热电偶常见故障分析及解决方案
热电偶常见故障原因及其处理方法

紧固热电偶,消除震动或采取减震措施
热电极将断未断
修复或更换热电偶
外界干扰(交流漏电,电磁场感应等) 查出干扰源,采用屏蔽措施
4.热电偶热电势误差大
可能原因
处理方法
热电极变质
更换热电极
热电偶安装位置不当 改变安装位置
保护管表面积灰
清除积灰
热电偶在使用中的产生误差的主要原因
• 1、安装不当引入的误差
在长度允许的发问下,剪去变质段重新焊接, 或更换新热电偶
重新接正确
补偿导线与热电偶不配套
更换相配套的补偿导线
热电偶安装位置不对或插入深度 重新按规定安装 不符合要求
热电偶冷端温度补偿不符合要求 调整冷端补偿器
热电偶与显示仪表不配套
更换热电偶或显示仪表使之相配套
2.热电势比实际值大(显示仪表指示值偏高)
• 如热电偶安装的位置及插入深度不能反映炉膛的真实温度 等,换句话说,热电偶不应装在太靠近门和加热的地方, 插入的深度至少应为保护管直径的8~10倍;热电偶的保 护套管与壁间的间隔未填绝热物质致使炉内热溢出或冷空 气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火 泥或石棉绳等绝热物质堵塞以免冷热空气对流而影响测温 的准确性;热电偶冷端太靠近炉体使温度超过100℃;热 电偶的安装应尽可能避开强磁场和强电场,所以不应把热 电偶和动力电缆线装在同一根导管内以免引入干扰造成误 差;热电偶不能安装在被测介质很少流动的区域内,当用 热电偶测量管内气体温度时,必须使热电偶逆着流速方向 安装,而且充分与气体接触。
可能原因
处理方法
热电偶与显示仪表不配套
更换热电偶或显示仪表使之相配套
补偿导线与热电偶不配套
更换补偿导线使之相配套
热电偶常见故障原因及其处理方法

• 2、绝缘变差而引入的误差 • 如热电偶绝缘了,保护管和拉线板污垢或 盐渣过多致使热电偶极间与炉壁间绝缘不 良,在高温下更为严重,这不仅会引起热 电势的损耗而且由于热电偶的热惰性使仪表的指示值落后于被测温度的变 化,在进行快速测量时这种影响尤为突出。所以应尽可能 采用热电极较细、保护管直径较小的热电偶。测温环境许 可时,甚至可将保护管取去。由于存在测量滞后,用热电 偶检测出的温度波动的振幅较炉温波动的振幅小。测量滞 后越大,热电偶波动的振幅就越小,与实际炉温的差别也 就越大。当用时间常数大的热电偶测温或控温时,仪表显 示的温度虽然波动很小,但实际炉温的波动可能很大。为 了准确的测量温度,应当选择时间常数小的热电偶。时间 常数与传热系数成反比,与热电偶热端的直径、材料的密 度及比热成正比,如要减小时间常数,除增加传热系数以 外,最有效的办法是尽量减小热端的尺寸。使用中,通常 采用导热性能好的材料,管壁薄、内径小的保护套管。在 较精密的温度测量中,使用无保护套管的裸丝热电偶,但 热电偶容易损坏,应及时校正及更换。
热电偶常见故障原因及其处理 方法
1.热电势比实际值小(显示仪表指示值偏低)
可能原因
热电极短路
处理方法
找出短路原因,如因潮湿所致,则需进行干 燥;如因绝缘子损坏所致,则需更换绝缘子
热电偶的接线柱处积灰,造成短 清扫积灰 路 补偿导线线间短路 热电偶热电极变质 补偿导线与热电偶极性接反 补偿导线与热电偶不配套 找出短路点,加强绝缘或更换补偿导线 在长度允许的发问下,剪去变质段重新焊接, 或更换新热电偶 重新接正确 更换相配套的补偿导线
3.热势输出不稳定
