢慢来。
幂运算其实就是用指数来表示一个数的乘方。
比如说,2的3次方,嘿,这就意味着2乘以2再乘以2,也就是2×2×2,结果是8。
听起来简单吧?这就是幂运算的魅力所在。
想象一下,如果你把一块巧克力切成两半,然后又把每半切成两半,这时候你就得到了四块巧克力。
再切一次,哎呀,八块巧克力就到手了。
幂运算就像这块巧克力,越切越多,数量翻倍。
生活中用得上幂运算的地方可多了,比如计算面积、体积,甚至在科学实验中也能看到它的身影。
幂运算还可以显得特别“高大上”。
比如,10的六次方,这个数字就变得很庞大,嘿,后面还有六个零呢,光听着就让人觉得厉害。
说到这,不禁让我想起了小时候,老师在黑板上写下一个个巨大的数字,我们都惊呼连连,那感觉真是既神秘又兴奋。
幂运算的规则也很有趣。
有些小伙伴可能会问,嘿,负数怎么弄?别急,负数的幂运算其实也很简单。
比如,(2)的2次方,结果就是4,因为负数乘以负数就变成正数了。
但是,(2)的3次方就变得复杂了,结果是8。
哎,这让很多人对负数又爱又恨,哈哈。
生活中有时候也是这样,负面的事情发生后,往往能让我们更懂得珍惜积极的一面。
再说说零的幂。
听起来不可能,结果是1。
没错,你没有听错,任何数的零次方都是1。
是不是觉得有点不可思议?这就像是在说,无论你再怎么忙,再怎么累,总会有一刻让你停下来,回归最初的那个自己,重拾初心,真是妙不可言。
提到幂运算,指数法则也是一门深奥的学问。
像是a的m次方乘以a的n次方,就能变成a的(m+n)次方。
这就像是团队合作,大家一起努力,结果就会更好。
反之,如果你要除法,那就是a的m次方除以a的n次方,这样就变成了a的(mn)次方。
这些规律就像生活的哲理,彼此之间的关系总是紧密相连,缺一不可。
大家有没有听说过“平方”和“立方”?平方就是把一个数乘以它自己,立方则是乘以它自己两次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.1 幂的运算1.了解幂的运算性质,会利用幂的运算性质进行计算.2.通过幂的运算性质的形成和应用,养成观察、归纳、猜想、论证的能力,提高计算和口算的能力.3.了解和体会“特殊—一般—特殊”的认知规律,体验和学习研究问题的方法,培养思维严谨性,做到步步有据,正确熟练,养成良好的学习习惯.1.同底数幂的乘法(1)同底数幂的意义“同底数幂”顾名思义,是指底数相同的幂.如32与35,(-5)2与(-5)6,(a+b)4与(a+b)3等表示的都是同底数的幂.(2)幂的运算性质1同底数幂相乘,底数不变,指数相加.用字母可以表示为:a m·a n=a m+n(m,n都是正整数).(3)性质的推广运用当三个或三个以上的同底数幂相乘时,也具有这一性质,如:a m·a n·a p=a m+n+p(m,n,p是正整数).(4)在应用同底数幂的乘法的运算性质时,应注意以下几点:①幂的底数a可以是任意的有理数,也可以是单项式或多项式;底数是和、差或其他形式的幂相乘,应把这些和或差看作一个“整体”.②底数必须相同才能使用同底数幂的乘法公式,若底数不同,则不能使用;注意:-a n 与(-a)n不是同底数的幂,不能直接用性质.③不要忽视指数是1的因数或因式.【例1-1】(1)计算x3·x2的结果是______;(2)a4·(-a3)·(-a)3=__________.解析:(1)题中的底数都是x,是两个同底数幂相乘的运算式子,只需运用同底数幂相乘的性质进行运算,即x3·x2=x3+2=x5;(2)应先把底数分别是a,-a的幂化成同底数的幂,才能应用同底数幂的乘法性质,原式=a4·(-a3)·(-a3)=a4·a3·a3=a4+3+3=a10.答案:(1)x5(2)a10正确运用幂的运算性质解题的前提是明确性质的条件和结论.例如同底数幂的乘法,条件是底数相同,且运算是乘法运算,结论是底数不变,指数相加.【例1-2】计算:(1)(x+y)2·(x+y)3;(2)(a-2b)2·(2b-a)3.分析:(1)把(x+y)看作底数,可根据同底数幂的乘法性质来解;(2)题中(a-2b)2可转化为(2b-a)2,或者把(2b-a)3转化为-(a-2b)3,就是两个同底数的幂相乘了.