不等关系与绝对值不等式及习题

合集下载

不等式与绝对值不等式(普通用卷)

不等式与绝对值不等式(普通用卷)

不等式与绝对值不等式1.若关于x的不等式|x+2|+|x−a|<5有解,则实数a的取值范围是A.(−7,7)B.(−3,3)C.(−7,3)D.∅2.不等式|x+3|−|x−1|≤a2−3a对任意实数x恒成立,则实数a的取值范围为A.(−∞,−1]∪[4,+∞) B.(−∞,−2]∪[5,+∞)C.[1,2]D.(−∞,1]∪[2,+∞)3.不等式|x+2|+|x−1|≤3的解集是4.关于x的不等式|2x+3|≥3的解集是.5.如果关于x的不等式|x−2|+|x−3|≥a的解集为R,则a的取值范围是 .6.若对任意的x∈R,不等式|x−3|+|x−a|≥3恒成立,则实数a的取值范围为.7.已知关于x的不等式|x+2|+|x−1|>a恒成立,则实数a的取值范围是 .8.设函数f(x)=|x−4|+|x−a|(a>1),且f(x)的最小值为3.(1)求a的值;(2)若f(x)≤5,求满足条件的x的集合.9.已知a>0,b>0,且a2+b2=92,若a+b≤m恒成立,(1)求m的最小值;(2)若2|x−1|+|x|≥a+b对任意的a,b恒成立,求实数x的取值范围.10.已知不等式2|x−3|+|x−4|<2a.(1)若a=1,求不等式的解集;(2)若已知不等式的解集不是空集,求实数a的取值范围.11.已知函数f(x)=|x−2|+|x−1|.(1)求不等式f(x)≤7的解集;(3)若函数g(x)=x2−2x+|a2−3|的最小值不小于f(x)的最小值,求a的取值范围. 12.设函数f(x)=|x−2|−|x+1|.(1)解不等式f(x)>2;(2)若关于x的不等式a2−2a≤f(x)解集是空集,求实数a的取值范围.13.设函数f(x)=|x−1|+|x+2|的最小值为m.(1)求实数m的值;(2)已知a>2,b>2,且满足a+b=2+m,求证:1a−2+4b−2≥9.14.已知函数f(x)=|x+4|+|x−2|的最小值为n.(1)求n的值;(2)若不等式|x−a|+|x+4|≥n恒成立,求a的取值范围.参考答案1.C【解析】本题考查绝对值三角不等式及绝对值不等式的解法.由绝对值三角不等式可得|x +2|+|x −a |≥|(x +2)−(x −a )|=|2+a |,根据题意可得|2+a |<5,解得−7<a <3,故选C.【备注】无2.A【解析】本题主要考查绝对值不等式及一元二次不等式的解法.|x +3|−|x −1|≤(x +3)−(x −1)=4,故a 2−3a ≥4,解得a ≤−1或a ≥4,故选A.【备注】无3.[−2,1]【解析】本题主要考查含绝对值不等式的解法.解答本题时要注意通过分类讨论去掉绝对值的方式去解不等式.由题,当x >1时,x +2+x −1=2x +1≤3,解得x ≤1,无解;当−2≤x ≤1时,x +2+1−x =3≤3恒成立,故−2≤x ≤1;当x <−2时,−x −2+1−x =−2x −1≤3,解得x ≥−2,故无解.综上可知,−2≤x ≤1【备注】统计历年的高考试题可以看出,含绝对值不等式的解法现在主要在选考模块中进行考查,属于容易题.4.(−∞,−3]∪[0,+∞)【解析】本题考查绝对值不等式的解法.由|2x +3|≥3可得2x +3≥3或2x +3≤−3,所以x ≥0或x ≤−3,故答案为(−∞,−3]∪[0,+∞).【备注】无5.(−∞,1]【解析】本题主要考查含绝对值不等式和三角不等式的应用;因为|x −2|+|x −3|≥|(x −2)−(x −3)|=1,且不等式|x −2|+|x −3|≥a 的解集为R ,则a ≤1;故填(−∞,1].【备注】在求|x −2|+|x −3|的最值时,可以考虑绝对值的几何意义:|x −2|+|x −3|表示数轴上的点x 到点2和点3的距离之和,由平面几何知识,得当点x 在点2和点3之间时,其距离和最小,为1.6.a ≤0或a ≥6【解析】无【备注】无7.(−∞,3)【解析】无【备注】无8.(1)函数f (x )=|x ﹣4|+|x ﹣a |表示数轴上的x 对应点到4、a 对应点的距离之和, 它的最小值为|a ﹣4|=3,再结合a >1,可得a =7.(2)f (x )=|x ﹣4|+|x ﹣7|={−2x +11,x <43, 4≤x ≤72x −11,x >7,故由f (x )≤5可得{x <4−2x +11≤5①,或{4≤x ≤73≤5②,或{x >72x −11≤5③. 解①求得3≤x <4,解②求得4≤x ≤7,解③求得7<x ≤8,所以不等式的解集为{x|3≤x ≤8}.【解析】本题考查绝对值不等式.(1)由绝对值的几何意义得|a ﹣4|=3,而a >1,即a =7.(2)分段求解得{x|3≤x ≤8}.【备注】无9.(1)∵(a 2+b 2)(12+12)≥(a +b )2,∴a +b ≤3,(当且仅当a 1=b 1,即{a =32b =32(时取等号). 又a +b ≤m 恒成立,∴m ≥3.(2)要使2|x −1|+|x|≥a +b 恒成立,须且只须2|x −1|+|x|≥3,∴{x ≤0−2x +2−x ≥3或{0<x ≤1−2x +2+x ≥3或{x >12x −2+x ≥3 ∴x ≤−13或x ≥53. 【解析】本题考查基本不等式应用及绝对值不等式.解答本题时要注意(1)根据条件利用柯西不等式求得最值,并表示实数m 的最小值;(2)先构造绝对值不等式,然后解绝对值不等式,得到实数x 的取值范围.【备注】无10.(1)当a =1时,不等式即为2|x -3|+|x -4|<2,若x ≥4,则3x -10<2,x <4,所以舍去;若3<x <4,则x -2<2,所以3<x <4;若x ≤3,则10-3x <2,所以83<x ≤3.综上,不等式的解集为{x |83<x <4}.(2)设f (x )=2|x -3|+|x -4|,则f (x )={3x −10,x ≥4,x −2,3<x <4,10−3x,x ≤3.作出函数f (x )的图象,如图所示.由图象可知,f (x )≥1,所以2a >1,a >12,即a 的取值范围为(12,+∞).【解析】无【备注】无11.(1)由f (x )≤7,得|x −2|+|x −1|≤7,∴{x >22x −3≤7或{1≤x ≤21≤7或{x <13−2x ≤7. 解得−2≤x ≤5,故不等式f (x )≤7的解集为[−2,5].(2)∵f (x )=|x −2|+|x −1|≥|x −2−(x −1)|=1,∴f (x )的最小值为1.∵g (x )min =g(1)=|a 2−3|−1,∴|a 2−3|−1≥1,则a 2−3≥2或a 2−3≤−2,解得a ∈(−∞,−√5]∪[−1,1]∪[√5,+∞).【解析】无【备注】无12.(1)由|x −2|−|x +1|>2,得{x ≤−13>2或{−1<x <21−2x >2或{x ≥2−3>2, 解得x <−12,即解集为x ∈(−∞,−12).(2)∵a 2−2a ≤f (x )的解集为空集,∴a 2−2a >f (x )max ,而f (x )=|x −2|−|x +1|≤|(x −2)−(x +1)|=3,∴a 2−2a >3,即a >3或a <−1.【解析】无【备注】无13.(1)函数f (x )=|x −1|+|x +2|=|1−x|+|x +2|≥|(1−x)+(x +2)|=3, 故f (x )的最小值m =3.(2)由(1)得a +b =2+m =5,故a −2+b −2=1,故1a−2+4b−2=(1a−2+4b−2)[(a −2)+(b −2)]=1+b−2a−2+4(a−2)b−2+4≥5+2√b−2a−2⋅4(a−2)b−2=9. 当且仅当b −2=2(a −2),即a =73,b =83时“=”成立.【解析】无【备注】无14.(1)f (x )=|x +4|+|x −2|={2x +2,x ≥26,−4≤x <2−2x −2,x <−4,所以最小值为6,即n =6.(2)由(1)知n =6,|x −a|+|x +4|≥6恒成立,由于|x −a|+|x +4|≥|(x −a)−(x +4)|=|a +4|,等号当且仅当(x −a)(x +4)≤0时成立,故|a +4|≥6,解得a ≥2或a ≤−10.所以a 的取值范围为(−∞,−10]∪[2,+∞).【解析】无【备注】无。