外界干扰(交流漏电,电磁场感应等) 查出干扰源,采用屏蔽措施
4.热电偶热电势误差大
可能原因 热电极变质 热电偶安装位置不当 保护管表面积灰 处理方法 更换热电极 改变安装位置 清除积灰
热电偶故障分析及处理方法

有干扰信号进入
检查排除干扰源
热电偶参考端温度偏高(测负温时)
调整参考温度或进行修正
测量仪表指示值不稳定
热电极在接线柱处接触不良
重新接好
热电偶有断续短路或接地现象
将热电偶的热电极从保护套管中取出,找出故障点并予以消除
热电偶电极似断非断
更换新电极
热电偶安装不牢固,发生摆动
安装牢固
补偿导线有接地断续短路现象
找出故障点并予以消除
热电偶电势误差大
热电极变质
更换热电极
热电偶的安装位置与安装方法不当
改变安装位置与安装方法
热电偶的保护套管的表面积垢过多
进行清理
测量线路(热电偶和补偿导线)短路
将短路处重新进行绝缘处理
热电偶回路断线
找到断线处,并重新连接
接线柱松动
拧紧接线柱
热电偶故障分析及处理方法
故障现象
原因分析
检修方法
热电势比实际值小(显示仪表指示偏低)
电偶内部电极漏电(短路)
经检查若是由于潮湿所引起,则可将热电偶烘干,若是由于瓷管绝缘不良,则应予以更新
热电偶内部潮湿
将热电偶保护套管和热电偶分别烘干,并检查保护套管是否有漏气、漏水现象、对不合格的保护套管应予以更新
热电偶接线盒内接线柱间短路
热电偶型号与二次仪表型号不一致
更改成同类型的
热电势比实际值大(显示仪表偏高)
热电偶的型号与二次仪表型号不符合
更换成同类型的
补偿导线型号与热电偶型号不符合
更换成同类型的
热电极变质
更换热电偶
热电偶安装方法.位置或插入深度不当
按规定要求重新安装
绝缘破坏造成外电源进入热电偶回路
热电偶故障原因和处理方法

热电偶故障原因和处理方法
热电偶是一种常见的温度测量设备,但是由于使用或其他原因,可能会出现故障。
本文将介绍一些热电偶故障的原因和处理方法。
1. 热电偶接触不良:当热电偶与测量物体的接触不良时,会导致温度测量不准确或完全无法测量。
可通过检查接触处的连接器、清洁热电偶头和测量物体表面、调整接触紧密度等方法来解决。
2. 热电偶电缆损坏:由于电缆长期使用或错误使用,可能会导致电缆损坏,影响温度测量准确性。
解决方法是更换电缆或维修其损坏的部分。
3. 热电偶磨损:由于热电偶长期使用,可能会磨损,影响测量准确性。
解决方法是更换热电偶头。
4. 热电偶腐蚀:某些高温、腐蚀性物质会导致热电偶腐蚀,影响温度测量准确性。
可通过更改材料、涂覆保护层等方法来解决。
5. 热电偶线路故障:当热电偶线路出现故障时,温度测量将无法工作。
解决方法是检查线路连接情况,更换故障部件。
综上所述,以上是热电偶故障的一些原因和处理方法。
对于保障温度测量准确性,维护热电偶的正常工作非常重要。
- 1 -。
热电偶故障原因和处理方法

热电偶故障原因和处理方法
热电偶是一种常见的温度测量仪器,但是在使用过程中可能会出现故障。
常见的热电偶故障原因包括以下几点:
1. 热电偶接口处松动或接触不良:热电偶接口处如果松动或接触不良,就会导致测量结果不准确或者无法测量。
此时需要检查接口处是否紧固或者更换热电偶。
2. 线路故障:线路故障可以导致电压或电流异常,从而影响热电偶的测量结果。
此时需要检查线路是否有故障,如有需要修复或更换。
3. 热电偶被污染:如果热电偶被污染,比如被油脂、灰尘等覆盖,就会影响测量准确度。
此时需要清洗热电偶。
