概率论与数理统计_7.3置信区间
概率论与数理统计公式整理

概率论与数理统计公式整理在现代数学中,概率论与数理统计是两个重要的分支。
其中概率论是研究随机事件发生的可能性或概率的科学。
而数理统计则是利用概率论的方法,对已经发生的随机事件进行统计分析和推断。
本文将整理概率论与数理统计中常用的公式。
一、基本概率公式1.概率:$P(A)=\frac{n(A)}{n(S)}$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$所包含的基本事件的个数,$n(S)$表示所有基本事件的个数。
2.加法原理:$P(A\cup B)=P(A)+P(B)-P(A\cap B)$其中,$A$和$B$是两个事件,$A\cup B$表示事件$A$和事件$B$中至少有一个发生的概率,$A\cap B$表示两个事件同时发生的概率。
3.条件概率:$P(B|A)=\frac{P(A\cap B)}{P(A)}$其中,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
4.乘法定理:$P(A\cap B)=P(A)P(B|A)$其中,$P(A\cap B)$表示两个事件同时发生的概率,$P(B|A)$表示在事件$A$发生的条件下,事件$B$发生的概率。
二、概率分布1.离散随机变量的概率分布律:$\sum\limits_{i=1}^{+\infty}{p(x_i)}=1$其中,$p(x_i)$表示离散随机变量取值为$x_i$的概率。
2.连续随机变量的概率密度函数:$\int_{-\infty}^{+\infty}{f(x)}\mathrm{d}x=1$其中,$f(x)$表示连续随机变量在$x$处的概率密度。
3.数学期望:$E(x)=\sum\limits_{i=1}^{+\infty}{x_ip(x_i)}$或$E(x)=\int_{-\infty}^{+\infty}{xf(x)}\mathrm{d}x$其中,$E(x)$表示随机变量$x$的数学期望,$p(x_i)$表示$x_i$这一离散随机变量取到的带权概率。
概率论与数理统计复习7章

( n − 1) S 2 ( n − 1) S 2 = 1 − α 即P 2 <σ2 < 2 χα 2 ( n − 1) χ1−α 2 ( n − 1) ( n − 1) S 2 ( n − 1) S 2 置信区间为: 2 , χα 2 ( n − 1) χ12−α 2 ( n − 1)
则有:E ( X v ) = µv (θ1 , θ 2 ,⋯ , θ k ) 其v阶样本矩是:Av = 1 ∑ X iv n i =1
n
估计的未知参数,假定总体X 的k阶原点矩E ( X k ) 存在,
µ θ , θ ,⋯ , θ = A k 1 1 1 2 µ2 θ1, θ 2 ,⋯ , θ k = A2 用样本矩作为总体矩的估计,即令: ⋮ µ θ , θ ,⋯ , θ = A k k k 1 2 ɵ ɵ ˆ 解此方程即得 (θ1 , θ 2 ,⋯ , θ k )的一个矩估计量 θ 1 , θ 2 ,⋯ , θ k
+∞
−∞
xf ( x ) dx = ∫ θ x θ dx =
1 0
令E ( X ) = X ⇒
θ +1
θ
ˆ = X ⇒θ =
( )
X 1− X
θ +1
2
θ
7.2极大似然估计法
极大似然估计法: 设总体X 的概率密度为f ( x,θ ) (或分布率p( x,θ )),θ = (θ1 ,θ 2 ,⋯ ,θ k ) 为 未知参数,θ ∈ Θ, Θ为参数空间,即θ的取值范围。设 ( x1 , x2 ,⋯ , xn ) 是 样本 ( X 1 , X 2 ,⋯ , X n )的一个观察值:
i =1 n
概率论与数理统计智慧树知到课后章节答案2023年下安阳工学院

概率论与数理统计智慧树知到课后章节答案2023年下安阳工学院安阳工学院第一章测试1.当事件与同时发生时,事件必发生,则下列结论正确的是()A: B: C: D:答案:2.已知=()A:0.1 B:0.5 C:0.2 D:0.3答案:0.53.设事件与满足,则()A: B: C:是必然事件 D:答案:4.设是两个互斥事件,且则结论正确的是()A: B: C: D:答案:5.设三个事件两两独立,则相互独立的充要条件是()A: B: C: D:答案:6.关于独立性,下列说法错误的是()A:若相互独立,则相互独立 B:若相互独立,相互独立,相互独立,则相互独立C:若相互独立,则其中的任意事件仍然相互独立 D:若相互独立,则它们之中的任意多个事件换成其对立事件后仍然相互独立答案:若相互独立,相互独立,相互独立,则相互独立7.已知则下列结论正确的是()A:事件互斥 B:事件相互独立 C: D:答案:事件相互独立8.某人投篮命中率为,直到投中为止,则投篮次数为4的概率为()A: B: C: D:答案:9.从0—9中任意选取三个数字,能“组成只有两位数字相同的三位数”的个数是243个。