解:(1)原式=(x+y)2+3=(x+y)5;(2)方法一:原式=(2b -a )2·(2b -a )3=(2b -a )5;方法二:原式=(a -2b )2·[-(a -2b )3]=-(a -2b )5.本题应用了整体的数学思想,把(x +y )和(a -2b )看作一个整体,(2)题中的两种解法所得的结果实质是相等的,因为互为相反数的奇次幂仍是互为相反数. 2.幂的乘方(1)幂的乘方的意义:幂的乘方是指几个相同的幂相乘.如(a 5)3是指三个a 5相乘,读作“a 的五次幂的三次方”,即有(a 5)3=a 5·a 5·a 5=a 5+5+5=a 5×3;(a m )n 表示n 个a m 相乘,读作“a 的m 次幂的n 次方”,即有(a m )n =m m m n a a a ⋅⋅⋅L 1442443个=m m m n a a a a a a a a a ⋅⋅⋅⋅⋅⋅⋅⋅⋅L L L L 142431424314243144444424444443个个个个=a mn(m ,n 都是正整数) (2)幂的运算性质2幂的乘方,底数不变,指数相乘.用字母可以表示为:(a m )n =a mn(m ,n 都是正整数).这个性质的最大特点就是将原来的乘方运算降次为乘法运算,即底数不变,指数相乘. (3)性质的推广运用幂的乘方性质可推广为: [(a m )n ]p =a mnp(m ,n ,p 均为正整数).(4)注意(a m )n 与am n的区别 (a m )n 表示n 个a m 相乘,而am n 表示m n 个a 相乘,例如:(52)3=52×3=56,523=58.因此,(a m )n ≠am n .【例2】(1)计算(x 3)2的结果是( ).A .x 5B .x 6C .x 8D .x 9(2)计算3(a 3)3+2(a 4)2·a =__________.解析:(1)根据性质,底数不变,指数相乘,结果应选B ;(2)先根据幂的乘方、同底数幂相乘进行计算,再合并同类项得到结果.3(a 3)3+2(a 4)2·a =3a 3×3+2a 4×2·a =3a 9+2a 8·a =3a 9+2a 9=5a 9.答案:(1)B (2)5a 9防止“指数相乘”变为“指数相加”,同时防止“指数相乘”变为“指数乘方”.如(a 4)2=a 4+2=a 6与(a 2)3=a 23=a 8都是错误的.3.积的乘方(1)积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(2ab )3,(ab )n等.(2ab )3=(2ab )·(2ab )·(2ab )(乘方意义)=(2×2×2)(a ·a ·a )(b ·b ·b )(乘法交换律、结合律) =23a 3b 3.(ab )n =n ab ab ab ()()()L 1442443个=n a a a (⋅⋅⋅)L 14243个n b b b (⋅⋅⋅⋅)L 14243个=a n b n(n 为正整数).(2)幂的运算性质3积的乘方等于各因式乘方的积.也就是说,先把积中的每一个因式分别乘方,再把所得的结果相乘.用字母可以表示为:(ab )n =a n b n(n 是正整数). (3)性质的推广运用三个或三个以上的乘方也具有这一性质,如(abc )n =a n b n c n(n 是正整数).【例3】计算:(1)(-2x )3;(2)(-xy )2;(3)(xy 2)3·(-x 2y )2;(4)⎝ ⎛⎭⎪⎫-12ab 2c 34.分析:(1)要注意-2x 含有-2,x 两个因数;(2)-xy 含有三个因数:-1,x ,y ;(3)把xy 2看作x 与y 2的积,把-x 2y 看作-1,x 2,y 的积;(4)-12ab 2c 3含有四个因数-12,a ,b 2,c 3,先运用积的乘方性质计算,再运用幂的乘方性质计算.