不等式的性质与绝对值不等式(含答案)

不等式的性质与绝对值不等式(含答案)

学习必备欢迎下载不等式的性质与绝对值不等式典题探究例 1 解不等式 2<| 2x- 5|≤ 7.例 2 解关于x的不等式:(1) | 2x+ 3|- 1<a( a∈ R);(2)|2x+1|>x+1.例 3 解不等式 | x- |2 x+ 1|| >1.例 4.求证:a2b2ab a b 1演练方阵A档(巩固专练)1.下列各式中,最小值等于2的是()x yB.x 25C.tan1x2xA .2D.2y x tanx42x, y R且满足x3y2,则 3x27 y 1 的最小值是().若A.339B.122C.6D.73.不等式 |8 - 3x| >0 的解集是 ()A.B. R C. { |≠8 ,∈R} D .{ 8 } 334.下列不等式中,解集为R的是()A.|x+ 2|> 1B.| x+2|+1>1 C. ( x- 78)2>- 1 D . ( x+ 78)2-1>05.在数轴上与原点距离不大于 2 的点的坐标的集合是()A.{x|- 2<x< 2 }B .{x| 0<x≤ 2 }C .{x|- 2≤x≤ 2} D .{x|x≥ 2 或x≤- 2}6.不等式| 1- 2x|<3的解集是( )A.{x|x<1 } B .{x|- 1<x< 2 }C.{ x| x>2}D.{ x| x<-1或 x>2}7.若a b 0 ,则a1的最小值是 _____________。

b(a b)128.函数 f ( x) 3xx 2 ( x 0) 的最小值为 _____________。

9.不等式| x + 4|> 9 的解集是 __________.10.当 a >0 时,关于 x 的不等式| b -ax |< a 的解集是 ________.B 档(提升精练)1.不等式| x + a |< 1 的解集是 ()A .{ x |- 1+ a <x < 1+ aB .{ x |- 1- a < x < 1- a}C .{ x |- 1-| |< < 1-| a |} D .{ x | <- 1-| a |或 x > 1-| a |}a xx2.不等式 1≤| x -3|≤ 6 的解集是 ()A .{ x |- 3≤ x ≤2 或 4≤ x ≤ 9} B.{ x |- 3≤ x ≤ 9} C .{ x |- 1≤ x ≤2}D.{ x |4≤ x ≤9}3.下列不等式中,解集为{x | x < 1 或 x > 3}的不等式是 ( )A .| x -2|> 5B .| 2x - 4|> 3C . 1-| x - 1|≤1D.1-| x -1|<122 2 24.已知集合 A = { x || x - 1| <2} , B = { x || x - 1| > 1} ,则 A ∩ B 等于 ( )A . { x | -1< x < 3}B . { x | x <0 或 x > 3}C . { x | -1< x < 0}D. { x | - 1< x < 0 或 2< x < 3}5. 若 x (,1) ,则函数 yx 2 2x2有()2x 2A .最小值 1B .最大值 1C .最大值 1D .最小值16.设 a,b, cR ,且 a b c1,若 M(11)( 1 1)( 11) ,则必有()ab cA .0 M1 1M1C .1M8D .M88B .87.已知不等式| x -2|< a ( a > 0) 的解集是{ x |- 1< x < b } ,则 a + 2b =.8.不等式 | x + 2| > x + 2 的解集是 ______.9.解下列不等式: (1)|2-3x | ≤ 2;(2)|3x - 2| > 2.10.求函数 y3 x 54 6 x 的最大值。