()A:错 B:对答案:对10.若事件满足相互独立关系,则。
()A:对 B:错答案:对第二章测试1.设随机变量服从参数为50和的二项分布,则近似服从参数为()的泊松分布。
A:10 B:1 C: D:50答案:12.设随机变量,则的概率密度()。
A: B: C: D:答案:3.设随机变量的概率密度为是的分布函数,则对任意实数,有()A: B: C: D:答案:4.设随机变量,则随着的增大,概率将会()A:单调增 B:不变 C:不能确定 D:单调减答案:不变5.,则()A:相互独立 B:对立 C: D:答案:6.设为连续随机变量,则 0。
()A:对 B:错答案:对7.A:对 B:错答案:错8.设为连续随机变量,则(其中为一实数)。
()A:错 B:对答案:对9.随机变量,且相互独立,则随机变量~。
概率论与数理统计 第七章2

P{θ1 ≤ θ ≤ θ 2 } ≥ 1 − α , (0 < α < 1)
称区间(θ1,θ 2 )为θ的置信水平为1 − α 该区间的置信区间 。
区间(θ1,θ2)是一个随机区间; α给出该区间含真 1− 值θ的可靠程度。α表示该区间不包含真值θ的可能性。
ch7-1 2
上海理工大学
University of Shanghai for Science and Technology
( X −u1−α
σ
2
n
,
X + u1−α
σ
2
n
)
可得所求的置信区间为
2 (12.35 ± 1.96 × ) = (12.35 ± 1.307) = (11.043,13.657) 9
ch7-1 8
上海理工大学
University of Shanghai for Science and Technology
上海理工大学
University of Shanghai for Science and Technology
College of Science
理学院
概率论与数理统计
区 间 估 计
ch7-1
1
上海理工大学
University of Shanghai for Science and Technology
1001,1004,1003,997,999,1000, , , , , , , 1004,1000,996, 1002,998,999. , , , , ,
求σ2的置信水平为 的置信水平为0.95的置信区间 的置信区间. 的置信区间 −α的置信区间如 解:本例中 µ未知, σ2的置信水平为 −α的置信区间如 本例中 未知, 的置信水平为1−α的置信区间如. (n −1)S2 (n −1)S2 2 , 2 χ1−α (n −1) χα (n −1) 其中n=12,计算得:(n−1)s2=11×6.932=76.25.又 计算得: − 其中 计算得 × 又 查自由度为11的 分布分位数表,得 α=1− 0.95=0.05, 查自由度为 的 χ 2分布分位数表 得 −
概率论与数理统计习题详解(周概容)——习题7解

—习题解答●7.1— 7.1 假设总体X服从参数为??的泊松分布,nXXX21??是来自总体X的简单随机样本,X是样本均值,2S是样本方差,对于任意实数??,证明12SXE是??的无偏估计量.熟知,对于任何总体,样本均值X是总体数学期望的无偏估计量,样本方差2S是总体方差的无偏估计量;对于泊松分布的总体,数学期望和方差都等于分布参数??,因此.11122SXSXEEE 7.2 设总体X服从参数为??的泊松分布;21nXXX??是来自X的简单随机样本,求2??的无偏估计量.熟知XXDE.设X为样本均值,则.,2222221nnXnXnXXXEEDE 由此可见2??的无偏估计量为.XnX12?? 7.3 设21mXXX??是来自正态总体2NX的简单随机样本,统计量1121niiiXXkD 是总体方差2??的无偏估计量,求常数k.由条件知:222XE.由于统计量D是总体方差2??