典型环节的模拟研究_实验报告材料
典型环节的模拟实验报告

实验名称:典型环节模拟实验实验日期:2023年4月10日实验地点:实验室A实验人员:张三、李四、王五一、实验目的1. 理解典型环节的概念和作用。
2. 通过模拟实验,验证典型环节在系统中的作用和效果。
3. 掌握典型环节的设计方法和应用技巧。
二、实验原理典型环节是指在系统设计和分析中,对系统中的关键部分进行简化和抽象,以便于分析和设计的一种方法。
典型环节主要包括传递函数、状态方程、框图等。
三、实验材料1. 实验设备:计算机、信号发生器、示波器、数据采集卡等。
2. 实验软件:MATLAB、Simulink等。
3. 实验数据:实验所需的各种参数和模型。
四、实验步骤1. 设计典型环节模型(1)根据实验要求,确定典型环节的类型(如传递函数、状态方程等)。
(2)利用MATLAB或Simulink软件,搭建典型环节模型。
(3)对模型进行参数设置,确保模型符合实验要求。
2. 进行模拟实验(1)输入实验数据,如输入信号、系统参数等。
(2)启动模拟实验,观察典型环节在不同输入信号下的输出响应。
(3)记录实验数据,如输出信号、系统状态等。
3. 分析实验结果(1)分析典型环节在系统中的作用和效果。
(2)比较不同典型环节在相同输入信号下的输出响应。
(3)总结实验结果,提出改进建议。
五、实验结果与分析1. 实验结果(1)在输入信号为正弦波时,典型环节的输出信号为相应的正弦波。
(2)在输入信号为方波时,典型环节的输出信号为相应的方波。
(3)在输入信号为阶跃信号时,典型环节的输出信号为相应的阶跃信号。
2. 分析(1)典型环节在系统中起到了滤波、放大、延迟等作用。
(2)不同类型的典型环节对输入信号的处理效果不同,如传递函数适用于模拟信号处理,状态方程适用于数字信号处理。
(3)实验结果表明,典型环节的设计和选择对系统性能有重要影响。
六、实验结论1. 通过模拟实验,验证了典型环节在系统中的作用和效果。
2. 掌握了典型环节的设计方法和应用技巧。
典型环节的模拟实验报告

典型环节的模拟实验报告典型环节的模拟实验报告一、引言在现代科学研究中,模拟实验是一种常见的研究方法。
通过模拟实验,可以在实验室中重现真实环境,并对特定环节进行研究和分析。
本文将以典型环节为例,通过模拟实验的方式进行研究,以期探索其中的规律和现象。
二、材料与方法在本次模拟实验中,我们使用了X型设备进行模拟环节的搭建。
该设备具有高度可控性和可调节性,可以模拟各种环境条件。
我们选择了典型的环节进行模拟实验,包括A环节、B环节和C环节。
在每个环节中,我们设置了不同的参数和条件,以模拟真实环境中的各种情况。
三、实验结果与分析在A环节的模拟实验中,我们发现随着参数X的增加,环节的效率呈现上升趋势。
这说明在A环节中,参数X对效率有着明显的影响。
进一步的分析表明,参数X的增加导致了资源的更充分利用和更高效的操作,从而提高了整个环节的效率。
在B环节的模拟实验中,我们关注了参数Y的变化对环节结果的影响。
实验结果显示,参数Y的增加会导致环节结果的不稳定性增加。
这表明在B环节中,参数Y的调节需要谨慎,过大或过小都会对环节的稳定性产生负面影响。
进一步的研究还发现,适当的参数Y范围内,环节结果呈现出最佳状态,这为后续的优化提供了方向。
在C环节的模拟实验中,我们关注了不同操作者的影响。
实验结果表明,不同操作者的操作水平对C环节的效果有着显著差异。
经验丰富的操作者能够更快速、更准确地完成任务,而经验较少的操作者则需要更多的时间和努力。
这提示我们,在C环节中,操作者的培训和技能提升是提高整体效率的重要因素。
四、讨论与展望通过本次模拟实验,我们对典型环节的特性和影响因素进行了初步的研究。
然而,仍有许多问题需要进一步探索和解决。
例如,在实际应用中,环节之间的相互作用和影响如何?不同环境条件下,各环节的优化策略又是什么?这些问题需要更深入的研究和实验来解答。
未来的研究可以将模拟实验与实际数据相结合,以更真实地反映环节的特性和效果。
同时,可以引入机器学习和人工智能等技术,以提高模拟实验的自动化和智能化水平。
典型环节模拟实验报告

典型环节模拟实验报告典型环节模拟实验报告引言:环节模拟实验是一种常见的教学方法,通过模拟真实环境中的情境,让学生在实践中学习并解决问题。
本次实验旨在模拟典型环节,通过实际操作和观察,探索环节中的关键因素和解决方案。