01绝对值不等式(含经典例题+答案)

01绝对值不等式(含经典例题+答案)

绝对值不等式一、绝对值三角不等式1.定理1:如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.2.定理2:如果a,b,c是实数,则|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号成立.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤a x+b≤c ;(2)|a x+b|≥c⇔a x+b≥c或a x+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.二、绝对值不等式的解法(1)|a x+b|≤c⇔-c≤ax+b≤c ;(2)|a x+b|≥c⇔ax+b≥c或ax+b≤-c .3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法方法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想.方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的图像求解,体现了函数与方程的思想.1.不等式|a|-|b|≤|a+b|≤|a|+|b|,右侧“=”成立的条件是ab≥0,左侧“=”成立的条件是ab≤0且|a|≥|b|;不等式|a|-|b|≤|a-b|≤|a|+|b|,右侧“=”成立的条件是ab≤0,左侧“=”成立的条件是ab≥0且|a|≥|b|.2.|x-a|+|x-b|≥c表示到数轴上点A(a),B(b)距离之和大于或等于c的所有点,只要在数轴上确定出具有上述特点的点的位置,就可以得出不等式的解.例4:若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是________.解:由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,所以只需a≤3即可.若本题条件变为“∃x∈R使不等式|x+1|+|x-2|<a成立为假命题”,求a的范围.解:由条件知其等价命题为对∀x∈R,|x+1|+|x-2|≥a恒成立,故a≤(|x+1|+|x-2|)min,又|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴a≤3.例5:不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则实数a的取值范围是________.解:由绝对值的几何意义知:|x-4|+|x+5|≥9,则log3(|x-4|+|x+5|)≥2所以要使不等式log3(|x-4|+|x+5|)>a对于一切x∈R恒成立,则需a<2.例6:某地街道呈现东——西,南——北向的网络状,相邻街距都为1,两街道相交的点称为格点.若以相互垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5),(6,6)为报刊零售点,请确定一个格点(除零售点外)________为发行站,使6个零售点沿街道到发行站之间的路程的和最短.解:设格点(x,y)(其中x,y∈Z)为发行站,使6个零售点沿街道到发行站之间的路程的和最短,即使(|x+2|+|y-2|+(|x-3|+|y-1|)+(|x-3|+|y-4|)+(|x+2|+|y-3|)+(|x-4|+|y-5|)+(|x-6|+|y-6|)=[(|x+2|+|x-6|)+(|x+2|+|x-4|)+2|x-3|]+[|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|]取得最小值的格点(x,y)(其中x,y∈Z).注意到[(|x+2|+|x-6|)+(|x+2|+|x-4|) +2|x-3|]≥|(x+2)-(x-6)|+|(x+2)-(x-4)|+0=14,当且仅当x=3取等号;|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|=(|y-1|+|y-6|)+(|y-2|+|y-5|+(|y-3|+|y-4|)≥|(y-1)-(y-6)|+|(y-2)-(y-5)|+|(y-3)-(y-4)|=9,当且仅当y=3或y=4时取等号.因此,应确定格点(3,3)或(3,4)为发行站.又所求格点不能是零售点,所以应确定格点(3,3)为发行站.1.对绝对值三角不等式定理|a|-|b|≤|a±b|≤|a|+|b|中等号成立的条件要深刻理解,特别是用此定理求函数的最值时.2.该定理可以强化为:||a|-|b||≤|a±b|≤|a|+|b|,它经常用于证明含绝对值的不等式.3.对于求y=|x-a|+|x-b|或y=|x+a|-|x-b|型的最值问题利用绝对值三角不等式更简洁、方便.例7:设函数f(x)=|x-a|+3x,其中a>0.(1)当a=1时,求不等式f(x)≥3x+2的解集;(2)若不等式f(x)≤0的例9:已知关于x的不等式|2x+1|+|x-3|>2a-32恒成立,求实数a的取值范围.y =⎩⎪⎨⎪⎧ -3x +2,x <-12,x +4,-12≤x <3,3x -2,x ≥3,∴当x =-12时,y =|2x +1|+|x -3|取最小值72,∴72>2a -32,即得a <52. 例10:已知f (x )=1+x 2,a ≠b ,求证:|f (a )-f (b )|<|a -b |.解:∵|f (a )-f (b )|=|1+a 2-1+b 2|=|a 2-b 2|1+a 2+1+b 2=|a -b ||a +b |1+a 2+1+b 2, 又|a +b |≤|a |+|b |=a 2+b 2<1+a 2+1+b 2,∴|a +b |1+a 2+1+b 2<1.∵a ≠b ,∴|a -b |>0.∴|f (a )-f (b )|<|a -b |.例11:已知a ,b ∈R 且a ≠0,求证:|a |2|a |≥|a |2-|b |2. 证明:①若|a |>|b |,则左边=|a +b |·|a -b |2|a |=|a +b |·|a -b ||a +b +a -b |≥|a +b |·|a -b ||a +b |+|a -b |=11|a +b |+1|a -b |. ∵1|a +b |≤1|a |-|b |,1|a -b |≤1|a |-|b |,∴1|a +b |+1|a -b |≤2|a |-|b |.∴左边≥|a |-|b |2=右边,∴原不等式成立. ②若|a|=|b|,则a 2=b 2,左边=0=右边,∴原不等式成立.③若|a|<|b|,则左边>0,右边<0,原不等式显然成立.综上可知原不等式成立.证明:|f(x)-f(a)|=|x 2-x +43-a 2+a -43|=|(x -a)(x +a -1)|=|x -a|·|x +a -1|.∵|x -a|<1, ∴|x|-|a|≤|x -a|<1.∴|x|<|a|+1.∴|f(x)-f(a)|=|x -a|·|x +a -1|<|x +a -1|≤|x|+|a|+1<2(|a|+1). 例13:已知函数f (x )=log 2(|x -1|+|x -5|-a ).(1)当a =2时,求函数f (x )的最小值;(2)当函数f (x )的定义域为R 时,求实数a 的取值范围.解:函数的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a .(1)当a =2时,f (x )=log 2(|x -1|+|x -5|-2),设g (x )=|x -1|+|x -5|,则g (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧ 2x -6,x ≥5,4,1<x <5,6-2x ,x ≤1,g (x )min =4,f (x )min =log 2(4-2)=1.(2)由(1)知,g (x )=|x -1|+|x -5|的最小值为4,|x -1|+|x -5|-a >0,∴a <4.∴a 的取值范围是(-∞,4). x -4|-|x -2|>1.解:(1)f (x )=⎩⎪⎨⎪⎧ -2, x >4,-2x +6, 2≤x ≤4,2, x <2.则函数y =f (x )的图像如图所示.(2)由函数y =f (x )的图像容易求得不等式|x -4|-|x -2|>1的解集为5,2⎛⎫-∞ ⎪⎝⎭。