解:(1)(-2x )3=(-2)3·x 3=-8x 3;(2)(-xy )2=(-1)2·x 2·y 2=x 2y 2;(3)(xy 2)3·(-x 2y )2=x 3(y 2)3·(-1)2·(x 2)2y 2=x 3y 6·x 4y 2=x 7y 8;(4)⎝ ⎛⎭⎪⎫-12ab 2c 34=⎝ ⎛⎭⎪⎫-124a 4(b 2)4(c 3)4=116a 4b 8c 12.(1)在计算时,把x 2与y 2分别看成一个数,便于运用积的乘方的运算性质进行计算,这种把某个式子看成一个数或字母的方法的实质是换元法,它可以把复杂问题简单化,它是数学的常用方法.(2)此类题考查积的乘方运算,计算时应特别注意底数含有的因式,每个因式都分别乘方,不要漏掉,尤其要注意系数及系数的符号,对系数是-1的不可忽略.负数的奇次方是一个负数,负数的偶次方是一个正数.4.同底数幂的除法 (1)幂的运算性质4同底数幂相除,底数不变,指数相减.用字母可以表示为:a m ÷a n =a m -n(a ≠0,m ,n 都是正整数,且m >n ).这个性质成立的条件是:同底数幂相除,结论是:底数不变,指数相减.和同底数幂的乘法类似,被除式和除式都是幂的形式且底数一定要相同,商也是一个幂,其底数与被除式和除式的底数相同,商中幂的指数是被除式的指数与除式的指数之差.因为零不能作除数,所以底数a ≠0.(2)性质的推广运用三个或三个以上的同底数幂连续相除时,该性质仍然成立,例如a m ÷a n ÷a p =a m -n -p(a ≠0,m ,n ,p 为正整数,m >n +p ).【例4】计算:(1)(-a )6÷(-a )3;(2)(a +1)4÷(a +1)2;(3)(-x )7÷(-x 3)÷(-x )2. 分析:利用同底数幂的除法性质进行运算时关键要找准底数和指数.(1)中的底数是-a ,(2)中的底数是(a +1),(3)中的底数可以是-x ,也可以是x .解:(1)(-a )6÷(-a )3=(-a )6-3=(-a )3=-a 3;(2)(a +1)4÷(a +1)2=(a +1)4-2=(a +1)2; (3)方法1:(-x )7÷(-x 3)÷(-x )2=(-x )7÷(-x )3÷(-x )2=(-x )7-3-2=(-x )2=x 2. 方法2:(-x )7÷(-x 3)÷(-x )2=(-x 7)÷(-x 3)÷x 2=x 7-3-2=x 2.运用同底数幂除法性质的关键是看底数是否相同,若不相同则不能运用该性质,指数相减是指被除式的指数减去除式的指数;幂的前三个运算性质中字母a ,b 可以表示任何实数,也可以表示单项式和多项式;第四个性质即同底数幂的除法性质中,字母a 只表示不为零的实数,或表示其值不为零的单项式和多项式.注意指数是“1”的情况,如a 5÷a =a 5-1,而不是a 5-0.5.零指数幂与负整数指数幂(1)零指数幂:任何一个不等于零的数的零次幂都等于1.用字母可以表示为:a 0=1(a ≠0).a 0=1的前提是a ≠0,如(x -2)0=1成立的条件是x ≠2.(2)负整数指数幂:任何一个不等于零的数的-p (p 是正整数)次幂,等于这个数的p 次幂的倒数.用字母可以表示为:a -p=1ap (a ≠0,p 是正整数).a -p =1ap 的条件是a ≠0,p 为正整数,而0-2等是无意义的.当a >0时,a p 的值一定为正;当a <0时,a -p 的值视p 的奇偶性而定,如(-2)-3=-18,(-3)-2=19.规定了零指数幂和负整数指数幂的意义后,正整数指数幂的运算性质,就可以推广到整数指数幂了,于是同底数幂除法的性质推广到整数指数幂,即a m ÷a n =a m -n(a ≠0,m ,n 都是整数).如a ÷a 2=a 1-2=a -1=1a;正整数指数幂的某些运算,在负整数指数幂中也能适用.如a -2·a -3=a-2-3=a -5等.【例5】计算:(1)1.6×10-4;(2)(-3)-3;(3)⎝ ⎛⎭⎪⎫-53-2;(4)(π-3.14)0;(5)⎝ ⎛⎭⎪⎫130+⎝ ⎛⎭⎪⎫-13-2+⎝ ⎛⎭⎪⎫-23-1.分析:此题是负整数指数幂和零指数幂的计算,可根据a -p=1ap (p 是正整数,a ≠0)和a 0=1(a ≠0)计算.