概率论与数理统计期末考试之置信区间与拒绝域(含答案)
概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。
因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。
解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。
概率论与数理统计期末考题(有答案)

概率统计期末统考试题答案考试日期1.(15分)已知)3,1(~2N X , ),4,0(~2N Y 且X 与Y 的相关系数.21-=XY ρ设,23Y X Z -= 求)(Z D 及.XZ ρ解因,3)(2=X D ,4)(2=Y D 且XY Y D X D Y X ρ)()(),cov(=⎪⎭⎫⎝⎛-⨯⨯=2143,6-= ---3分所以⎪⎭⎫ ⎝⎛-=23)(Y X D Z D ⎪⎭⎫⎝⎛-+=2,3cov 2)(41)(91Y X Y D X D),cov(21312)(41)(91Y X Y D X D ⨯⨯-+=,7= ---5分 又因⎪⎭⎫ ⎝⎛-=23,cov ),cov(Y X X Z X ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=2,cov 3,cov Y X X X),cov(21),cov(31Y X Y X -=,6),cov(21)(31=-=Y X X D ---4分 故 .772736)()(),cov(=⋅==Z D X D Z X XZ ρ ---3分 2.(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤.解 根据中心极限定理有 ---4分(1430)P X ≤≤≈Φ-Φ ---5分 (2.5)( 1.5)=Φ-Φ-0.9938(1.5)10.99380.93321=+Φ-=+- ---6分 0.927=.3.(15分)设二维随机变量(,)X Y 联合密度函数为01,01(,)0x y y x p x y +<<<<⎧=⎨⎩其它,求X 与Y 的协方差及相关系数。
解由于 1+0-1()d 01()=(,)d 20X x y y x x p x p x y y ∞∞⎧+=+<<⎪=⎨⎪⎩⎰⎰其它; ---2分101117E ()d +23412X x x y =+==⎰, 12201115E ()d +24612X x x y =+==⎰,2225711D =E (E )()1212144X X X -=-=, ---5分 类似地有,711,12144EY DY ==---2分 11000<<10<<11E ()d d d ()d 3x y XY xy x y x y x xy x y y =+=+=⎰⎰⎰⎰ ---2分2171cov(,)=E E E ()312144X Y XY X Y -⋅=-=-, ---2分11441(,1114411X Y ρ-==-. ---2分4.(10分)在设计导弹发射装置时, 重要事情之一是研究弹着点偏离目标中心的距离的方差.对于一类导弹发射装置, 弹着点偏离目标中心的距离服从正态分布),(2σμN , 这里22100米=σ, 现在进行了25次发射试验, 用2S 记这25次试验中弹着点偏离目标中心的距离的样本方差. 试求2S 超过502米的概率.解根据抽样定理,有),1(~)1(222--n S n χσ于是 ---3分⎭⎬⎫⎩⎨⎧->-=>222250)1()1(}50{σσn S n P S P ⎭⎬⎫⎩⎨⎧⨯>=1005025)24(2χP ---4分 }12)24({2>=χP }401.12)24({2>>χP .975.0=(查表) ---3分于是我们可以以超过%5.97的概率断言, 2S 超过50 米2. ---1分5. (15分)设总体X 具有概率概率密度⎩⎨⎧≤>=--θθλθλθλx x e x f x ,0,),,()( 其中θλ,0>均为未知参数. n X X X ,,,21Λ是来自总体X 的样本, 求λθ,的矩估计量.解 ()1()d e d +x EX x f x x x x λθθλθλθλ+∞+∞---∞===⎰⎰,,; ---2分222()2211()d e d (+)+x EX x f x x x x λθθλθλθλλ+∞+∞---∞===⎰⎰,,, ---3分故由 2211111(+)+n i i X X n θθλλλ==+=∑, ---4分得到θλ,的矩估计量12211ˆˆ(X X)ni i X n θλ-=⎡⎤==-⎢⎥⎣⎦∑。
概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
概率论与数理统计(II)期末考试样卷2参考答案