的无偏估计量,则.22112221112211121122222 nkkXXXXkXXkDniniiiiiniiiEEE 由此可见121nk.7.4 总体2??aNX2??bNY;基于分别来自总体X和Y的两个相互独立的简单随机样本21mXXX??和21nYYY??,得样本均值X和Y及样本方差2xS和2yS;证明总体X和Y的联合样本方差1121222yxxySnSmnmS 是总体X和Y的共同方差2??的无偏估计量,并且计算其方差.熟知,对于任意总体,样本方差2xS和2yS都是2??的无偏估计量,可见22221121yxxySnSmnmSE,—习题解答●7.2—即联合样本方差2xyS是2??的无偏估计量.由正态总体的抽样分布,知2222 xySnm?? 服从自由度为2 nm=??的2??分布;而自由度为??的2??变量的方差等于2??:事实上,设??UUU21??是独立标准正态分布随机变量,则服从自由度为??的2??分布的随机变量X可以表示为:22221??UUUX.由于10NUi,可见21102iUUUiiiEDE;.33de23e21de2122223244222 iuuuiUuuuuuUEE ??????.由此可见21UXEE.因此.22222222422222222 nmnmnmnmSnmnmSxyxy????????????DDD2 7.5 设总体X 服从参数为pm的二项分布,其中m已知;21nXXX??是来自X的简单随机样本,1 求未知参数p的最大似然估计量;2 证明所得估计量是无偏的.1 总体X的概率函数可以表示为.,若不然;,若;0 10 1Cmxpppxpxmxxm?? 参数p的似然函数为XnmnXnniXmniipppXppLi1C11;,其中X为样本均值.对数似然方程为0111ln1lnlnClnln1pXnmnpXnppLpXnm npXnpLniXmi;其解mXp即未知参数p的最大似然估计量.2 由于总体X的数学期望为mp,而对于任何总体X,样本均值X是其数学期望的无偏估计量,可见X 是mp的无偏估计量,从而mXp是未知参数p的无偏估计量.—习题解答●7.3—7.6 设总体X服从区间0??上的均匀分布,21nXXX??是来自X的简单随机样本,1 求未知参数??的最大似然估计量;2 假如所得估计量是有偏估计量,将其修正为无偏估计量. 1 总体X的概率密度函数为.,若不然;,若;001xxf 未知参数??的似然函数为,若不然.;,若;0 0111nnniiXXXfL?? 易见,似然函数??L无驻点.需要直接求??L的最大值点,记nnXXXXmax21;由于nX,且??L随??减小而增大,所以当??nX 时??L达到最大值,故??nX就是未知参数??的最大似然估计量.2 现在验证估计量??nX的无偏性.为此,首先求??nX的概率分布.总体X的分布函数为.,若,,若,若 1 0 0 0 xxxxxF 由于nXXX21??独立同分布,可见??nX的分布函数为,11nnnnnxFxXxXxXxXxXxFPPPP???? 其概率密度为.,若不然,,若0 0dd11xnxxFxFnxFxxfnnnnn 因此,有1dd01??nnxnxxxxxfXnnnnE.这样,??nX是??的有偏估计量.容易验证,??的无偏估计量为1nXnn??.7.7 已知随机变量X的概率密度为若不然.若0 101xxxf 试根据来自X的简单随机样本21nXXX??,求未知参数??的最大似然估计量.—习题解答●7.4—未知参数??的似然函数和对数似然函数为.;;10ln1lnln21n1112111niinnniiXXXXnLXXXXfL??????????由此,得似然方程n1 0lnlniiXnL;其惟一解是niinXnXXn11lnln??????.于是,就是未知参数??的最大似然估计量.7.8 设ugt??是严格单调函数且有惟一反函数.证明,若是未知参数??的最大似然估计量,则gtgT????是的最大似然估计量.设??L是未知参数??的似然函数.记th是??gt??的惟一反函数,则??LthL??.设D是函数??gt??的值域,由“是未知参数??的最大似然估计量”,可见maxmax??thLLLThLDt,即gT??是??gt??的最大似然估计量.7.9 设21nXXX??是来自总体X的简单随机样本,总体X的概率密度为:;,,,若若xxxfx0e 试求未知参数??的最大似然估计量1和矩估计量2. 1 参数??的似然函数为.nXniXniiniiiXfL??1ee11 由此可见,其似然方程无解,需要直接求其似然函数,,,若不然若0 exp211nniiXXXnXL?? 