4. 热电偶老化:热电偶在使用一段时间后会出现老化现象,导致测量结果不准确。
此时需要更换热电偶。
针对以上几种故障原因,可以采取以下处理方法:
1. 热电偶接口处松动或接触不良时,可以检查接口处是否有松动或者更换热电偶。
2. 线路故障时,需要检查线路是否有故障,如有需要修复或更换。
3. 热电偶被污染时,需要清洗热电偶。
4. 热电偶老化时,需要更换热电偶。
总之,及时检查和维护热电偶是保证其正常工作的重要措施。
- 1 -。
热电偶测温系统中常见故障处理方法

热电偶测温系统中常见故障处理方法一、热电偶组成热电偶是工业上最常用的测温元件,它是由两种不同的导体或半导体一端焊接或绞接而成。
焊接的一端插入被测介质中感受被测温度,称为热电偶的工作端,又称测量端,热端;另一端与导线相连,称为自由端,又称为参考端,冷端。
热电偶基本结构由热电极、绝缘套管、保护套管和接线盒组成。
热电偶在长期使用过程中,其热电极会与周围介质作用发生物理或化学变化,或由于机械作用,产生局部应力(指结构部件承受压力和受载后在局部应力增高区域内考察点的总压力),使热电偶的热电特性发生变化,造成误差。
因此热电偶经过使用后,应该从外观鉴别其随坏程度,如损坏严重应予以报废,热电偶的损坏程度和鉴别方法如表1。
二、仪表故障分析流程热电偶测温系统,如果发生故障,分析流程如下:(1)先观察后动手。
当显示仪表失灵时,不要急于动手,可先观察一下仪表示数或者记录曲线的变化趋势。
若指针缓缓到达终点,一般是工艺原因造成;若指针突然跑到终点,一般是感温元件或者二次仪表发生故障。
在基本确定是仪表故障后,即可开始动手。
(2)先外部后内部。
故障究竟是发生在二次仪表的内部还是外部,一般的检查方法是先外部后内部,即先排除仪表接线端子以外的故障,然后再处理仪表内部故障。
另外还可以从二次表背部端子处加信号检查或用备用机芯换上试一试。
可根据生产现场条件用多种方法迅速区分内部还是外部毛病。
(3)先机械后线路。
在生产中发现,一台仪表机械部分故障的可能性比线路(电、气信号传递放大回路)部分多得多,且机械性故障比较直观,也容易发现。
所以在确定是仪表内部故障需检查元件时,应先检查机械部分,后查线路部分。
机械部分重点查有无断线、松动、接触不良等;线路部分重点查放大器。
(4)先整体后局部。
在排除机械故障的可能性后,就要检查整个电、气放大传递放大回路。
因线路部分由输入、比较、变换、放大、输出、驱动等多级组成。
所以首先要综观整台表的现象,大致估计问题出在哪一部分。
热电偶常见故障原因及对策分析

热电偶常见故障原因及对策分析[典型故障1] S型铂铑热电偶使用温度1100-1150℃,使用寿命1个月,断线。
[检查与分析] 在测量端附近,因绝缘管与偶丝扭曲而断线。
[产生原因] 因绝缘管过度振动,结果对偶丝施加扭曲力而断线。
[对策] 在绝缘管上加工凹槽,让贵金属热电偶偶丝焊接端缩入绝缘管内,抑制振动发生。
[典型故障2] 6芯R型石英保护管热电偶在1200-1250℃温度下断续使用,使用2个月后一支断裂。
[检查与分析] 测量端断线,发现偶丝有明显损伤及机械作用痕迹。
[产生原因] 当热电偶与绝缘物反复热膨胀、收缩时,对偶丝施加作用力,及石英管与Al2O3绝缘物的热膨胀、收缩不同,相互摩擦作用很大,使偶丝受压力等机械作用。
[对策] 将Al2O3绝缘物换成石英绝缘物,或者将石英管换成Al2O3管,使二者热膨胀系数一致。