命题人或命题小组负责人签名: 教研室(系)主任签名: 分院(部)领导签名:概率论与数理统计(II )期末考试样卷2参考答案注意:所有数据结果保留小数点后两位,本试卷可能用的数据如下:20.9750.9750.02520.9750.9750.95(1.5)0.933, 1.96,(24) 2.064,(2.10)0.98,(24)12.40,(24)39.36,(10) 2.23,(2,21) 3.47,U t t F χχΦ===Φ=====一、填空题( 每小题3分,共24分)1. 在总体~(5,16)X N 中随机地抽取一个容量为36的样本,则样本均值x 落在4与6之间的概率为 0.87 .2. 设1234,,,X X X X 是取自正态总体~(0,4)X N 的简单随机样本且()()221234234Y a X X b X X =-+-,则a = 0.05 ,b = 0.01 时,统计量Y 服从2χ分布。
3.设161,,x x 是来自(8,4)N 的样本,则(1)(5)P x >= 16(0.933) . 4.设1,,n X X 为来自(0,)(0)U θθ>的一个样本,11,ni ni X X ==∑则未知参数θ的矩估计量是 2X ,最大似然估计是 1max(,,)n X X .5.设总体分布为()P λ,则其费希尔信息量为 1λ .6.设1,,n X X 为来自2(,)N μσ的一个样本,欲使1ˆni i c X X σ==-∑为σ的无偏估计,则常数 c 7.由来自正态总体2~(,0.9),X N μ容量为9的简单随机样本,若得到样本均值0.5X =,则未知参数μ的置信度为0.95的置信区间为 [-0.088,1.088] 。
8.设1,,n X X 为来自2(,)N μσ的一个样本,22111()ni n i S X X -==-∑,其中参数2,μσ未知,要检验假设2200:H σσ=应用 2χ 检验法,检验的统计量是2201n S σ-() 。
《概率分析与数理统计》期末考试试题及解答(DOC)

《概率分析与数理统计》期末考试试题及
解答(DOC)
概率分析与数理统计期末考试试题及解答
选择题
1. 以下哪个选项不是概率的性质?
- A. 非负性
- B. 有界性
- C. 可加性
- D. 全备性
答案:B. 有界性
2. 离散随机变量的概率分布可以通过哪个方法来表示?
- A. 概率分布函数
- B. 累积分布函数
- C. 概率密度函数
- D. 方差公式
答案:B. 累积分布函数
计算题
3. 一批产品有10% 的不合格品。
从该批产品中随机抽查5个,计算至少有一个不合格品的概率。
解答:
设事件 A 为至少有一个不合格品的概率,事件 A 的对立事件
为没有不合格品的概率。
不合格品的概率为 0.1,合格品的概率为 0.9。
则没有不合格品的概率为 (0.9)^5。
至少有一个不合格品的概率为 1 - (0.9)^5,约为 0.409。
4. 一个骰子投掷两次,计算至少一次出现的点数大于3的概率。
解答:
设事件 A 为至少一次出现的点数大于3的概率,事件 A 的对立事件为两次投掷点数都小于等于3的概率。
一个骰子点数大于3的概率为 3/6 = 1/2。
两次投掷点数都小于等于3的概率为 (1/2)^2 = 1/4。
至少一次出现的点数大于3的概率为 1 - 1/4,约为 0.75。
以上是《概率分析与数理统计》期末考试的部分试题及解答。
希望对你有帮助!。
2《概率论与数理统计》期末考试_[B]答案
![2《概率论与数理统计》期末考试_[B]答案](https://img.taocdn.com/s3/m/465fcda13968011ca2009107.png)
华中农业大学本科课程期末考试试卷B 卷答案考试课程:概率论与数理统计 学年学期: 考试日期:一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其字母代号写在该题【 】内。
答案错选或未选者,该题不得分。
每小题2分,共10分。
) 1. 设A 和B 是任意两个概率不为0的互不相容事件,则下列结论中肯定正确的是 【(d)】.(a) A 与B 不相容; (b) A 与B 相容; (c) P(AB)=P(A)P(B); (d) P(AB)=P(A). 2. 设随机变量序列X 服从N(,16), Y 服从 N(,25),记p 1=P{X<-4},p 2=P{X>+5},则下列结论正确的是 【(a) 】 .(a)对任何实数,都有p 1= p 2; (b) 对任何实数,都有p 1< p 2; (c) 对个别实数,才有p 1= p 2; (d) 对任何实数,都有p 1> p 2.3. 设总体X 服从正态分布),(N 2σμ,其中μ未知,2σ已知,321X ,X ,X 是总体X 的 一个简单随机样本,则下列表达式中不是统计量的是 【(d )】 . (a )321X X X ++; (b ))X ,X ,X min(321; (c )∑=σ31i 22i X ; (d )μ+2X .4.在线性回归分析中,以下命题中,错误的是 【(d )】 .(a )SSR 越大,SSE 越小; (b )SSE 越小,回归效果越好; (c )r 越大,回归效果越好; (d )r 越小,SSR 越大.5.设随机变量X~F(n,m),欲使P{1<X<2}=1,则2的值可为 【(d )】 ;1的值可为【(a )】 .(a )),(2m n F α; (b )),(2n m F α; (c )12),(-α⎥⎦⎤⎢⎣⎡m n F ;(d )12),(-α⎥⎦⎤⎢⎣⎡n m F ;二、填空题(将答案写在该题横线上。