§3.1.1不等关系与不等式(一)

§3.1.1不等关系与不等式(一)

浓度为 b m ,
am
bm b 可以证明 成立. am a
你能证明吗?预习下一节内容,给出证明.
2013-1-21 重庆市万州高级中学 曾国荣 wzzxzgr@ 16
§3.1.1不等关系与不等式(一)
小结 1. 两 实数间的大小与两数之差有如下关系:
a>ba–b>0 a=ba–b=0 a<ba–b<0
根据两个正数的和仍是正数,得
(a b) (b c) 0, 即a c 0,
推论: 由a b, 且b c a c.
2013-1-21 重庆市万州高级中学 曾国荣 wzzxzgr@ 12
a c.
§3.1.1不等关系与不等式(一)
不等式的性质
性质3:
3
§3.1.1不等关系与不等式(一)
问题2 :某种杂志原以每本2.5元的价格销售,可以 销售出8万本。据市场调查,若单价每提高0.1元, 销售量就可能相应减少2000本,若把提价后杂志的 定价设为x元,怎样用不等式表示销售的总收入仍 不低于20万元呢? 分析:若杂志的定价为x元,则销售的总收入为
x 2.5 (8 0.2)x 万元。 0.1
4 x y 10 18 x 15 y 66 x 0 y 0
2013-1-21 重庆市万州高级中学 曾国荣 wzzxzgr@ 7
§3.1.1不等关系与不等式(一)
练习3、某年夏天,我国遭受特大洪灾,灾区学生 小李家中经济发生困难,为帮助小李解决开学费用 问题,小李所在班级学生(小李除外)决定承担这 笔费用。若每人承担12元人民币,则多余84元;若 每人承担10元,则不够;若每人承担11元,又多出 40元以上。问该班共有多少人?这笔开学费用共多 少元? 分析:设该班除小李外共有x人,这笔开学费用共 y元,则:

高中数学3-1不等关系与不等式习题新人教A版必修5

高中数学3-1不等关系与不等式习题新人教A版必修5

3.1不等关系与不等式一、选择题:本题共8个小题,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【题文】已知a b >,c d >,那么一定正确的是 ( )A .ad bc >B .ac bd >C .a c b d ->-D .a d b c ->-2.【题文】设201612016a ⎛⎫= ⎪⎝⎭,120162016b =,1lg 2016c =,则c b a ,,的大小关系为 ( ) A .c a b << B .b c a <<C .a b c <<D .b a c <<3.【题文】已知,a b 为非零实数,且0a b <<,则下列命题成立的是 ( )A .22a b <B .2211ab a b <C .22a b ab <D .b a a b< 4.【题文】设22(21),(1)(3)M a a N a a =--=+-,则有 ( )A. M N >B. M N ≥C. M N <D. M N ≤5.【题文】如果01a <<,那么下列不等式中正确的是 ( )A .(1)log (1)0a a -+>C .32(1)(1)a a ->+D .1(1)1a a +->6.【题文】设,a b ∈R ,若0a b ->,则下列不等式中正确的是 ( )A .0b a ->B .330a b +<C .220a b -<D .0b a +> 7.【题文】设 1a b >>,0c <,给出下列三个结论:①c c a b>;②c c a b >; ③()()log >log b a a c b c --.其中所有正确结论的个数是 ( )A .0B .1C .2D .38.【题文】已知,,a b c ∈R ,则下列推证中错误的是( )A .22a b ac bc >⇒≥B .,0a b c a b c c><⇒< C .3311,0a b ab a b >>⇒< D .2211,0a b ab a b >>⇒<二、填空题:本题共3小题.9.【题文】132-,123,2log 5三个数中最大的数是 . 10.【题文】若13,12,a b ≤≤-≤≤则2a b -的取值范围为______.11.【题文】若2,a b c ==,则a 、b 、c 的大小顺序是 .三、解答题:解答应写出文字说明,证明过程或演算步骤.12.【题文】已知:m n >,a b <,求证:m a n b ->-.13.【题文】设110,1ab a >->,比较a +1的大小. 14.【题文】已知,a b ∈R ,b a x -=3,a b a y -=2,试比较x 与y 的大小.3.1不等关系与不等式 参考答案及解析1. 【答案】D【解析】由同向不等式的加法性质可知由a b >,c d >,可得,a c b d a d b c +>+∴->-.考点:不等式性质.【题型】选择题【难度】较易2. 【答案】D 【解析】()201612016110,1,20161,lg 0,.20162016a b c c a b ⎛⎫=∈=>=<∴<< ⎪⎝⎭考点:比较大小.【题型】选择题【难度】较易3. 【答案】B 【解析】因为0a b <<,所以可令2,1a b =-=,可排除A 、C 、D ,故选B.考点:不等式的性质.【题型】选择题【难度】较易4. 【答案】B【解析】()()()()22222211324223M N a a a a a a a a a -=---+-=-----=-()22110a a +=-≥恒成立,所以M N ≥.故B 正确.考点:作差法比较大小.【题型】选择题【难度】一般5. 【答案】A【解析】因为01,a <<所以011,a <-<所以(1)x y a =-在R 上单调递减,所以A.本题也可以用特殊值法,如:令12a =来解决. 考点:比较大小.【题型】选择题【难度】一般6. 【答案】D 【解析】由0a b ->得a b >,0,,0.a b a b a b ∴>≥∴>±∴+>考点:不等式性质.【题型】选择题【难度】一般7. 【答案】C【解析】①∵1a b >>,0c <,∴(0c c c b a a b ab --=>),故c c a b>,正确; ②∵0c <,∴c y x =在()0,+∞上是减函数,而0a b >>,所以c c a b <,错误;③当1a b >>时,有()()()log >log >log b b a a c b c b c ---,正确.故选C .考点:比较大小.【题型】选择题【难度】一般8. 【答案】D【解析】对于A : 20c ≥,则22ac bc ≥,故A 正确;对于B :0a b a b c c c--=> ,当0c <时,有a b <,故B 正确; 对于C :∵33a b >,0ab >,∴不等式两边同乘以()3ab 的倒数,得到3311b a >,即11a b<,故C 正确; 对于D :∵22a b >,0ab >,∴不等式两边同乘以()2ab 的倒数,得到2211b a >,不一定有11a b<,故D 错误.故选D . 考点:不等关系与不等式.【题型】选择题【难度】较难9. 【答案】2log 5 【解析】11322221,12,log 5log 42-<<<>=,所以最大的数为2log 5. 考点:指数、对数式大小判定.【题型】填空题【难度】一般10.【题文】若13,12,a b ≤≤-≤≤则2a b -的取值范围为______.【答案】[]0,7【解析】13,12,226,21,a b a b ≤≤-≤≤∴≤≤-≤-≤利用同向不等式可以相加,得到2a b -的取值范围为[]0,7.考点:不等式的性质.【题型】填空题【难度】一般10. 【答案】[]0,7【解析】13,12,226,21,a b a b ≤≤-≤≤∴≤≤-≤-≤利用同向不等式可以相加,得到2a b -的取值范围为[]0,7.考点:不等式的性质.【题型】填空题【难度】一般11. 【答案】a b c >>【解析】a ==,2bc ===,因为20+>,>>,故a b c >>. 考点:不等关系与不等式.【题型】填空题【难度】一般12. 【答案】证明略【解析】证法一:由m n >知0m n ->,由a b <知0b a ->.∴()()()()0m a n b m n b a m a n b ---=-+->⇒->-.证法二:∵a b <,∴a b ->-,又∵m n >,∴()()m a n b +->+-,即m a n b ->-.考点:不等式的性质.【题型】解答题【难度】较易13. 【答案】ba ->+111 【解析】由,10111,0<<⇒>->b a b a2211111ab a b ab b a b b ⎛⎫-- ⎪--⎝⎭∴-==--, 又110,10,1ab b b a>->->,22∴-⇒> 考点:平方法作差比较大小.【题型】解答题【难度】一般14. 【答案】详见解析 【解析】()()()32221x y a b a b a a a b a b a b a -=--+=-+-=-+, 当b a >时,0>-y x ,所以y x >;当b a =时,0=-y x ,所以y x =;当b a <时,0<-y x ,所以y x <.考点:作差法比较大小.【题型】解答题【难度】一般。

不等式和绝对值不等式

不等式和绝对值不等式

小结:理解并熟练掌握基本不等式及 其应用,特别要注意利用基本不等式 求最值时, 一定要满足“一正二定三 相等”的条件。
作业:课本P10第7、8、10题,第11题为选
做题。
3、三个正数的算术-几何平均不等式
abc 3 定理3 如果a, b, c R,那么 abc,当且仅 3 当a b c时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。
a b (1)若c>a>b>0,则 (真命题) c a c b 1 1 (2)若a>b, ,则a>0,b<0。 (真命题) a b
例5、已知f(x)=ax2+c,且-4≤f(1)≤-1,-1≤f(2)≤5, 求f(3)的取值范围。 f(3)的取值范围是[-1, 20]
例6、已知a>0,a2-2ab+c2 =0,bc>a2,试比较a、b、c 的大小。 解:因为bc>a2>0,所以b、c同号;又a2+c2=2ab>0,且
第一讲 不等式和绝对值不等式 1、不等式
1、不等式的基本性质:
a a b, b c ①、对称性: b b a 传递性:_________ a c
②、 a b, c R ,a+c>b+c
③、a>b, c 0 , 那么ac>bc;
a>b,
c 0 ,那么ac<bc
a b
两个正数的算术平均不小于它们的几何平均。
例3 求证:(1)在所有周长相同的矩形中,正方形的面 积最大;(2)在所有面积相同的矩形中,正方形的周长 最短。
结论:已知x, y都是正数。(1)如果积xy是定值p, p 那么当x=y时,和x+y有最小值2 ;(2)如果 和x+y是定值s,那么当x=y时,积xy有最大值 1 2 s 4