实验目的:1. 了解典型环节的特点和重要性;2. 掌握环节模拟实验的基本方法;3. 分析环节模拟实验中的关键因素和解决方案。
实验过程:本次实验以典型的生产线环节为例,模拟了一个汽车装配环节。
实验设备包括各类零部件、工具和装配线。
实验者需要按照指定的步骤和要求,将零部件组装成完整的汽车。
首先,实验者需要熟悉各类零部件的名称和功能。
在实验开始前,我们进行了一次简短的讲解,介绍了汽车装配环节中常见的零部件,如发动机、底盘、车身等,并解释了它们之间的关系和作用。
接下来,实验者开始进行实际操作。
他们按照指导手册上的步骤,逐步完成汽车的装配。
在实际操作中,我们发现了几个关键因素需要注意。
首先,零部件的质量和准确性对装配过程至关重要。
如果零部件存在缺陷或尺寸不准确,将会导致装配失败或汽车的性能受损。
因此,在实验中我们特别强调了零部件的质量控制和检查。
其次,团队合作是成功完成环节模拟实验的关键。
在汽车装配过程中,不同的零部件需要不同的操作和配合。
如果团队成员之间缺乏沟通和协作,将会导致装配错误或延误。
因此,我们鼓励实验者积极与团队成员交流,并分工合作,确保装配过程的顺利进行。
最后,时间管理也是环节模拟实验中需要注意的因素之一。
在实验中,我们设定了一个时间限制,要求实验者在规定时间内完成装配。
这是为了模拟真实生产环境中的时间压力,并培养实验者的时间管理能力。
在实验过程中,我们观察到一些实验者因为时间不足而匆忙操作,导致装配错误。
因此,我们强调了合理安排时间和提高工作效率的重要性。
实验结果:通过本次实验,我们得出了以下结论:1. 典型环节模拟实验是一种有效的教学方法,能够帮助学生理解和掌握环节的特点和重要性;2. 在环节模拟实验中,零部件的质量、团队合作和时间管理是关键因素;3. 通过实验者的实际操作和观察,可以发现和解决环节中的问题,并提出改进方案。
自动控制实验-典型环节的模拟研究

实验一 典型环节的模拟研究一.实验目的1.通过搭建典型环节模拟电路,熟悉并掌握自动控制综合实验台的使用方法。
2.通过对典型环节的软件仿真研究,熟悉并掌握ACES 软件的使用方法。
3.了解并掌握各典型环节的传递函数及其特性,观察和分析各典型环节的响应曲线,掌握电路模拟和软件仿真研究方法。
二.实验内容1.搭建各种典型环节的模拟电路,观测并记录各种典型环节的阶跃响应曲线。
2.调节模拟电路参数,研究参数变化对典型环节阶跃响应的影响。
3.运行ACES 软件中的软件仿真功能,完成各典型环节阶跃特性的软件仿真研究,并与模拟电路观测的结果作比较。
三.实验步骤在实验中观测实验结果时,可选用普通示波器,也可选用本实验台上的虚拟示波器。
如果选用虚拟示波器,只要运行ACES 程序,选择菜单列表中的相应实验项目,再选择开始实验,就会打开虚拟示波器的界面,点击开始即可使用本实验台上的虚拟示波器CH1、CH2两通道观察被测波形。
具体用法参见用户手册中的示波器部分。
1.观察比例环节的阶跃响应曲线 实验中所用到的功能区域:阶跃信号、虚拟示波器、实验电路A1、实验电路A2。
典型比例环节模拟电路如图1-1-1所示,比例环节的传递函数为:0()()i U s K U s图1-1-1典型比例环节模拟电路(1) 设置阶跃信号源:A .将阶跃信号区的选择开关拨至“0~5V ”;B .将阶跃信号区的“0~5V ”端子与实验电路A1的“IN13”端子相连接;C .按压阶跃信号区的红色开关按钮就可以在“0~5V ”端子产生阶跃信号。
(2) 搭建典型比例环节模拟电路:A .将实验电路A1的“OUT1”端子与实验电路A2的“IN23”端子相连接;B .按照图1-1-1选择拨动开关:K=1时:将A1的S6、S13拨至开的位置,将A2的S7、S11拨至开的位置; K=0.5时:将A1的S6、S14拨至开的位置,将A2的S7、S11拨至开的位置。
(3) 连接虚拟示波器:将实验电路A2的“OUT2”与示波器通道CH1相连接。
典型环节的模拟实验报告

实验1 典型环节的模拟实验一、实验目的1、 熟悉matlab 软件,掌握系统的单位脉冲响应和单位阶跃响应曲线的绘制方法,并求取时间域内的性能指标; 2、 研究系统参数对系统性能指标的影响。
二、实验仪器与设备 电脑,matlab 6.5软件实验内容和步骤一)时域响应分析1、系统的开环传递函数为38440014020200)(234++++=s s s s s G ,试求其闭环传递函数,并绘制单位阶跃响应曲线和单位脉冲响应曲线。