概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案概率论与数理统计概率论试题一、填空题1.设 A、B、C是三个随机事件。
试用 A、B、C分别表示事件1)A、B、C 至少有一个发生 2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,。
则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A______________7. 已知随机变量X的密度为,且,则________________8. 设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+10有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y x , y 0 和 x 2 所围成,二维随机变量x,y在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x 1 处的值为。
15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,记YX1-2X2+3X3,则D(Y)19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或 ~ 。
特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于22.设是来自正态总体的样本,令则当时~。
23.设容量n 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值,样本方差24.设X1,X2,…Xn为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P A+B P A; (B)(C) (D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 (A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。
概率论与数理统计期末考试卷附答案

概率论与数理统计期末考试卷课程名称:概率论与数理统计考试时间1。
设,相互独立,则(1)至少出现一个的概率为_ __;(2)恰好出现一个的概率为_ _ _.2。
设,,,则__ ____。
3.设是相互独立的两个随机变量,它们的分布函数分别为,则的分布函数是。
4.若随机变量服从正态分布,是来自的一个样本,令,则服从分布。
则关于的回归函数 .二、单项选择题(每小题2分,共10分)1. 设函数在区间上等于,而在此区间外等于0,若可以做为某连续型随机变量的密度函数,则区间为()。
(A) ; (B) ;(C) ;(D)。
2. 假设随机变量的概率密度为,即,期望与方差都存在,样本取自,是样本均值,则有( )(A) ; (B) ;(C) ;(D) 。
3. 总体,已知,()时,才能使总体均值的置信度为的置信区间长不大于。
()(A);(B);(C); (D)。
4. 对回归方程的显著性的检验,通常采用3种方法,即相关系数检验法,检验法和检验法,下列说法正确的()。
(A)检验法最有效;(B)检验法最有效;(C) 3种方法是相通的,检验效果是相同的;(D) 检验法和检验法,可以代替相关系数的检验法。
5.设来自正态总体的样本(已知),令,并且满足(),则在检验水平下, 检验时,第一类和第二类错误的概率分别是()和( ).(A)当成立} ;(B)|当不成立};(C)当成立};(D) |当不成立}。
三、计算题(每小题10分,共20分)1。
设有甲、乙、丙三门炮,同时独立地向某目标射击命中率分别处为0.2、0.3、0。
5,目标被命中一发而被击毁的概率为0.2,被命中两发而被击毁的概率为0.6,被命中三发而被击毁的概率为0。
9,求:(1)三门火炮在一次射击中击毁目标的概率;(2)在目标被击毁的条件下,只由甲火炮击中的概率。
解:设事件分别表示甲、乙、丙三门炮击中目标,表示目标被击毁,表示有门炮同时击中目标(),由题设知事件相互独立,故,,;,,,(1)由全概率公式,得(2)由贝叶斯公式,得2.随机变量在区间上服从均匀分布,随机变量,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计期末置信区间问题八(1)、从某同类零件中抽取9件,测得其长度为( 单位:mm ): 6.0 5.7 5.8 6.5 7.0 6.3 5.6 6.1 5.0 设零件长度X 服从正态分布N (μ,1)。
求μ的置信度为0.95的置信区间。