的最大值.当nXXX21??时0L,而当nXXX21??,即nXXXmin21??时??L随??的增大而增大,可见当nXXXmin21??时??L达到最大值.参数??的最大似然估计量为nXXXmin??211??.—习题解答●7.5— 2 求参数??的矩估计量.总体X 的数学期望为:.1edeeded xxxxxxxxxxxfXE 用样本均值X估计XE:1??2X,可得参数??的矩估计量为1??2??X=??.7.10设每次射击的命中率为p.接连不断独立地进行射击直到命中目标为止,nkkk21??是n轮射击各轮实际射击的次数,求命中率p 的最大似然估计量和矩估计量.1 设X表示实际射击的次数,则X服从参数为p的几何分布,而nkkk21??是来自总体X的简单随机样本.总体X的概率函数为2111xpppxpx.命中率p的似然函数为.,1lnlnln1111111pnkpnpLpppppkppLniininknkniiniii将该式两侧对p求导数并令其等于0,得似然方程:.011dlnd1pnkpnppLnii 其惟一解niiknp1 ?? 就是命中率p的最大似然估计量. 2 设X是实际射击的次数,而nkkk21??是来自总体X的简单随机样本,则样本均值为pXknXnii111E,.于是,由pX??1 ??,得未知参数p的矩估计量niiknXp1 1??.7.11 设来自总体X的简单随机样本21nXXX??,总体X的概率分布为22112321????????X,其中0lt??lt1.试求—习题解答●7.6—1 未知参数??的最大似然估计量1;2 未知参数??的矩估计量2;3 当样本值为(112132)时的最大似然估计值1和矩估计值2. 1 求参数??的最大似然估计量.分别以2121n和表示21nXXX?? 中1,2和3出现的次数,则似然函数和似然方程为.,,01222dlnd1ln22ln22lnln1211221212121222222212122121 nLnLLnn 似然方程的惟一解就是参数??的最大似然估计量:n22??211.2 求参数??的矩估计量.总体X的数学期望为221314XE.在上式中用样本均值X估计数学期望XE,可得??的矩估计量:321??2X. 3 对于样本值(112132),由上面得到的一般公式,可得最大似然估计值;321223222??211n?????? 矩估计值326523321??2X??.7.12 设随机变量X的分布函数为.,若,,若=1 0 111xxxxF 其中参数1.设nXXX21??为来自总体X的简单随机样本,求 1 未知参数??的矩估计量;2 未知参数??的最大似然估计量.由条件知随机变量X的概率密度为.,若,,若1 0 11xxxxf 1 X的数学期望为1d11xxxXE.用样本均值X估计XE得—习题解答●7.7— 1X,1XX?? 就是未知参数??的矩估计量.2 未知参数??的似然函数和对数似然函数为;,,,若不然;若ininnnniiXnLXXXXXXXfL1211211ln1lnln 01 似然方程为0lndlnd1niiXnL??????,其唯一解niiXn1ln???? 就是未知参数??的最大似然估计量.7.13 设随机变量X的分布函数为.,,,=xxxxF 0 122 其中0.设nXXX21??为来自总体X的简单随机样本,求未知参数??的最大似然估计量.由条件知随机变量X的概率密度为.,若,,若xxxxf 0 232 未知参数??的似然函数为.若若,,,nnnnnniiXXXXXXXXXXfL ***********??????似然函数??L显然无驻点,需要直接求其最大值点.由??L值随??增大而增大,可见??L的最大值点为nXXXmin??21??.于是nXXXmin??21??就是未知参数??的最大似然估计量.7.14 为观察一种橡胶制品的耐磨性,从这种产品中各随意抽取了5件,测得如下数据:—习题解答●7.8— 185.82,175.10,217.30,213.86,198.40.假设产品的耐磨性2NX,求2和的无偏估计值.样本容量n5.经计算,得样本均值X198.10,样本方差23.3240063.1822S.于是??的无偏估计值;10.198X?? 23.3242??S是2??的无偏估计.7.15 对某种袋装食品的质量管理标准规定:每袋平均重500克,标准差10克.