[典型故障3] R型热电偶(双层保护管、外层金属保护管、内层刚玉保护管)使用3个月后,热电动势显著降低。
[产生原因] 昌晖仪表质检部用X射线检查发现陶瓷保护管破损,热电偶已经劣化[检查与分析] 因陶瓷保护管破损,致使热电偶丝受金属管保护管的金属蒸汽污染,特别是铁的影响尤为显著。
[对策] 安装时务请注意,防止陶瓷管破损。
[典型故障4] R型热电偶(双层保护管、外层金属保护管、内层刚玉保护管)在400-1500℃的热循环条件下使用1-3个月后,随着接线板破损而断线[检查与分析] 在双层保护管开口部位,有内层陶瓷保护管顶出,经昌晖仪表X射线检查分析,发现在外层金属保护管底部有大量氧化物堆积。
[产生原因] 在热循环条件下,外金属管内壁因显著氧化而剥离,沉积在管底部,堆积在陶瓷和金属管端部间隙内,当降温时,伴随外管收缩,使中间的堆积氧化物将内管向上推,碰到接线板,使其破损。
[对策] 在双层管的开口端,将其内外层间隙密封,抑制金属管内壁氧化。
[典型故障5] K型装配式热电偶使用温度900℃,使用时间20天产生-11℃误差。
热电偶常见故障及处理方法

煅烧车间及焙烧车间电偶常见故障及处理方法煅烧车间:一、煅烧炉首层、八层K型热电偶常见故障和处理方法:1、温度显示最大(1300℃以上)或显示“-OH-”,一般为热电偶接线端子处补偿导线脱落、电偶芯脱落或电偶损坏。
检查热电偶接线端子接线或更换热电偶。
2、温度显示最小(即700℃以下或室温),一般为电偶接线端子补偿导线短路、正负极接反或电偶损坏。
处理短路、检查正负极性或更换热电偶。
二、K型热电偶更换方法:1、K型热电偶更换时,须将窥管(测温部分)预热,即先将窥管伸入火道40-50cm左右,预热10-15分钟后,再次将窥管伸入40-50cm,预热5-8分钟后,即可全部伸入火道中,如未预热,将会发生炸管现象。
2、接线时,红色补偿导线接热电偶接线端子“+”处,黑色补偿导线接热电偶接线端子“-”处。
三、煅烧炉四层光电温度传感器常见故障和处理方法:1、光电温度传感器显示温度最大或最小,处理方法与K型热电偶相同。
2、温度不准,需要检查传感器光斑。
四、光电温度传感器更换方法:1、更换方法与K型热电偶更换方法相同,需要进行预热。
2、白线为正极,红线为负极,线接反则温度显示500-700℃左右。
3、更换完毕后温度如不准,则需效对光斑,通过传感器观察孔可看到红色圆形光圈和小黑点,小黑点在在光圈中间温度为最准确,如不在中间,则需将窥管锁母松开,旋转窥管进行调整,调整完毕后将锁母拧紧即可。
焙烧车间:一、燃烧架、排烟架N型热电偶常见故障和处理方法:1、温度显示最大(1300℃以上),一般为补偿导线或电偶损坏,更换补偿导线或热电偶。
2、温度显示最小(即室温),一般为补偿导线烧损短路或热电偶短路,处理短路点或更换补偿导线,如导线无问题,则需更换热电偶。
3、温度显示不稳定。
一般为补偿导线接地或热电偶端子处虚接,检查补偿导线有无破损与设备外壳搭接,紧固热电偶接线端子,如线路无问题,则需要更换热电偶。