程序:clc;close all; clear all; num=200;den=[1,20,140,400,384]; [numc,denc]=cloop(num,den) t=0:0.01:40; figure(1);step(numc,denc,t) grid; figure(2);impulse(numc,denc,t) grid;运行结果:numc =0 0 0 0 200denc =1 20 140 400 5842、设单位反馈系统的开环传递函数为)6.0(1s 4.0)(++=s s s G ,应用matlab 绘制系统在单位阶跃响应曲线,并求出峰值时间,超调量,调整时间。
程序:clc;close all; clear all; num=[0.4,1]; den=[1,0.6,0];[numc,denc]=cloop(num,den) t=0:0.02:40; figure(1);step(numc,denc,t) grid; figure(2);impulse(numc,denc,t) grid;运行结果:numc =0 0.4000 1.0000denc =1 1 1(二)增益K 对系统的影响1、已知单位负反馈系统的开环传递函数为)15.0)(1()15.0(s 2++++=s s s s s K G )(,取K分别等于0.2、0.7、1.0和1.7,绘制响应的阶跃响应曲线,比较不同的K 对曲线的影响。
典型环节的模拟实验报告

典型环节的模拟实验报告《典型环节的模拟实验报告》摘要:本实验旨在模拟典型环节中的一些重要过程,包括环节的构成、功能和影响因素。
通过模拟实验,我们得出了一些关于典型环节的重要结论,并对环节的优化提出了一些建议。
实验目的:1.模拟典型环节中的重要过程,包括构成、功能和影响因素。
2.探索环节中不同因素对其功能的影响。
3.提出环节优化的建议。
实验方法:1.选择典型环节进行模拟实验,包括环节的构成、功能和影响因素。
2.对环节中的不同因素进行控制和调节,观察其对环节功能的影响。
3.记录实验数据,并进行数据分析和结论总结。
实验结果:1.环节的构成对其功能有重要影响,不同构成会导致不同的功能表现。
2.环节的功能受到影响因素的调节,不同因素会对环节功能产生不同的影响。
3.通过实验数据分析,我们得出了一些关于典型环节的重要结论,并提出了环节优化的建议。
实验结论:1.典型环节的构成和功能是相互关联的,构成的改变会影响功能的表现。
2.环节的功能受到影响因素的调节,因素的合理调节可以优化环节的功能表现。
3.环节的优化需要综合考虑构成、功能和影响因素,通过合理的调节和控制,可以实现环节功能的最大化。
实验建议:1.对于典型环节的构成,需要根据功能需求进行合理设计和优化。
2.对环节中的影响因素,需要进行合理调节和控制,以实现环节功能的最大化。
3.在实际应用中,需要综合考虑构成、功能和影响因素,进行环节的优化设计和调节。
结语:通过本次实验,我们对典型环节的构成、功能和影响因素有了更深入的了解,为环节的优化提供了一些有益的思路和建议。
希望本实验能对相关领域的研究和应用产生一定的启发和帮助。
典型环节的模拟研究自动控制实验报告

②待完整波形出来后,移动虚拟示波器横游标到1V(与输入相等)处,再移动另一根横游标到ΔV=Kp×输入电压处,得到与积分曲线的两个交点。
③再分别移动示波器两根纵游标到积分曲线的两个交点,量得积分环节模拟电路时间常数Ti。
5).观察比例微分环节的阶跃响应曲线
(2)构造模拟电路:按图接线
(3)运行、观察、记录:(注:CH1选‘×1’档。时间量程选‘×1’档)
打开虚拟示波器的界面,点击开始,用示波器观测A6输出端(Uo),按下信号发生器(B1)阶跃信号按钮时(0→+4V阶跃),等待完整波形出来后,移动虚拟示波器横游标到4V(输入)×0.632处,,得到与惯性的曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到曲线的交点,量得惯性环节模拟电路时间常数T。A6输出端(Uo)的实际响应曲线Uo(t)。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度1秒秒左右(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 1V(D1单元右显示)。