其中(1)题应先求出10-4的值,再运用乘法性质求出结果.解:(1)1.6×10-4=1.6×1104=1.6×0.000 1=0.000 16.(2)(-3)-3=1-33=-127. (3)⎝ ⎛⎭⎪⎫-53-2=⎝ ⎛⎭⎪⎫-352=925. (4)因为π=3.141 592 6…, 所以π-3.14≠0.故(π-3.14)0=1.(5)原式=1+1⎝ ⎛⎭⎪⎫-132+1⎝ ⎛⎭⎪⎫-231=1+9-32=812.只要底数不为零,而指数是零,不管底数多么复杂,其结果都是1.当一个负整数指数幂的底数是分数时,它等于底数倒数的正整数次幂,即⎝ ⎛⎭⎪⎫a b -p =⎝ ⎛⎭⎪⎫b a p .6.用科学记数法表示绝对值较小的数(1)绝对值小于1的数可记成±a ×10-n的形式,其中1≤a <10,n 是正整数,n 等于原数中第一个不等于零的数字前面的零的个数(包括小数点前面的一个零),这种记数方法也是科学记数法.(2)把一个绝对值小于1的数用科学记数法表示分两步:①确定a,1≤a <10,它是将原数小数点向右移动后的结果;②确定n ,n 是正整数,它等于原数化为a 后小数点移动的位数.(3)利用科学记数法表示数,不仅简便,而且更便于比较数的大小,如:2.57×10-5显然大于2.57×10-8,前者是后者的103倍.【例6-1】2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究表明,甲型H1N1流感球形病毒细胞的直径约为0.000 001 56 m ,用科学记数法表示这个数是( ).A .0.156×10-5B .0.156×105C.1.56×10-6 D.1.56×106解析:本题考查科学记数法,将一个数用科学记数法表示为±a×10-n(1≤a<10)的形式,其中a是正整数数位只有一位的数,所以A、B不正确,n是正整数,n等于原数中第一个有效数字前面的零的个数(包括小数点前面的一个零),所以n=6,即0.000 001 56=1.56×10-6.故选C.答案:Cn的值也等于将原数写成科学记数法±a×10-n时,小数点移动的位数.如本题中将0.000 001 56写成科学记数法表示时,a为1.56,即将原数的小数点向右移动了6位,所以n的值是6.【例6-2】已知空气的单位体积质量为 1.24×10-3 g/cm3,1.24×10-3用小数表示为( ).A.0.000 124 B.0.012 4C.-0.001 24 D.0.001 24解析:因为a=1.24,n=3,因此原数是1前面有3个零(包括小数点前面的一个零),即1.24×10-3=0.001 24.答案:D本题可把1.24的小数点向左移动3位得到原数,也可利用负整数指数幂算出10-3的值,再与1.24相乘得到原数.7.幂的混合运算幂的四个运算性质是整式乘(除)法的基础,也是整式乘(除)法的主要依据.进行幂的运算,关键是熟练掌握幂的四个运算性质,深刻理解每个性质的意义,避免互相混淆.幂的混合运算顺序是先乘方,再乘除,最后再加减,有括号的先算括号里面的.因此,运算时,应先细心观察,合理制定运算顺序,先算什么,后算什么,做到心中有数.(1)同底数幂相乘与幂的乘方运算性质混淆,从而导致错误.如:①a3·a2=a6;②(a3)2=a5.解题时应首先分清是哪种运算:若是同底数幂相乘,应将指数相加;若是幂的乘方,应将指数相乘.正解:①a3·a2=a5;②(a3)2=a6.(2)同底数幂相乘与合并同类项混淆,从而导致错误.如:①a3·a3=2a3;②a3+a3=a6.①是同底数幂相乘,应底数不变,指数相加;②是合并同类项,应系数相加作系数,字母和字母的指数不变.正解:①a3·a3=a6;②a3+a3=2a3.【例7-1】下列运算正确的是( ).A.a4+a5=a9B.a3·a3·a3=3a3C.2a4·3a5=6a9D.(-a3)4=a7解析:对于A,两者不是同类项,不能合并;对于B,结果应为a9;对于C,结果是正确的;对于D,(-a3)4=a3×4=a12.故选C.