0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知:解:由于零件的长度服从正态分布,所以~(0,1)x U N =0.025{||}0.95P U u <=所以μ的置信区间为0.0250.025(x u x u -+ 经计算 91916ii x x===∑μ的置信度为0.95的置信区间为 1133(6 1.96,6 1.96)-⨯+⨯ 即(5.347,6.653)八(2)、某车间生产滚珠,其直径X ~N (μ, 0.05),从某天的产品里随机抽出9个量得直径如下(单位:毫米 ):14.6 15.1 14.9 14.8 15.2 15.1 14.8 15.0 14.7若已知该天产品直径的方差不变,试找出平均直径μ的置信度为0.95的置信区间。
0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知:解:由于滚珠的直径X 服从正态分布,所以~(0,1)x U N =0.025{||}0.95P U u <=所以μ的置信区间为:0.0250.025(x u x u -+ 经计算 919114.911ii x x===∑μ的置信度为0.95的置信区间为(14.911 1.96 1.96-+ 即(14.765,15.057)八(3)、工厂生产一种零件,其口径X (单位:毫米)服从正态分布2(,)N μσ,现从某日生产的零件中随机抽出9个,分别测得其口径如下:14.6 14.7 15.1 14.9 14.8 15.0 15.1 15.2 14.7已知零件口径X 的标准差0.15σ=,求μ的置信度为0.95的置信区间。
0.050.050.025((9)=2.262, (8)=2.306, 1.960 )t t U =已知:解:由于零件的口径服从正态分布,所以~(0,1)x U N =0.025{||}0.95P U u <=所以μ的置信区间为:0.0250.025(x u x u -+ 经计算 919114.9ii x x===∑μ 的置信度为0.95的置信区间为 0.150.1533(14.9 1.96,14.9 1.96)-⨯+⨯ 即(14.802 ,14.998)八(4)、随机抽取某种炮弹9发做实验,测得炮口速度的样本标准差S =3(m/s),设炮口速度服从正态分布,求这种炮弹的炮口速度的方差2σ的置信度为0.95的置信区间。
22220.0250.9750.0250.975((8)17.535, (8) 2.18(9)19.02, (9) 2.7)χχχχ====已知:;因为炮口速度服从正态分布,所以222(1)~(1)n S W n χσ-=- 220.0250.975{(8)(8)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1),11n S n S n n χχ⎛⎫--⎪ ⎪--⎝⎭2σ的置信度0.95的置信区间为 8989,17.535 2.180⨯⨯⎛⎫⎪⎝⎭即()4.106,33.028八(5)、设某校女生的身高服从正态分布,今从该校某班中随机抽取9名女生,测得数据经计算如下:162.67, 4.20x cm s cm ==。
求该校女生身高方差2σ的置信度为0.95的置信区间。
22220.0250.9750.0250.975((8)17.535, (8) 2.18(9)19.02, (9) 2.7)χχχχ====已知:;解:因为学生身高服从正态分布,所以222(1)~(1)n S W n χσ-=- 220.0250.975{(8)(8)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1),11n S n S n n χχ⎛⎫-- ⎪ ⎪--⎝⎭2σ的置信度0.95的置信区间为 228 4.28 4.2,17.535 2.180⎛⎫⨯⨯ ⎪⎝⎭即()8.048,64.734八(6)、一批螺丝钉中,随机抽取9个, 测得数据经计算如下:16.10, 2.10x cm s cm ==。
设螺丝钉的长度服从正态分布,试求该批螺丝钉长度方差2σ的置信度为0.95的置信区间。
22220.0250.9750.0250.975((8)17.535, (8) 2.18(9)19.02, (9) 2.7)χχχχ====已知:;解:因为螺丝钉的长度服从正态分布,所以222(1)~(1)n S W n χσ-=- 220.0250.975{(8)(8)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1),11n S n S n n χχ⎛⎫--⎪ ⎪--⎝⎭2σ的置信度0.95的置信区间为 228 2.108 2.10,17.535 2.180⎛⎫⨯⨯ ⎪⎝⎭即()2.012,16.183八(7)、从水平锻造机的一大批产品随机地抽取20件,测得其尺寸 的平均值32.58x =,样本方差20.097S =。
假定该产品的尺寸X 服从正态分布2(,)N μσ,其中2σ与μ均未知。
求2σ的置信度为0.95的置信区间。