(2)构造模拟电路:按图接线
(3)运行、观察、记录:(注:CH1选‘×1’档。时间量程调选‘×1’档)
实 验 报 告
实验课程:自动控制理论
学生姓名:
学 号:
专业班级:
2013年 12 月 20日
南昌大学实验报告
学生姓名:学 号:专业班级:
实验类型:■ 验证□综合□设计□创新 实验日期:实验成绩:
典型环节的模拟研究
一、实验要求:
1.了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式
典型环节测试实验报告(3篇)

第1篇实验名称:典型环节测试实验实验日期:2023年4月10日实验地点:XX实验室实验目的:1. 了解典型环节测试的基本原理和方法。
2. 通过实际操作,验证测试方法的可行性和有效性。
3. 提高对典型环节测试的理解和应用能力。
实验原理:典型环节测试是通过对系统或设备的关键环节进行模拟测试,以评估其性能和可靠性的一种方法。
本实验选取了XX系统中的典型环节进行测试,通过模拟实际运行条件,对各个环节进行性能测试和故障诊断。
实验仪器与材料:1. XX系统一台2. 测试仪器一套(包括信号发生器、示波器、万用表等)3. 实验数据记录表实验步骤:1. 准备工作:将XX系统连接好,检查各连接线路是否正确,确认测试仪器工作正常。
2. 环节一:测试XX系统的启动环节。
观察系统启动时间、启动过程是否正常,记录相关数据。
3. 环节二:测试XX系统的运行环节。
观察系统运行过程中的各项性能指标,如温度、压力、电流等,记录数据。
4. 环节三:测试XX系统的故障诊断环节。
模拟故障情况,观察系统是否能正确识别故障,并记录相关数据。
5. 数据处理与分析:对测试数据进行整理和分析,找出异常情况,提出改进措施。
实验结果与分析:1. 环节一:XX系统启动时间为5秒,启动过程正常。
启动环节性能良好。
2. 环节二:XX系统运行过程中,温度、压力、电流等性能指标均在正常范围内。
运行环节性能稳定。
3. 环节三:模拟故障情况下,XX系统能够正确识别故障,并及时发出警报。
故障诊断环节性能良好。
结论:通过本次典型环节测试实验,验证了典型环节测试方法的可行性和有效性。
实验结果表明,XX系统在启动、运行和故障诊断环节均表现出良好的性能。
针对实验中发现的问题,提出以下改进措施:1. 优化启动环节,缩短启动时间。
2. 加强运行环节的监测,确保各项性能指标稳定。
3. 优化故障诊断环节,提高故障识别准确性。
实验总结:本次典型环节测试实验,使我们对典型环节测试有了更深入的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 自动控制原理实验3.1 线性系统的时域分析 3.1.1典型环节的模拟研究一. 实验目的1. 了解和掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式2. 观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响二.典型环节的结构图及传递函数方 框 图传递函数比例(P ) K (S)U (S)U (S)G i O ==积分 (I )TS1(S)U (S)U (S)G i O ==比例积分 (PI ))TS11(K (S)U (S)U (S)G i O +==比例微分 (PD ))TS 1(K (S)U (S)U (S)G i O +==惯性环节 (T )TS1K (S)U (S)U (S)G i O +==比例积分微分(PID )ST K ST K K (S)U (S)U (S)G d p i p p i O ++==三.实验容及步骤观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响.。
改变被测环节的各项电路参数,画出模拟电路图,阶跃响应曲线,观测结果,填入实验报告运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究中的相应实验项目,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。
具体用法参见用户手册中的示波器部分。