答案:C【例7-2】计算:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3.分析:按照运算顺序,先利用积的乘方化简,即(-2x2y)3=-8(x2)3·y3,8(x2)2·(-x)2·(-y)6=8x4·x2·y6,再利用幂的乘方及同底数幂的乘法化简乘方后的结果,最后合并同类项.解:(-2x2y)3+8(x2)2·(-x)2·(-y)6÷y3=-8(x2)3·y3+8x4·x2·y6÷y3=-8x6y3+8x6y3=0.8.幂的运算性质的逆用对于幂的运算性质的正向运用大家一般比较熟练,但有时有些问题需要逆用幂的运算性质,可以使问题化难为易、求解更加简单.(1)逆用同底数幂的乘法性质:a m +n =a m ·a n (m ,n 为正整数).如25=23×22=2×24.当遇到幂的指数是和的形式时,为了计算的需要,往往逆用同底数幂的乘法性质,将幂转化成几个同底数幂的乘法.但是一定要注意,转化后指数的和应等于原指数.(2)逆用幂的乘方性质:a mn =(a m )n =(a n )m (m ,n 均为正整数).逆用幂的乘方性质的方法是:幂的底数不变,将幂的指数分解成两个因数的乘积,再转化成幂的乘方的形式.如x 6=(x 2)3=(x 3)2,至于选择哪一个变形结果,要具体问题具体分析.(3)逆用积的乘方性质: a n b n =(ab )n (n 为正整数).当遇到指数相差不大,且指数比较大时,可以考虑逆用积的乘方性质解题.注意,必须是同指数的幂才能逆用性质,逆用时一定要注意:底数相乘,指数不变.(4)逆用同底数幂的除法性质: a m -n =a m ÷a n (a ≠0,m ,n 为整数).当遇到幂的指数是差的形式时,为了计算的需要,往往逆用同底数幂的除法性质,将幂转化成几个同底数幂的除法.但是一定要注意,转化后指数的差应等于原指数.【例8-1】(1)已知3a =2,3b =6,则33a -2b的值为__________;(2)若m p =15,m 2q =7,m r =-75,则m 3p +4q -2r的值为__________.解析:(1)因为3a =2,3b=6,所以33a -2b =33a ÷32b =(3a )3÷(3b )2=23÷62=29.(2)m 3p +4q -2r =(m p )3·(m 2q )2÷(m r )2=⎝ ⎛⎭⎪⎫153×72÷⎝ ⎛⎭⎪⎫-752=15.答案:(1)29 (2)15【例8-2】(1)计算:⎝ ⎛⎭⎪⎫18 2 011×22 012×24 024;(2)已知10x =2,10y =3,求103x +2y的值.分析:(1)本题的指数较大,按常规方法计算很难,观察式子特点发现:4 024是2 012的两倍,可逆用幂的乘方性质,把24 024化为(22)2 012,这样再与22 012逆用积的乘方性质,此时发现与⎝ ⎛⎭⎪⎫18 2 011底数互为倒数,但指数不相同,因此逆用同底数幂的乘法及逆用积的乘方性质,简化计算;(2)可逆用幂的乘方,把103x +2y化为条件中的形式.解:(1)原式=⎝ ⎛⎭⎪⎫18 2 011×22 012×(22)2 012(逆用幂的乘方)=⎝ ⎛⎭⎪⎫18 2 011×(2×22)2 012(逆用积的乘方) =⎝ ⎛⎭⎪⎫18 2 011×82 012 =⎝ ⎛⎭⎪⎫18 2 011×82 011×8(逆用同底数幂的乘法) =⎝ ⎛⎭⎪⎫18×8 2 011×8(逆用积的乘方) =8.(2)因为103x =(10x )3=23=8,102y =(10y )2=32=9,所以103x +2y =103x ·102y=8×9=72. 9.利用幂的运算性质比较大小 在幂的运算中,经常会遇到比较正整数指数幂的大小问题.对于一些幂的指数较小的问题,可以直接计算出幂进行比较;但当幂的指数较大时,若通过先计算出幂再比较大小,就会很繁琐甚至不可能.这时可利用幂的运算性质比较幂的大小.比较幂的大小,一般有以下几种方法:(1)指数比较法:利用乘方,将比较大小的各个幂的底数化为相同的底数,然后根据指数的大小关系确定出幂的大小.