现在从一商店的一批这种袋装食品中随意抽取了14袋,测量每袋的重量,得如下数据:500.90,490.01,501.63,500.73,515.87,511.85,498.39,514.23,487.96,525.01,509.37,509.43,488.46,497.15.假设这种袋装食品每袋的重量X服从正态分布2N.试利用??和??的0.95置信区间,说明抽查结果是否表明这一批袋装食品每袋平均重??和标准差??符合标准.经计算样本均值,64.503??X样本标准差11.11??S正态总体的数学期望??的1置信区间的一般形式为:XX,其中??的表达式区分202已知和2??未知两种情形:未知,若,已知,若 1 00nStnun 其中??u是标准正态分布水平??双侧分位数(附表3),1??nt??是自由度为1n??的t分布水平??双侧分位数(附表4)。
7.4单正态总体下未知参数的置信区间 课件- 《概率论与数理统计(第2版)》同步教学(人民邮电版)

2 的无偏估计为 ˆ 2
1 n
n i 1
X
2 i
2 ,
取 a b 满足
G ˆ 2, 2
1
2
n
(Xi
i 1
)2
~
2 n
P
a
1
2
n
(Xi
i1
)2
b
1
二、方差的置信区间
取
a
2 2
n,b
2 12
n
此时,对应的 2 的双侧1 置信区间为:
n
X
i
2
n
X
i
2
i1
, i1
.
第7章 参数估计
1
07
参数估计
目录/Contents
第7章 参数估计
2
7.1 点估计
7.2 点估计的良好性评判标准
7.3 置信区间
7.4 单正态总体下未知参数的置信区间
7.5
两个正态总体下未知参数的置信区间
目录/Contents
第7章 参数估计
3
7.4 单正态总体下未知参数的置信区间
一、均值的置信区间 二、方差的置信区间
故 的双侧 0.95 置信区间的观测值为[1485.69,1514.31] .
二、方差的置信区间
第7章 参数估计
12
1
期望 已知, 方差 2的双侧置信区间;
2
期望 未知, 方差 2的双侧置信区间.
二、方差的置信区间
第7章 参数估计
13
(1)期望 已知, 方差 2 的双侧置信区间
当 已知时,
0.95 的双侧置信区间.
解 由题设条件知 n 10, 0.05, x 1500, s 20, 查表得
概率论与数理统计教案随机事件与概率

概率论与数理统计教案-随机事件与概率一、教学目标1. 理解随机事件的定义及其分类。
2. 掌握概率的基本性质和计算方法。
3. 能够运用概率论解决实际问题。
二、教学内容1. 随机事件的定义与分类1.1 随机事件的定义1.2 随机事件的分类1.3 事件的运算2. 概率的基本性质2.1 概率的定义2.2 概率的取值范围2.3 概率的基本性质3. 概率的计算方法3.1 古典概型3.2 条件概率3.3 独立事件的概率3.4 互斥事件的概率4. 随机事件的排列与组合4.1 排列的定义与计算4.2 组合的定义与计算5. 概率论在实际问题中的应用5.1 概率论在社会科学中的应用5.2 概率论在自然科学中的应用三、教学方法1. 讲授法:讲解随机事件的定义、分类及概率的基本性质。
2. 案例分析法:分析实际问题,引导学生运用概率论解决。
3. 互动教学法:提问、讨论,提高学生对知识点的理解和掌握。
四、教学准备1. 教案、教材、课件等教学资源。
2. 计算器、黑板、粉笔等教学工具。
3. 实际问题案例库。
五、教学评价1. 课堂问答:检查学生对随机事件定义、分类和概率基本性质的理解。
2. 课后作业:布置有关概率计算和方法的应用题,检验学生掌握程度。
3. 课程报告:让学生选择一个实际问题,运用概率论进行分析,评价其应用能力。
4. 期末考试:设置有关概率论与数理统计的综合题,全面评估学生学习效果。
六、教学内容6. 大数定律与中心极限定理6.1 大数定律6.2 中心极限定理7. 随机变量及其分布7.1 随机变量的概念7.2 离散型随机变量7.3 连续型随机变量7.4 随机变量分布函数8. 随机变量的数字特征8.1 数学期望8.2 方差8.3 协方差与相关系数9. 抽样分布与抽样误差9.1 抽样分布的概念9.2 抽样误差的估计9.3 抽样方案的设计10. 估计量的性质与假设检验10.1 估计量的性质10.2 假设检验的基本概念10.3 常用的假设检验方法七、教学方法1. 讲授法:讲解大数定律、中心极限定理、随机变量及其分布等概念。
概率论与数理统计(第4版)浙江大学 盛聚编

对同一个参数,我们(wǒ men)可以构造许多置信区间.