1).观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。
图3-1-1 典型比例环节模拟电路传递函数:01(S)(S)(S)R R K KU U G i O === ; 单位阶跃响应: K )t (U =实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元右显示)。
(2)构造模拟电路:按图3-1-1安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(3 打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮(0→+4V 阶跃),观测A5B 输出端(Uo )的实际响应曲线Uo (t )见图3-1-2。
示波器的截图详见虚拟示波器的使用。
图3-1-2 比例环节阶跃响应曲线图 图3-1-3 惯性环节阶跃响应曲线实验报告要求:按下表改变图3-1-1所示的被测系统比例系数,观测结果,填入实验报告。
R0=200K , R1=100K ,Ui=4vR0=200K , R1=200K ,Ui=4vR0=50K , R1=100K ,Ui=2vR0=50K , R1=200K ,Ui=1v2).观察惯性环节的阶跃响应曲线典型惯性环节模拟电路如图3-1-4所示。
图3-1-4 典型惯性环节模拟电路传递函数:C R T R R K TSKU U G i O 1011(S)(S)(S)==+== 单位阶跃响应:)1()(0Tt eK t U --=实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 4V (D1单元右显示)。
(2)构造模拟电路:按图3-1-4安置短路套及测孔联线,表如下。
(a(b )测孔联线(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,按下信号发生器(B1)阶跃信号按钮时(0→+4V 阶跃),等待完整波形出来后,移动虚拟示波器横游标到输出稳态值×0.632处,,得到与输出曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到输出曲线的交点,量得惯性环节模拟电路时间常数T 。
A5B 输出端响应曲线Uo(t )见图3-1-3。
示波器的截图详见虚拟示波器的使用。
实验报告要求:按下表改变图3-1-4所示的被测系统时间常数及比例系数,观测结果,填入R0=200K , R1=200K ,Ui=4v, C=1uR0=200K , R1=200K ,Ui=4v, C=2uR0=50K , R1=100K ,Ui=2v, C=1uR0=50K , R1=200K ,Ui=1v, C=1u3).观察积分环节的阶跃响应曲线典型积分环节模拟电路如图3-1-5所示。
图3-1-5 典型积分环节模拟电路传递函数:C R T TSU U G i i O 01(S)(S)(S)=== 单位阶跃响应:t Ti1)(t U 0=实验步骤:注:‘S ST ’用短路套短接!(1)为了避免积分饱和,将函数发生器(B5)所产生的周期性矩形波信号(OUT ),代替信号发生器(B1)中的人工阶跃输出作为系统的信号输入(Ui );该信号为零输出时,将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压= 1V (D1单元右显示)。
(2)构造模拟电路:按图3-1-5安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,等待完整波形出来后,点击停止,移动虚拟示波器横游标到0V 处,再移动另一根横游标到ΔV=1V (与输入相等)处,得到与输出曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到输出曲线的交点,量得积分环节模拟电路时间常数Ti 。
A5B 输出响应曲线Uo(t)见图3-1-6。
示波器的截图详见虚拟示波器的使用。
图3-1-6 积分环节响应曲线 图3-1-7 比例积分环节响应曲线 实验报告要求:按下表改变图3-1-5所示的被测系统时间常数,观测结果,填入实验报告。
R0=200K, C=1u, Ui=1vR0=200K, C=2u, Ui=1vR0=100K, C=1u, Ui=1vR0=100K, C=2u, Ui=1v4).观察比例积分环节的阶跃响应曲线 典型比例积分环节模拟电路如图3-1-8所示.。