4、无温度显示,一般为补偿导线断路或热电偶烧断,更换补偿导线或热电偶。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热电偶常见故障分析及解决方案热电阻和热电偶价格具体要看什么型号了,你要把你的型号,长度,相关规格,数量,具体说出来比方说pt100 230的350长的铂电阻价格出厂价60元左右如果是快速热电偶的话ks kb的热电偶价格一般在4--5元一支,kw的价格2元左右一米长的普通k型热电偶价格130 的80元左右,如果带防暴的热电偶价格要200元左右,一体化电偶价格差不多200元左右一米长的耐磨热电偶,耐磨头300长的价格热电偶价格400元左右一米长铂铑热电偶,目前热电偶价格大概在2000--2500元左右,由于原材料价格变动,上面的热电偶价格也要随行就市,热电阻测-100---550 度左右,热电偶测0--1300,一般500度以下用热电阻,大于500度的用正确使用热电偶不但可以准确得到温度的数值,保证产品合格,而且还可节省热电偶的材料消耗,既节省资金又能保证产品质量。
如果安装不正确,会产生热导率和时间滞后等误差,它们是热电偶在使用中的主要误差。
1.安装不当引入的误差热电偶不应装在太靠近门和加热的地方,插入的深度至少应为保护管直径的8~10倍,安装的位置及插入深度不能反映炉膛的真实温度。
热电偶的保护套管与壁间的间隔未填绝热物质,致使炉内热溢出或冷空气侵入,因此热电偶保护管和炉壁孔之间的空隙应用耐火泥或石棉绳等绝热物质堵塞,以免冷热空气对流而影响测温的准确性。
热电偶的安装应尽可能避开强磁场和强电场,不应把热电偶和动力电缆线装在同一根导管内以免引入干扰造成误差。
热电偶不能安装在被测介质很少流动的区域内,当用热电偶测量管内气体温度时,必须使热电偶逆着流速方向安装,而且充分与气体接触。
2.绝缘变差而引入的误差如热电偶保护管和拉线板污垢或盐渣过多致使热电偶极间与炉壁间绝缘不良,在高温下更为严重,这不仅会引起热电势的损耗而且还会引入干扰,由此引起的误差有时可达上百度。
3.热惰性引入的误差由于热电偶的热惰性使仪表的指示值落后于被测温度的变化,在进行快速测量时这种影响尤为突出。
所以应尽可能采用热电极较细、保护管直径较小的热电偶。
测温环境许可时,甚至可将保护管取去。
由于存在测量滞后,用热电偶检测出的温度波动的振幅较炉温波动的振幅小。
测量滞后越大,热电偶波动的振幅就越小,与实际炉温的差别也就越大。
当用时间常数大的热电偶测温或控温时,仪表显示的温度虽然波动很小,但实际炉温的波动可能很大。
为了准确地测量温度,应当选择时间常数小的热电偶。
时间常数与传热系数成反比,与热电偶热端的直径、材料的密度及比热成正比,如要减小时间常数,除增加传热系数以外,最有效的办法是尽量减小热端的尺寸。
使用中,通常采用导热性能好的材料,管壁薄、内径小的保护套管。
在较精密的温度测量中,使用无保护套管的裸丝热电偶,但热电偶容易损坏,应及时校正及更换。
4.热阻误差高温时,如保护管上有一层煤灰,尘埃附在上面,则热阻增加,阻碍热的传导,这时温度示值比被测温度的真值低。
因此,应保持热电偶保护管外部的清洁,以减小误差。
一前言在现有的测温系统中,最常用的温度传感器热电偶,因其结构简单,往往被误认为“热电偶两根线,接上就完事”,其实并非如此。
热电偶结构虽然简单,但在使用中仍然会出现各种问题,如安装或使用方法不当,将会引起较大的测量误差,甚至检定合格的热电偶也会因操作不当,在使用时不合格,在渗碳等还原性气氛中,如果不注意,K型热电偶也会因选择性氧化而超差。
为提高测量精确度,减少测量误差,延长热电偶使用寿命,要求使用者不仅应具备仪表操作技能,还应具有物理、化学及材料等多方面知识。
作者根据多年实践,并参阅有关资料,在这里较详细地介绍热电偶的测量误差及其注意事项。