第10课--绝对值不等式(经典例题练习、附答案)

第10课--绝对值不等式(经典例题练习、附答案)

第10课 绝对值不等式 ◇考纲解读 ①理解不等式a b a b a b -≤+≤+②掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式;◇知识梳理1.绝对值的意义 ①代数意义:___,(0)___,(0)___,(0)a a a a >⎧⎪= =⎨⎪ <⎩②几何意义:a 是数轴上表示a 的点____________。

2. 含绝对值的不等式的解法①0a >时,|()|f x a >⇔____________;|()|f x a <⇔____________;②去绝对值符号是解绝对值不等式的常用方法;③根据绝对值的几何意义,通过数形结合解绝对值不等式.◇基础训练1.函数|||3|y x x =--的最大值为 ___________.2.(2008惠州调研) 函数46y x x =-+-的最小值为 .3.(2008珠海质检)已知方程20x ax b -+=的两根分别为1和2,则不等式1ax b -≤的解集为 ____________ (用区间表示).4.(2008广州二模)不等式21<-+x x 的解集是 .◇典型例题例1 .解不等式512x x +>-例2. 解不等式125x x -++>变式1:12x x a -++<有解,求a 的取值范围变式2:212x x a -++<有解,求a 的取值范围变式3:12x x a -++>恒成立,求a 的取值范围◇能力提升1.(2008湛江二模)若关于x 的不等式||2x a a -<-的解集为{}42|<<x x ,则实数=a .2.(2008韶关二模)不等式4|2||12|<++-x x 的解集为3.(2008揭阳调研)若()5f x x t x =-+-的最小值为3, 则实数t 的值是________.4. (2008汕头一模) 若不等式121x a x+>-+对于一切非零实数x 均成立,则实数a 的取值范围是_________________。

3绝对值不等式

3绝对值不等式
所以 |2x+3y-2a-3b|<5ε.
定理2 如果a, b, c是实数,那么
|a-c|≤|a-b|+|b-c|
当且仅当(a-b)(b-c)≥0时,等号成立。
证明:根据绝对值三角不等式有 |a-c|=|(a-b)+(b-c)|≤|a-b|+|b-c|
当且仅当(a-b)(b-c)≥0时,等号成立。
例 : 若 x m , y m ,下列不等式中一定成立的是( B )
①分段讨论法:
|
ax
b
|
c(c
0)
ax ax
b b
0 c