1.在概率密度为单峰且对称(duìchèn)的情形,当a =-b 时求得的置信区间的长度为最短.
2.即使在概率密度不对称的情形,如 分布, F分布,习惯上仍取对称的分位点来计算未知参数的 置信区间.
17
共十八页
内容(nèiróng)总结
前面,我们讨论了参数点估计. 它是用样本(yàngběn)算得的一个值去 估计未知参数. 但是,点估计值仅仅。X1,X2,。可靠度与精度是一对 矛盾,一般是。按伯努利大数定理, 在这样多的区间中,。个区间, 使得 U取值于该区间的概率为置信水平.。从例1解题的过程,我们归纳出 求置信区间的一般步骤如下:。T(X1,X2,。的分布为已知, 不依赖于任何 未知参数 .。而这与总体分布有关,所以,总体分布的形式是。17
7
共十八页
2、置信区间的求法 在求置信区间时,要查表求分位点.
若 X 为连续型随机变量(suí jī biàn liànɡ) , 则有
所求置信区间为
8
共十八页
同样 对 (tóngyàng) 于
所求置信区间为
共十八页
由此可见,置 信水平为 的置信区间是 不唯一的。
9
例 设X1,…Xn是取自
的样本,
共十八页
第四节 区间 估计 (qū jiān)
前面,我们讨论了参数点估计. 它是用样本算得的一个 (yī ɡè)值去估计未知参数. 但是,点估计值仅仅 是未知参数的一个近似值,它没有反映出这个近似值的误 差范围,使用起来把握不大. 区间估计正好弥补了点估计 的这个缺陷 .
1
共十八页
1、 置信区间定义(dìngyì)
3. 寻找一个待估参数 和估计量 T 的函数 U(T, ),且其分布为已知.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通过计算,得 X 14.95,
所求置信区间为
X z 2 , X z 2 14.79, 15.11 . n n
(2) 未知方差 2 时 —— 实用价值更大 !! 由于 ( X u / 2 , X u / 2 ) 与 有关, 故不能采用已知方差
则称随机区间 ( , )为 的置信水平为 1- 的双侧置信区间 . 和
置信度 置信概率 分别称为置信下限和置信上限. 1) 和 为两个统计量(由样本完全确定的已知函数);
2)( , ) 是随机区间, 代入样本值所得的普通区间称为置信区 间的实现.
置信水平的概率意义: 置信水平为 0.95 是指 100 组样本值所得置信区间的实现 中, 约有95个能覆盖 , 而不是一个实现以 0.95 的概率覆盖了 . 并非一个实现以 1- 的概率覆盖了 估计的可靠度: ─ < < )= 1- 要尽可能大. 估计要尽量可靠, 即 P( ─ 要求 以很大的可能被包含在置信区间内 . 要求估计尽量可靠. 估计的精度: 即要求区间置信的长度尽可能短, 估计的精度要尽可能的高: 或能体现该要求的其它准则. 要求置信区间的长度尽可能短. 可靠度与精度是一对矛盾, 一般是在 保证可靠度的条件下尽可能提高精度.