22220.0250.9750.0250.975((20)34.17, (20)9.591(19)32.852, (19)8.907)χχχχ====已知:;解:由于该产品的尺寸服从正态分布,所以222(1)~(1)n S W n χσ-=- 220.0250.975{(19)(19)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1),11n S n S n n χχ⎛⎫--⎪ ⎪--⎝⎭2σ的置信度0.95的置信区间为 190.097190.097,32.8528.907⨯⨯⎛⎫⎪⎝⎭即()0.056,0.207八(8)、已知某批铜丝的抗拉强度X 服从正态分布2(,)N μσ。
从中随机抽取9根,经计算得其标准差为8.069。
求2σ的置信度为0.95的置信区间。
(22220.0250.9750.0250.975(9)19.023, (9) 2.7(8)17.535, (8) 2.180χχχχ====已知:,) 解:由于抗拉强度服从正态分布所以,222(1)~(1)n S W n χσ-=- 220.0250.975{(8)(8)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1)(,)11n S n S n n χχ----2σ的置信度为0.95的置信区间为2288.06988.069,17.535 2.180⎛⎫⨯⨯ ⎪⎝⎭,即 ()29.705,238.931八(9)、设总体X ~2(,)N μσ,从中抽取容量为16的一个样本,样本方差20.07S =,试求总体方差的置信度为0.95的置信区间。
22220.0250.9750.0250.975((16)28.845, (16) 6.908(15)27.488, (15) 6.262)χχχχ====已知:;解:由于 X ~()2,N μσ,所以222(1)~(1)n S W n χσ-=- 220.0250.975{(15)(15)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1)(,)11n S n S n n χχ----2σ的置信度0.95的置信区间为 150.07150.07,27.4886.262⨯⨯⎛⎫⎪⎝⎭,即()0.038,0.168八(10)、某岩石密度的测量误差X 服从正态分布2(,)N μσ,取样本观测值16个,得样本方差20.04S =,试求2σ的置信度为95%的置信区间。
22220.0250.9750.0250.975((16)28.845, (16) 6.908(15)27.488, (15) 6.262)χχχχ====已知:;解:由于 X ~()2,N μσ,所以222(1)~(1)n S W n χσ-=- 220.0250.975{(15)(15)}0.95P W χχ≤≤=2σ的置信区间为:()()22220.0250.975(1)(1)(,)11n S n S n n χχ----2σ的置信度0.95的置信区间为:150.04150.04,27.488 6.262⨯⨯⎛⎫⎪⎝⎭即()0.022,0.096拒绝域问题九(1)、某厂生产铜丝,生产一向稳定,现从其产品中随机抽取10段检查其折断力,测得1021287.5, ()160.5i i x x x ==-=∑。
假定铜丝的折断力服从正态分布,问在显著水平0.1α=下,是否可以相信该厂生产的铜丝折断力的方差为16?22220.050.950.050.95((10)18.31, (10) 3.94; (9)16.9, (9) 3.33)χχχχ====已知:解:待检验的假设是 20:16H σ= 选择统计量 22(1)n S W σ-=在0H 成立时 2~(9)W χ220.050.95{(9)(9)}0.90P W χχ>>=取拒绝域w ={16.92, 3.33W W ><} 由样本数据知2(1)160.5n S -= 160.510.0316W == 16.9210.03 3.33>> 接受0H ,即可相信这批铜丝折断力的方差为16。
九(2)、已知某炼铁厂在生产正常的情况下,铁水含碳量X 服从正态分布,其方差为0.03。
在某段时间抽测了10炉铁水,测得铁水含碳量的样本方差为0.0375。
试问在显著水平0.05α=下,这段时间生产的铁水含碳量方差与正常情况下的方差有无显著差异?22220.0250.9750.0250.975((10)20.48, (10) 3.25, (9)19.02, (9) 2.7)χχχχ====已知:解:待检验的假设是 20:0.03H σ= 选择统计量 22(1)n S W σ-=在0H 成立时 2~(9)W χ220.0250.975{(9)(9)}0.95P W χχ>>=取拒绝域w ={19.023, 2.700W W ><}由样本数据知 22(1)90.037511.250.03n S W σ-⨯===19.02311.25 2.700>>接受0H ,即可相信这批铁水的含碳量与正常情况下的方差无显著差异。