ax b 0 (ax b)
c
|
ax
b
|
c(c
0)
ax ax
b b
0 c

ax b 0 (ax b)
c
②换元法:令t=ax+b, 转化为|t|≤c和|t|≥c 型不等式,然后再求x,得原不等式的解集。
绝对值不等式的解法
探究 你能根据定理1的研究思路,探究一下 |a|,|b|,|a+b|,|a-b|等之间的其他关系吗?例如: |a|-|b|与|a+b|,|a|+|b|与|a-b|,|a|-|b|与 |a-b|等之间的关系。
|a|-|b|≤|a+b|,
|a|+|b|≥|a-b|,
|a|-|b|≤|a-b|.
如果a, b是实数,那么
A1 A -3 -2
B B1
12
x
解 法1: 设 数 轴 上 与 2,1对 应 的 点 分 别 是A,,B
那 么A,, 两 点 的 距 离 是3, 因 此 区 间 2,1上 的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式和基本不等式一.知识梳理1.实数大小的比较方法(1)作差法:a>b ⇔a-b>0,a<b ⇔a-b<0,a=b ⇔a-b=0(),,a b a b,.>>>⇔><⇔<=⇔=a2a 0b 01ba a11a b b b作商法当时2.不等式的性质(1)性质1:如果a>b,那么b<a;如果b<a,那么a>b. (2)性质2:如果a>b,b>c,那么a>c. (2)性质3:如果a>b,那么a+c>b+c. 推论:如果a>b,c>d,那么a+c>b+d.(4)性质4:如果a>b,c>0,那么ac>bc;,如果a>b,c<0,那么ac<bc. 推论1:如果a>b>0,c>d>0,那么ac>bd. 推论2:如果a>b>0,那么a 2>b 2.推论3:如果a>b>0,那么a n >b n (n 为正整数). 推论4:如果a>b>0,那么nnba11〉 (n 为正整数).3.含有绝对值不等式(1)定理:对任意实数a 和b,有|a+b|≤|a|+|b|,其中等号成立的条件为ab ≥0.说明:①定理中的b 以-b 代替,则有|a-b|≤|a|+|b|.,其中等号成立的条件为ab ≤0. ②对任意实数a 和b,有||a|-|b||≤|a ±b|≤|a|+|b|. (2)绝对值不等式的解法解含有绝对值的不等式,关键在于利用绝对值的意义,设法去掉绝对值符号,把它转化为一个或几个普通不等式或不等式组,常用的方法有定义法、平方法、公式法等. 4.平均值不等式定理1:对任意实数a,b,有a 2+b 2≥2ab(当且仅当a=b 时取“=”号).定理2;,,""),.+≥==a ba b a b 2对任意两个正数有当且仅当时取号即两个正数的算术平均值不小于它们的几何平均值 定理3:对任意三个正数a,b,c,有a 3+b 3+c 3≥3abc(当且仅当a=b=c 时取“=”号).:,,""),.++≥===a b c 4a b c a b c 3定理对任意三个正数有当且仅当时取号即三个正数的算术平均值不小于它们的几何平均值二.典例分析题型一 比较两个数的大小,∈≠1a R a a 例设且的大小点评:比较两个实数的大小,可以用作差法或作商法,若含有未知字母,注意分类讨论. 练习1: 已知a,b,c ∈R +,且b<c,比较ab 与ac+bc 的大小.题型二 绝对值三角不等式定理的应用对于绝对值三角不等式定理:|a |-|b |≤|a ±b |≤|a |+|b |,要从以下两个方面深刻理解: (1)两端的等号成立的条件在解题时经常用到,特别是用此定理求函数的最大(小)值时. (2)该定理可以推广为|a +b +c |≤|a |+|b |+|c |,也可强化为||a |-|b ||≤|a ±b |≤|a |+|b |,它们经常用于含绝对值的不等式的推证.例2 (1)f (x )=|3-x |+|x -2|的最小值为________.(2)若不等式|x-a|+|x-2|≥1对任意实数x 均成立,则实数a 的取值范围是________.练习2 已知f(x)=|x-1|+|2x+3|.若f(x)≥m 对一切x ∈R 都成立,求实数m 的取值范围;(1)形如|x+a|±|x-b|≥c不等式的解法常用零点分段讨论法,其步骤为:①求零点;②划分区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,特别注意在分段时不要漏掉区间的端点值.(2)上述不等式也可用|x-a1|±|x-a2|的几何意义去求解集.例3解下列不等式:(1)|x-1|<2;(2)|x2-1|>3;(3)|x2-2x+4|>2x;(4)4|x+6|<3-2x.(5)2|x|+|x-1|<2例4已知函数f(x)=|2x+1|-|x-3|.(1)解不等式f(x)≤4;(2)若存在x使得f(x)+a≤0成立,求实数a的取值范围.例5 若|a-b|>c,|b-c|<a,求证:c<a.点评:绝对值不等式|a|-|b|≤|a ±b|≤|a|+|b|的几何意义是:三角形任意两边之差小于第三边,三角形任意两边之和大于第三边,在运用时注意等号成立的条件.a a a4:x ,y ,z ,:x 2y 3z a 369<<<+-<练习已知求证题型五 利用不等式求最值111.1a,b,c ,a 2b c 1,_____a b c++=++例6()已知都是正数且则的最小值是2211x,y ,x y _____.2y 2x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭(2)若是正数则的最小值是练习5:θ为锐角,求y=sin θcos 2θ的最大值.(]22t t 2.a t 0,2,a ( )t 9t 12141A.,1 B.,1 C., .,6136136D +≤≤∈+⎡⎤⎡⎤⎡⎤⎡⎢⎥⎢⎥⎢⎥⎢⎣⎦⎣⎦⎣⎦⎣例7若不等式在上恒成立则的取值范围是16:x a 51x ,xa ________.+>-+练习不等式对于一非零实数均成立则实数的取值范围是三高考回顾例8(2010·新课标全国卷,理)(本小题满分10分)设函数f(x)=|2x-4|+1.(1)画出函数y=f(x)的图像;(2)若不等式f(x)≤ax的解集非空,求a的取值范围.例9 (2010·福建卷,理)已知函数f(x)=|x-a|.①若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;②在①的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.四 家庭作业一、选择题1(2011年重庆理高考题7)已知a >0,b >0,a+b=2,则y=14a b +的最小值是 A .72 B .4 C . 92 D .52.(2011年全国高考大纲理3)下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b +>B .1a b ->C .22a b >D .33a b >3(2011年上海高考题理15)若,a b R ∈,且0ab >,则下列不等式中,恒成立的是A .222a b ab +>B.a b +≥C .D 11a b+>D .2b aa b +≥4.设a>0,b>0,下列不等式中不成立的是2222b aA. 2B.a b 2ab a bb a 112C.a b D.2a b a b a b+≥+≥+≥++≥++5.