图3-1-8 典型比例积分环节模拟电路传递函数:C R T R R K TiSK U U G i i O 101)11((S)(S)(S)==+== 单位阶跃响应:)(t T11K )t (U O += 实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)所产生的周期性矩形波信号(OUT ),作为系统的信号输入(Ui );该信号为零输出时将自动对模拟电路锁零。
① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
②量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度>1秒(D1单元左显示)。
(注:为了使在积分电容上积分的电荷充分放掉,锁零时间应足够大,即矩形波的零输出宽度时间足够长! “量程选择”开关置于下档时,其零输出宽度恒保持为2秒!) ③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压 = 1V (D1单元右显示)。
(2)构造模拟电路:按图3-1-8安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(3)运行、观察、记录:打开虚拟示波器的界面,点击开始,等待完整波形出来后,点击停止。
移动虚拟示波器横游标到输入电压×比例系数K 处,再移动另一根横游标到(输入电压×比例系数K ×2)处,得到与积分曲线的两个交点。
再分别移动示波器两根纵游标到积分曲线的两个交点,量得积分环节模拟电路时间常数Ti 。
典型比例积分环节模拟电路A5B 输出响应曲线Uo(t)见图3-1-7 。
示波器的截图详见虚拟示波器的使用。
实验报告要求:按下表改变图3-1-8所示的被测系统时间常数及比例系数,观测结果,填入实验报告。
R0=200K, R1=200K C=1u, Ui=1vR0=200K, R1=200K C=2u, Ui=1vR0=100K, R1=200K C=1u, Ui=1vR0=100K, R1=200K C=2u, Ui=1v5).观察比例微分环节的阶跃响应曲线为了便于观察比例微分的阶跃响应曲线,本实验增加了一个小惯性环节,其模拟电路如图3-1-9所示。
图3-1-9 典型比例微分环节模拟电路比例微分环节+惯性环节的传递函数: )S1TS 1(K (S)U (S)U (S)G i O τ++==微分时间常数: C R R R R R )(T 32121D ++= 惯性时间常数: C R 3=τ 021R R R K +=3321D )//(R K R R R +=0.48S K T DD =⨯=τ 单位阶跃响应:K t KT t U +=)()(0δ实验步骤:注:‘S ST ’用短路套短接!(1)将函数发生器(B5)单元的矩形波输出作为系统输入R 。
(连续的正输出宽度足够大的阶跃信号)① 在显示与功能选择(D1)单元中,通过波形选择按键选中‘矩形波’(矩形波指示灯亮)。
② 量程选择开关S2置下档,调节“设定电位器1”,使之矩形波宽度1秒左右(D1单元左显示)。
③ 调节B5单元的“矩形波调幅”电位器使矩形波输出电压 = 0.5V (D1单元右显示)。
(2)构造模拟电路:按图3-1-9安置短路套及测孔联线,表如下。
(a )安置短路套 (b )测孔联线(3)运行、观察、记录:虚拟示波器的时间量程选‘/4’档。
① 打开虚拟示波器的界面,点击开始,用示波器观测系统的A6输出端(Uo ),响应曲线见图3-1-10。
等待完整波形出来后,把最高端电压(4.77V )减去稳态输出电压(0.5V ),然后乘以0.632,得到ΔV=2.7V 。
② 移动虚拟示波器两根横游标,从最高端开始到ΔV=2.7V 处为止,得到与微分的指数曲线的交点,再移动虚拟示波器两根纵游标,从阶跃开始到曲线的交点,量得τ=Δt=0.048S 。
③ 已知K D =10,则图3-1-9的比例微分环节模拟电路微分时间常数:0.48S K T D D =⨯=τ图3-1-10 比例微分环节模拟电路响应曲线6).观察PID (比例积分微分)环节的响应曲线PID (比例积分微分)环节模拟电路如图3-1-11所示。