1
(1) 已知方差12,22 (2) 未知方差12,22,但相等!
2
P ( ) 1 ? ^① 我们选取未知参数的某个估计量 , 根据置信水平1- , 可以 ˆ | ) 1 , 找到一个正数 , 使得 P ( | ^ 的概率分布就可以确定 . 分布的分位数 ② 只要知道 ˆ | 可以解出 : ˆ ˆ ③ 由不等式 | 这个不等式就是我们所求的置信区间 ( , ) .
一、 置信区间的概念 定义4 设 是总体 X 的待估参数, X1, X2, „, Xn 是取自总体 X 的样本, 对给定值 0 < <1, 若统计量 ( X 1 , X 2 ,, X n) 和 ( X 1 , X 2 ,, X n ) 满足
P ( ) 1 ,
─
一致性 参数的点估计是用样本算得的一个值去估计未知参数. 使用 起来把握不大. 点估计值仅仅是未知参数的一个近似值, 它没有 反映出这个近似值的误差范围. 而区间估计正好弥补了点估计 的这个缺陷. 为了使估计的结论更可信, 需要引入区间估计.
§7.3
单个正态总体均值与方差的置信区间
譬如,在估计湖中鱼数的问题中, 若我们根据一个实际样本 得到鱼数 N 的极大似然估计为 1000 条. 但实际上, N 的真值可能大于 1000 条, 也 可能小于1000条. 一个可以想到的估计办法是:若我们能给 出一个区间,并告诉人们该区间包含未知参数 N的可靠度 (也称置 信系数). 也就是说,给出一个区间,使我们能以一定的可靠度相信区 [ • ] 间包含参数 µ 。 这里所说的“可靠程度”是用概率来度 湖中鱼数的真值 量的, 称为置信概率,置信度或置信水平. 习惯上把置信水平记作 1- , 这里 是一个很小的正数.
2. 对于给定的置信水平 1- , 由概率 P ( | U | x ) , 查表求出分布的分位数 x , ( u / 2 ) 1 P ( |U | u /2 ) 2
─
例1 某乡农民在联产承包责任制前人均纯收入 X(单 位:元), 且 X ~ N (µ, 252). 推行联产承包责任制后, 在该乡抽得 ─ n =16 的样本, 得 x =325元, 假设 2 = 25 2 没有变化, 求 的置信水 平为 0. 95 的置信区间. 解 由于 =0.05 , 查正态分布表得 u0. 025 =1. 96 , | X | u / 2 | 325 | 1. 96 325 25 1. 96 325 25 1. 96 / n 25 / 16 16 16 即得置信区间 ( 312. 75 , 337. 25 ). 区间长度为 24. 25 如在上例中取 = 0. 01+ 0. 04 , 由正态分布上侧分位数定义知 0. 01 0. 04 1 ( u0. 01) 1 ( u0. 04 ) 1 ( u0. 01) ( u0. 04 ) 长度为 25. 5 1 P ( u0. 04 U u0. 01 ) 查表知 u0.01 2. 33 , u0. 04 1. 75 325 25 2. 33 325 25 1. 75
n
/2
n
/2
例2: 某厂生产的零件长度 X 服从 N( , 0.04),现从 该厂生产的零件中随机抽取6个,长度测量值如下 (单位:毫米): 14.6, 15.l, 14.9, 14.8, 15.2, 15.1.
求:µ 的置信系数为0.95的区间估计。 解:n = 6, = 0.05,z/2 = z0.025 = 1.96,2=0.22 .
例
其中 > 0为未知参数, X1, X2, „, Xn 是取自总体X的一组样本, 求 的极大似然估计量与矩估计量.