设a,b,c 是互不相等的正数,则下列等式中不恒成立的是2211A.a b a c b cB.a a a a1C.a b a b-≤-+-+≥+-+≥≤-6.函数y=|x+1|-|x-1|的最大值是( ) A.1 B.2 C.-2 D.不存在7.设a,b ∈R,a 2+2b 2=6,则a+b 的最小值为7A. C. 3 D.32---- 8.不等式|x-1|+|x+2|≥5的解集为( )A.(,2][2,) .(,1][2,).(,2][3,) .(,3][2,)B C D -∞-+∞-∞-+∞-∞-+∞-∞-+∞9.设a>1,方程|x+log a x|=|x|+|log a x|的解是( )A.0≤x ≤1B.x ≥1C.x ≥aD.0<x ≤a 二、填空题x 110.(2009)1________.x 2+≥+广东不等式的实数解为 11.若5-x>7|x+1|与不等式ax 2+bx-2>0同解,而|x-a|+|x-b|≤k 的解集为空集,则k 的取值范围为________.12.设正数a,b,c,d 满足a+d=b+c,且|a-d|<|b-c|,则ad 与bc 的大小关系是________. 三、解答题22113.x,y ,x y,:2x 2y 3x 2xy y >+≥+-+已知均为正数且求证14.(2009·宁夏海南)如图,O 为数轴的原点,A,B,M 为数轴上三点,C 为线段OM 上的动点,设x 表示C 与原点的距离,y 表示C 到A 距离4倍与C 与B 的距离的6倍的和. (1)将y 表示成x 的函数;(2)要使y 的值不超过70,x 应该在什么范围内取值、答案:练习1解:ab-(ac+bc)=a(b-c)-bc,∵b<c,∴b-c<0,又a>0,∴a(b-c)<0, ∵b>0,c>0,∴bc>0,-bc<0,∴a(b-c)-bc<0,∴ab<ac+bc.例2(1)解析:∵|3-x |+|x -2|≥|3-x +(x -2)|=1,∴f (x )min =1.,答案:1 (2)解析:由题得|x-a|+|x-2|≥|(x-a)-(x-2)|=|a-2|,∴|a-2|≥1,解得a ∈(-∞,1]∪ 例3 【思路分析】 这四个小题分别代表四个基本类型.【解析】 (1)原不等式等价于-2<x -1<2,解得{x |-1<x <3}.(2)原不等式等价于x 2-1>3或x 2-1<-3,由x 2-1>3,得x >2或x <-2.由x 2-1<-3,得x 2<-2无解.∴原不等式的解集为{x |x >2或x <-2}.(3)原不等式等价于①x 2-2x +4<-2x 或②x 2-2x +4>2x.解①得无解,解②得x ≠2.∴原不等式的解集为{x|x ∈R 且x ≠2}.(4)原不等式等价于-14(3-2x)<x +6<14(3-2x).即⎩⎪⎨⎪⎧4x +24>2x -3,4x +24<3-2x.解之得-272<x<-72.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x|-272<x<-72例4练习3()()():,(),,,?.,x (,),,,.=+--+≤⎧⎪=+-=+<<⎨⎪-≥⎩⎛⎫=-+-<- ⎪⎝⎭f x 2x x 1f x 3x 1x 0f x 2x x 1x 10x 13x 1111y 22122x x 12133解析设作出函数的图象用数形结合法解不等式其图象如图它与直线交于点和所以不等式的解集是例5 证明:由|a-b|>c,|b-c|<a,,所以c-a<|a-b|-|b-c|≤|(a-b)+(b-c)|=|a-c|=|c-a| 由c-a<|c-a|知c-a<0,所以c<a. 例6 (1)(2)222211111111:x y x y 2x 2y 4,2y 2x 22x 2y 22x 2y 11x y 2y 2y 12x ,x y .2x 21y 2y ⎛⎫⎛⎫⎛⎫⎛⎫+++≥+++≥+= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎧+=+⎪⎪⎪===⎨⎪⎪=⎪⎩解析当即时取得最小值 练习5:2242222223max 1:y sin cos 2sin cos cos 212sin cos cos 4()23273232sin2cos2sin ,y .39θθθθθθθθθθθ==++≤====解当且仅当即时取等号此时例7 答案:B练习6 1:x 2,a 512,4a 6x+≥-+<<<解析因为所以解得 例8 【解析】 (1)由于f(x)=⎩⎪⎨⎪⎧-2x +5,x<2,2x -3,x ≥2,则函数y =f(x)的图象如图所示.(2)由函数y =f(x)与函数y =ax 的图象可知,当且仅当a ≥12或a<-2时,函数y =f(x)与函数y =ax 的图象有交点.故不等式f(x)≤ax 的解集非空时,a 的取值范围为(-∞,-2)∪[12,+∞).例9【解析】 解法一 ①由f(x)≤3得|x -a|≤3,解得a -3≤x ≤a +3.又已知不等式f(x)≤3的解集为{x|-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.②当a =2时,f(x)=|x -2|.设g(x)=f(x)+f(x +5),于是g(x)=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3;5,-3≤x ≤2;2x +1,x >2.所以当x <-3时,g(x)>5; 当-3≤x ≤2时,g(x)=5; 当x >2时,g(x)>5.综上可得,g(x)的最小值为5.从而,若f(x)+f(x +5)≥m 即g(x)≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].解法二 ①同解法一.②当a =2时,f(x)=|x -2|.设g(x)=f(x)+f(x +5).由|x -2|+|x +3|≥|(x -2)-(x -3)|=5(当且仅当-3≤x ≤2时等号成立)得,g(x)的最小值为5.从而,若f(x)+f(x +5)≥m 即g(x)≥m 对一切实数x 恒成立,则m 的取值范围是(-∞,5].家庭作业 答 1,【答案】C 2,【答案】A 3,答案:D , 4.答案:D5,1:C a b 2,a b 0a b-+≥-<-解析选项当时不成立.答案:C,6,解析:|x+1|-|x-1|≤|x+1-x+1|=2,故选B.7,22a b :1,a ,b ,63a b 3sin().a b 3,Cθθθθθϕ+===∴+==++-解析由已知得令即的最小值为故选,8,答案:D9,解析:由题可知x 与log a x 同号,,又x>0,∴log a x ≥0,∵a>1,∴x ≥1. 答案:B第 11 页 共 11 页 10,3:(,2)2,2⎛⎤-∞-⋃-- ⎥⎝⎦答案, 11.解析:不等式5-x>7|x+1|的解集为{x|-2<x<-14},则由根与系数关系可得a=-4,b=-9. 又知|x+4|+|x+9|≥|(x+4)-(x+9)|=5,,由题意可知k<5.12,解析:由0≤|a-d|<|b-c|,∴(a-d)2<(b-c)2,,∴(a+d)2-4ad<(b+c)2-4bc,∵a+b=b+c, ∴-4ad<-4bc,∴ad>bc.13,,14,解:(1)y=4|x-10|+6|x-20|,0≤x ≤30.()4x 106x 2070,2,x 0x 30..x .⎧-+-≤⎨≤≤⎩∈依题意满足解不等式组其解集为[9,23]所以。

相关文档
最新文档