二测量误差的主要影响因素1. 插入深度的影响(1)测温点的选择热电偶安装位置,即测温点的选择是最重要的。
测温点的位置,对于生产工艺过程而言,一定要具有典型性、代表性,否则将失去测量与控制的意义。
(2)插入深度热电偶插入被测场所时,沿着传感器的长度方向将产生热流。
当环境温度低时就会有热损失,致使热电偶与被测对象的温度不一致而产生测温误差。
总之,由热传导而引起的误差,与插入深度有关。
而插入深度又与保护管材质有关。
金属保护管因其导热性能好,其插入深度应深一些(约为直径的15~20倍),陶瓷材料绝热性能好,可插入浅一些(约为直径的10~15倍)。
对于工程测温,其插入深度还与测量对象是静止或流动等状态有关,如流动的液体或高速气流温度的测量,将不受上述限制,插入可浅一些,具体数值应由实验确定。
2. 响应时间的影响接触法测温的基本原理是测温元件要与被测对象达到热平衡。
因此,在测温时需保持一定时间,才能使两者达到热平衡。
而保持时间的长短,同测温元件的热响应时间有关。
而热响应时间主要取决于传感器结构及测量条件,差别极大。
对于气体介质,尤其是静止气体,至少应保持30min以上才能达到平衡;对于液体而言,最快也要在5min以上。
对于温度不断变化的被测场所,尤其是瞬间变化过程,全过程仅1s,则要求传感器的响应时间在毫秒级。
因此,普通的温度传感器不仅跟不上被测对象的温度变化速度出现滞后,而且也会因达不到热平衡而产生测量误差。
最好选择响应快的传感器。
对热电偶而言除保护管影响外,热电偶的测量端直径也是其主要因素,即偶丝越细,测量端直径越小,其热响应时间越短。
测温元件热响应误差可通过下式确定。
Δθ=Δθ0exp(-t/t) (1)式中Δθ——在t时刻,测温元件引起的误差,K或℃Δθ0——“t=0”时刻,测温元件引起的误差,K或℃t——测量时间,sτ——时间常数,sε——自然对数的底(2.718)因此,当t=τ时,则Δθ=Δθ0/e即为0.368,如果当t=2τ时,则Δθ=Δθ0/e2即为0.135。
当被测对象温度以一定速度α(k/s或℃/s)上升或下降时,经过足够时间后,所产生的响应误差可用下式表示:Δθ∞=-ατ(2)式中Δθ∞—经过足够时间后,测温元件引起的误差由式(2)可以看出,响应误差与时间常数(τ)成正比。
为了提高检定效率许多企业采用自动检定装置,对入厂热电偶进行检定,但是,该装置也并非十分完善。
二汽变速箱厂热处理车间就发现如果在400℃点的恒温时间不够,达不到热平衡,就容易发生误判。
3. 热辐射的影响插入炉内用于测温的热电偶,将被高温物体发出的热辐射加热。
假定炉内气体是透明的,而且,热电偶与炉壁的温差较大时,将因能量交换而产生测温误差。
在单位时间内,两者交换的辐射能为P,可用下式表示:P=σε(Tw4-Tt4) (3)式中σ——斯忒藩—波尔兹常数ε——发射率Tt——热电偶的温度,KTw——炉壁的温度,K在单位时间内,热电偶同周围的气体(温度为T),通过对流及热传导也将发生热量交换的能量为P'P'=αA(T-Tt) (4)式中α——热导率A——热电偶的表面积在正常状态下,P=P',其误差为:Tt-T=σε(Tt4-Tw4)/ αA(5)对于单位面积而言其误差为Tt-T=σε(Tt4-Tw4)/ α (6)因此,为减少热辐射误差,应增大热传导,并使炉壁温度Tw尽可能接近热电偶温度Tt。
另外,在安装时还应注意:热电偶安装位置应尽可能避开从固体发出的热辐射,使其不能辐射到热电偶表面;热电偶最好带有热辐射遮蔽套。
