不等关系与不等式基础+复习+习题+练习)

合集下载

不等式及不等式的性质复习题

不等式及不等式的性质复习题

不等式及不等式的性质复习题不等式及不等式的性质中考要求不等式基本性质:基本性质1:不等式两边都加上(或减去) 同一个数(或式子) ,不等号方向不变.如果a >b ,那么a ±c >b ±c如果a基本性质2:不等式两边都乘以(或除以) 同一个正数,不等号的方向不变.a b 如果a >b ,并且c >0,那么ac >bc (或>) c ca b 如果a 0,那么ac基本性质3:不等式两边都乘以(或除以) 同一个负数,不等号的方向改变.a b 如果a >b ,并且c如果a bc (或ax >b )易错点:不等式两边都乘(或除以) 同一个负数,不等号的方向改变.在计算的时候符号方向容易忘记改变.另外,不等式还具有互逆性和传递性.不等式的互逆性:如果a>b,那么bb.不等式的传递性:如果a>b,b>c,那么a>c.注意:⑴在不等式两边都乘以(或除以) 同一个负数,要改变不等号的方向.⑵在不等式两边不能乘以0,因为乘以0后不等式将变为等式,以不等式3>2为例,在不等式3>2两边都乘同一个数a 时,有下面三种情形:①如果a>0,那么3a>2a;②如果a=0时,那么3a=2a;③如果a一、不等式的基本概念【例1】用不等式表示数量的不等关系.⑴ a 是正数⑵ a 是非负数⑶ a 的相反数不大于1 ⑷ x 与y 的差是负数⑸ m 的4倍不小于8 ⑹ q 的相反数与q 的一半的差不是正数1⑺ x 的3倍不大于x 的⑻ a 不比0大 3【例2】用不等式表示:12⑴ x 的与6的差大于2;⑵ y 的与4的和小于x ; 351⑶ a 的3倍与b 的的差是非负数;⑷ x 与5的和的30%不大于-2. 2【例3】下列各式中,是一元一次不等式的为( )1A .5x =10 B .5x +y >10 C .5x 2>10 D .>2 E .5x >10 x【例4】关于x 的某个不等式组的解集在数轴上表示为如图,则不等式组的解集为__________.【例5】用不等式表示下列数量关系(1)代数式4x +3的值不大于2;(2)m 和n 的和是非负数。

(压轴题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试(含答案解析)(3)

(压轴题)高中数学高中数学选修4-5第一章《不等关系与基本不等式》测试(含答案解析)(3)