( 2) x 1 , 0 x 1; 设总体 X 的密度为 f ( x ; ) 0, 其它,
故有对数似然函数: ln L ( ) n ln ( 2 ) ( 1) ln xi , i 1 n ) n ( d ln L ln xi= 0 , 对 求导并令其为 0 可得似然方程: d 2 i 1 n ˆ 2 n 解得极大似然估计量: ln X i i 1 2 2 1 n n Xi X , (2)EX x f ( x ; ) dx 令 i 1 3 3
置信水平的大小是根据实际需要选定的. 例如, 通常可取置信 水平 = 0.95 或 0.9 等等. 根据一个实际样本, 由给定的置信水平1- , 我们求出一个的 区间 ( , ), 使 如何寻找这种区间?
^ 根据置信水平1- , 可以 我们选取未知参数的某个估计量 , 找到一个正数 , 使得
对于给定的置信水平, 根据估计量U 的分布, 确定 一个区间, 使得 U 取值于该区间的概率为置信水平.
如何根据实际样本, 由给定的置信水平1- , 求出一个区间 ( , ), 使
(一) 单个正态总体置信区间的求法
设 X1, „, Xn 是总体 X ~ 均值和样本方差, 求参数 ① 确定未知参数的 1. 均值 的置信区间 估计量及其函数的分布 2时 (1)已知方差 n ─ 1 X n X i 是 的无偏估计量, 故可用 X 作为 EX 的一个估计量, i 1 X ~ N(0, 1), 由抽样分布定理知 U ─ / n X ~ N( , 2/n), 有了分布就可求出U 取值于任意区间的概率 对给定的置信度 1- , 按标准正态分布的双侧 分位数的定义 P( |U | u /2 ) , 即令 ( u / 2 ) 1 , 查正态分布表可得 u /2 , ② 由分布求分位数 2 | X | u /2 X u / 2 X u / 2 ③ 由u /2确 n n / n 定置信区间 u / 2 , X u / 2 ) , 简记为 X u 2 即得置信区间 ( X n n n
的均值估计方法 —— 用 U X 分布的分位数求 的置信区间. S/ n 但其解决的思路一致. 由于 S 2是 2 的无偏估计量, 故可用 S 替代 的估计量: 由抽样分布定理知 T = X ~ t(n-1), S n 令 P { | T | t 2 (n 1) } 1 , 查 t 分布表确定上侧 /2 分位数 t / 2(n -1), | X | t / 2 ( n 1) S n X S t 2 ( n 1) X S t 2 ( n 1) n n ( X S t 2 (n 1) , X S t 2 ( n 1 ) )即为 的置信度为 1- 的区间估计. n n
16 16
同一置信水平下的置信区间不唯一, 其长度也不相等. 当然区间长度越短的估计, 精度就越高. 谁是精度最高的? 由于标准正态分布密度函数的图形是单峰且对称的, 在保持面积不变的条件下, 以对称区间的长度为最短 ! !
x
x
同一置信水平下的置信区间不唯一. 其长度也不相等. 但 ( X u , X u ) 的长度是最短的, 故我们总取它作为置信水平为 1- 的置信区间. 一般地, 在概率密度为单峰且对称的情形下, a =-b 对应的 置信区间的长度为最短. u , X u )可知, l 与 n , 的关系: 由置信区间公式 ( X /2 /2 n n ( x ) 置信区间的长度 l 为: l 2 u / 2 , n 10 若给定 n , l 随着 的减小而增大; u /2)就越大 , 这时 就越小. 则 u /2 越大, l( 就越大 , 20 若给定 , l 随着 n 的增大而减小; 且由于 l 与 n 成反比, 减小的速度并不快, ( u ) 1 / 2 例如, n 由 100 增至 400 时, l 才能减小一半. 2
/ n
n 1 X n Xi i 1
3. 由分位数|U| x 确定置信区间 (─ , )X . u X u /2 /2 ─ n n ( , ) 就是 的 100(1- )% 的置信区间. ─ u , X u ) ( X /2 /2 总体分布的形式是否已知,是怎样 n n 的类型,至关重要.
二、置信区间的求法 1. 均值 (一) 单个正态总体 2. 方差 2
(1) 已知方差 (2) 未知方差 2
2
1. 均值 1- 2 (二) 两个正态总体
(1) 已知均值 (2) 未知均值
(1) 已知均值 1, 2 2. 方差 2/ 2 1 2 (2) 未知均值 ,