4. 热阻抗增加的影响在高温下使用的热电偶,如果被测介质为气态,那么保护管表面沉积的灰尘等将烧熔在表面上,使保护管的热阻抗增大;如果被测介质是熔体,在使用过程中将有炉渣沉积,不仅增加了热电偶的响应时间,而且还使指示温度偏低。
因此,除了定期检定外,为了减少误差,经常抽检也是必要的。
例如,进口铜熔炼炉,不仅安装有连续测温热电偶,还配备消耗型热电偶测温装置,用于及时校准连续测温用热电偶的准确度。
三热电偶测温应注意的事项1. 热电偶丝不均质影响(1)热电偶材质本身不均质热电偶在计量室检定时,按规程要求,插入检定炉内的深度只有300mm。
因此每支热电偶的检定结果,确切地说只能体现或主要体现出从测量端开始300mm长偶丝的热电行为,然而当热电偶较长时,则大部分偶丝处于高温区,如果热电偶丝是均质的,那么依据均质回路定则,测量结果与长度无关。
然而,热电偶丝并非均质,尤其是廉金属热电偶丝其均质性较差,又处于具有温度梯度的场合,那么其局部将产生热电动势,该电动势称为寄生电势。
由寄生电势引起的误差称为不均质误差。
在现有贵金属、廉金属热电偶检定规程中,对热电偶的不均质尚未作出规定,只有在热电偶丝材标准中,对热电偶丝的不均匀性有一定要求。
对廉金属热电偶采用首尾检定法求出不均匀热电动势。
正规热电偶丝材生产厂,均按国家标准要求,生产出不均匀热电动势符合要求的产品。
(2)热电偶丝经使用后产生的不均质对于新制热电偶,即使是不均匀热电动势能满足要求,但是,反复加工、弯曲致使热电偶产生加工畸变,也将失去均质性;且使用中热电偶长期处于高温下也会因偶丝的劣化而引起热电动势变化,如插入工业炉中的热电偶,将沿偶丝长度方向发生劣化,并随温度增高,劣化增强,当劣化的部分处于具有温度梯度的场所,也将产生寄生电动势叠加在总热电动势中而出现测量误差。
作者在实践中发现有的热电偶经计量部门检定合格的产品(多为廉金属热电偶)到现场使用时却不合格,再返回到计量部门检定仍然合格,其中主要原因是偶丝不均质引起的。
生产热电偶的技术人员都切身体会到,热电偶的不合格率也随其长度的增加而增加,皆是受热电偶丝材不均质的影响。
总之,由不均质即寄生电动势引起的误差,取决于热电偶丝自身的不均质程度及温度梯度的大小,对其定量极其困难。
2. 铠装热电偶的分流误差(1)分流误差瓦轴集团渗碳炉用铠装热电偶,仅使用一周就不准了。
为探讨原因,作者曾到现场考察,并未发现异常,且从炉子上取下来经计量室检定结果合格。
那么问题何在呢?最后,根据该支热电偶的现场安装特点,经研究发现,上述问题是铠装热电偶的分流误差造成的。
所谓分流误差即用铠装热电偶测量炉温时,当热电偶中间部位有超过800℃的温度分布存在时,因其绝缘电阻下降,热电偶示值出现异常现象。
依据均质回路定则,用热电偶测温只与测量端与参考端两端温度有关,与中间温度分布无关。
但因铠装热电偶绝缘物是粉末状MgO,温度每升高100℃,其绝缘电阻下降一个数量级,当中间部位温度较高时,必定有漏电流产生,使在热电偶输出电势中有分流误差出现。
(2)分流误差产生的条件将铠装热电偶水平插入炉内,其规格及实验条件为:直径Φ4.8mm,长度为25m,中间部位加热带的长度为20m,温度为1000℃。
本次实验中,热电偶的测量端与中间部位温差为200℃。
如果测量端温度高于中间部位,则产生负误差;相反,则产生正误差。
如果两者的温差为200℃,那么,分流误差约为100℃。