一、选择题1.若0,0,0a b m n >>>>,则a b ,b a ,b m a m ++,a n b n++按由小到大的顺序排列为( ) A .b b m a n a a a m b n b ++<<<++ B .b a n b m a a b n a m b ++<<<++ C .b b m a a n a a m b b n++<<<++ D .b a a n b m a b b n a m++<<<++ 2.已知函数22()x x af x x-+=,若[2,)x ∈+∞,()0f x >,则实数a 的取值范围是( ). A .(,0)-∞ B .(0,)+∞ C .[0,)+∞ D .(1,)+∞3.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+4.已知x ,y ∈R ,且0x y >>,则( ) A .11x y> B .11()()22xy<C .1122x y <D .sin sin x y >5.若a 、b 、c ,d ∈R ,则下面四个命题中,正确的命题是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,则ac 2>bc 2 D .若a >b ,c >d ,则ac >bd 6.下列命题中错误..的是( ) A .若,a b b c >>,则a c > B .若0a b >>,则ln ln b a < C .若a b >,则22a b > D .若a b >, 则22ac bc > 7.若a >b ,c 为实数,下列不等式成立是()A .ac >bcB .ac <bcC . 22ac bc >D . 22ac bc8.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y->D .ln x +ln y >09.不等式536x x -++≥的解集是 ( ) A .[]5,7- B .(),-∞+∞C .()(),57,-∞-+∞ D .[]4,6-10.已知a ,b R ∈,且a b >,则下列不等式恒成立的是( )A .22a b >B .lg()0a b ->C .11()()22ab<D .1a b> 11.若,则下列结论不正确的是A .B .C .D .12.实数,a b 满足0a b >>,则下列不等式成立的是( ) A .1a b< B .1133a b<C a b a b <-.2a ab <二、填空题13.已知实数a ,b ,c 满足a >c ﹣2且1333abc++<,则333a bc-的取值范围是_______.14.已知不等式116a x y x y+≥+对任意正实数,x y 恒成立,则正实数a 的最小值为_______. 15.已知R a ∈,若关于x 的方程2210x x a a -+++=有实根,则a 的取值范围是__________.16.已知,,a b c R +∈,设a b c S b c a c a b=+++++,则S 与1的大小关系是__________.(用不等号连接) 17.已知ln ln x y <,则21x y y x-++的最小值为___________________. 18.设5x >,45P x x --23Q x x --,则P 与Q 的大小关系是P ______Q .19.设()f x x a x =-+,且|()|2f x ≤在[1,1]x ∈-上恒成立,则实数a 的取值范围为_________.20.定义运算x ·y ,,1,,x x y m y x y ≤⎧=-⎨>⎩若·m=|m-1|,则m 的取值范围是_____. 三、解答题21.已知函数()|21||23|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若关于x 的不等式22()log (3)2f x a a -->恒成立,求实数a 的取值范围. 22.(1)解不等式:1|1||2|2x x --->; (2)设集合P 表示不等式121x x a -+->对任意x ∈R 恒成立的a 的集合,求集合P ; (3)设关于x 的不等式22||200ax x a +--<的解集为A ,试探究是否存在a ∈N ,使得不等式.220x x +-<与|212x x -<+的解都属于A ,若不存在,说明理由.若存在,请求出满足条件的a 的所有值.23.(1)已知a <b <c ,且a +b +c =0,证明:a a a cb c--<. (224.已知数列{}n a 满足:12a =,1122n n n a a ++=+,*n N ∈.(1)求证2n n a ⎧⎫⎨⎬⎩⎭是等差数列并求n a ; (2)求数列{}n a 的前n 项和n S ; (3)求证:2132431111112n n a a a a a a a a ++++⋅⋅⋅+<----. 25.比较log (1) n n +与()*(1)log (2),2n n n N n ++∈≥大小,并证明.26.(1)若0a >,0b >,求证:11()4a b a b ⎛⎫++≥ ⎪⎝⎭; (2【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据不等式的性质,利用怍差法求解. 【详解】()()()-++---==+++b a m b b m ba bm ab am a a m a a m a a m , 因为0,0a b m >>>,所以()()0-<+b a m a a m ,所以b b m a a m+<+, ()()()()()()()()22b a b a b a n m b m a n b bn bm mn a am an nm a m b n a m b n a m b n +-+-++++++-----==++++++,因为0,0,0a b m n >>>>,所以()()()()()()0+-+-+<++b a b a b a n m a m b n ,所以++<++b m a na mb n, ()()()-++---==+++b a na n a ab bn ab an b n b b b n b b n , 因为0,0>>>a b n ,所以()()0-<+b a n b b n ,所以a n ab n b+<+, 所以b b m a n a a a m b n b ++<<<++。

3.1不等关系与不等式(二)

3.1不等关系与不等式(二)

(5) a b, c 0 ac bc ;
a b, c 0 ac bc
(6) a b 0, c d 0 ac bd
(7) a b 0, n N , n 1
a b , a
n n n n
*
b
(8) a b 0 a b 0 a0b
3 成立的有________个.
练习:
5. 若a、b、c∈R,a>b,则下列不等式 成立的是 ( C )
A. C. 1 a a c 1
2

1 b b c 1
2
B. a b
2
2
D. a c b c
练习:
6. 若、 满足 的取值范围是(

2


2
, 则
A. b a C. a b1 a 1 1 b b 1 a B. a D. 1 a 2a b a 2b a b b 1 b
练习:
4. 有以下四个条件: (1) b>0>a; (2) 0>a>b; (3) a>0>b; (4) a>b>0.
其中能使
1 a

1 b
1 b 1 b 1 a

1 a 1 a
0 0 1 b
0
讲解范例:
c c 例1. 已知 a b 0, c 0, 求证: . a b
讲解范例:
例2. 如果30<x<42,16<y<24,
求x+y,x-2y及
x y
的取值范围.
讲解范例:
例3. 已知

2

2

基本性质1 不等式两边都加上(或减去)同 一个数或同一个整式,不等号的方向不变.

第一章不等关系与基本不等式 (1)

第一章不等关系与基本不等式 (1)