(2)底数比较法:利用乘方,将比较大小的各个幂的指数化为相同的指数,然后根据底数的大小关系确定出幂的大小.(3)作商比较法:当a >0,b >0时,利用“若a b >1,则a >b ;若a b =1,则a =b ;若a b<1,则a <b ”比较.有关幂的大小比较的技巧和方法除灵活运用幂的有关性质外,还应注意策略,如利用特殊值法、放缩法等.【例9】(1)已知a =8131,b =2741,c =961,则a ,b ,c 的大小关系是( ). A .a >b >c B .a >c >b C .a <b <c D .b >c >a(2)350,440,530的大小关系是( ).A .350<440<530B .530<350<440C .530<440<350D .440<530<350(3)已知P =999999,Q =119990,那么P ,Q 的大小关系是( ).A .P >QB .P =QC .P <QD .无法比较解析:(1)因为a =8131=(34)31=3124,b =2741=(33)41=3123,c =961=(32)61=3122,又124>123>122,所以3124>3123>3122,即a >b >c .故选A .(2)因为350=(35)10=24310,440=(44)10=25610,530=(53)10=12510,而125<243<256,所以12510<24310<25610,即530<350<440.故选B .(3)因为P Q =999999×990119=9×119999×990119=99×119999×990119=1,所以P =Q .故选B . 答案:(1)A (2)B (3)B10.幂的运算性质的实际应用利用幂的运算可以解决一些实际问题,所以要熟练掌握好幂的运算性质,能在实际问题中灵活地运用幂的运算性质求解问题.解决此类问题时,必须认真审题,根据题意列出相关的算式,进而利用幂的运算性质进行运算或化简,特别地,当计算的结果是比较大的数时,一般要写成科学记数法的形式.【例10】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103m/s ,则卫星运行3×102s 所走的路程约是多少?分析:要计算卫星运行3×102s 所走的路程,根据路程等于时间乘以速度可解决问题.本题实际是一道同底数幂的乘法运算问题.解:因为7.9×103×3×102=(7.9×3)×(103×102)=23.7×105=2.37×106,所以卫星运行3×102 s 所走的路程约为2.37×106m . 11.幂的运算中的规律探究题探究发现型题是指命题中缺少一定的题设或未给出明确的结论,需要经过推断、补充并加以总结.它不像传统的解答题或证明题,在条件和结论给出的情景中只需进行由因导果或由果导因的工作,而是必须利用题设大胆猜想、分析、比较、归纳、推理,或由条件去探索不明确的结论;或去探索存在的各种可能性以及发现所形成的客观规律.规律探索题是指在一定条件下,需要探索发现有关数学对象所具有的规律性或不变性的题目,要解答此类问题,首先要仔细阅读,弄清题意,并从阅读过程中找出其规律,然后进一步利用规律进行计算.【例11】(1)观察下列各式:由22×52=4×25=100,(2×5)2=102=100,可得22×52=(2×5)2;由23×53=8×125=1 000,(2×5)3=103=1 000,可得23×53=(2×5)3;….请你再写出两个类似的式子,你从中发现了什么规律?(2)x2表示两个x相乘,(x2)3表示3个__________相乘,因此(x2)3=__________,由此类推得(x m)n=__________.利用你发现的规律计算:①(x3)15;②(x3)6;③[(2a-b)3]8.解:(1)如:34×54=(3×5)4,45×55=(4×5)5,等等.规律:a n·b n=(ab)n,即两数n次幂的积等于这两个数的积的n次幂.(2)x2x2×3=x6x mn①(x3)15=x45;②(x3)6=x18;③[(2a-b)3]8=(2a-b)24.。