D.ad与bc大小不定源自②对所有x,y∈[0,1],且x≠y,有|f(x)-f(y)|<|x-y|. 若对所有x,y∈[0,1],|f(x)-f(y)|<k恒成立,则k的最小值为( ) A. C. B. D.
解析 先利用特值法确定范围,再结合函数的取值特性求解. 取y=0,则|f(x)-f(0)|<|x-0|,即|f(x)|<x, 取y=1则|f(x)-f(1)|<|x-1|, 即|f(x)|<(1-x).∴|f(x)|+|f(x)|<x+-x=,∴|f(x)|<.不妨取f(x)≥0,则0≤f(x)<,0 ≤f(y)<,∴|f(x)-f(y)|<-0=, 要使|f(x)-f(y)|<k恒成立,只需k≥. ∴k的最小值为. 答案 B 二、填空题 6.已知-2≤a≤3,-3<b<4,则a-|b|的取值范围为_____________________. 解析 ∵-3<b<4,∴0≤|b|<4,-4<-|b|≤0, 又-2≤a≤3,∴-6<a-|b|≤3. 答案 (-6,3] 7.x,y∈R,若|x|+|y|+|x-1|+|y-1|≤2,则x+y的取值范围为________. 解析 利用绝对值的几何意义求解,注意等号成立的条件.由绝对值的几何意
解析 利用绝对值的几何意义分类讨论,根据解析式特征确定函数最小值点 进而求a. (1)当-1≤-,即a≤2时, f (x )= 易知函数f(x)在x=-处取最小值,即1-=3. 所以a=-4. (2)当-1>-,即a>2时, f (x )= 易知函数f(x)在x=-处取最小值,即-1=3,故a=8.综上a=-4或8. 答案 D 3.如果存在实数x,使cos ±=+成立,那么实数x的集合是( ) A.{-1,1} C.{x|x>0,或x=-1} 解析 由|cos ±|≤1,所以≤1. 又=+≥1. ∴+=1,当且仅当|x|=1时成立,即x=±1. 答案 A 4.正数a、b、c、d满足a+d=b+c,|a-d|<|b-c|,则( ) A.ad=bc B.ad<bc B.{x|x<0,或x=1} D.{x|x≤-1,或x≥1}

不等关系练习含答案

不等关系练习含答案

不等关系一、选择题1.(2014·四川理,4)若a>b>0,c<d<0,则一定有( )A.ac>bdB.ac<bdC.ad>bcD.ad<bc[答案] D[解析] 本题考查不等式的性质,ac-bd=ad-bccd,cd>0,而ad-bc的符号不能确定,所以选项A、B不一定成立.ad-bc=ac-bddc,dc>0,由不等式的性质可知ac<bd,所以选项D成立.2.如果a∈R,且a2+a<0,那么a,a2,-a,-a2的大小关系为( ) A.a2>a>-a2>-a B.-a>a2>-a2>aC.-a>a2>a>-a2D.a2>-a>a>-a2[答案] B[解析] 因为a2+a<0,所以a2<-a,a<-a2,又由于a≠0,∴-a2<a2,即a<-a2<a2<-A.故选B.3.设a,b∈R,若a-|b|>0,则下列不等式中正确的是( )A.b-a>0 B.a3+b3<0C.a2-b2<0 D.b+a>0[答案] D[解析] 利用赋值法:令a=1,b=0排除A,B,C,选D.4.若a>b>c,a+2b+3c=0,则( )A.ab>ac B.ac>bcC.ab>bc D.a|b|>c|b|[答案] A[解析] ∵a>b>c且a+2b+3c=0,∴a>0,c<0.又∵b>c且a>0,∴ab>aC.选A.5.若-1<α<β<1,则下面各式中恒成立的是( )A.-2<α-β<0 B.-2<α-β<-1C.-1<α-β<0 D.-1<α-β<1[答案] A[解析] 由题意得-1<α<1,-1<-β<1,α-β<0,故-2<α-β<2且α-β<0,故-2<α-β<0,因此选A.6.如果a>0,且a≠1,M=log a(a3+1),N=log a(a2+1),那么( ) A.M>N B.M<NC.M=N D.M、N的大小无法确定[答案] A[解析] 当a>1时a3+1>a2+1,y=log a x单增,∴loga(a3+1)>log a(a2+1).当0<a<1时a3+1<a2+1,y=log a x单减.∴log a(a3+1)>log a(a2+1),或对a取值检验.选A.二、填空题7.如果a>b,那么下列不等式:①a3>b3;②1a<1b;③3a>3b;④lg a>lg B.其中恒成立的是________.[答案] ①③[解析] ①a3-b3=(a-b)(a2+b2+ab)=(a-b)[(a+b2)2+34b2]>0;③∵y=3x是增函数,a>b,∴3a>3b当a>0,b<0时,②④不成立.8.设m=2a2+2a+1,n=(a+1)2,则m、n的大小关系是________.[答案] m≥n[解析] m-n=2a2+2a+1-(a+1)2=a2≥0.三、解答题9.有粮食和石油两种物质,可用轮船与飞机两种方式运输,每天每艘轮船和每架飞机的运输效果如下表:机架数所满足的所有不等关系的不等式.[解析] 设需安排x 艘轮船和y 架飞机,则⎩⎨⎧300x +150y ≥2 000250 x +100 y ≥1 500x ≥0y ≥0,∴⎩⎨⎧6x +3y ≥405x +2y ≥30x ≥0y ≥0.10.(1)已知a >b ,e >f ,c >0.求证:f -ac <e -bC . (2)若bc -ad ≥0,bd >0.求证:a +b b ≤c +dd. [证明] (1)∵a >b ,c >0,∴ac >bc ,∴-ac <-bc ,∵f <e ,∴f -ac <e -bC . (2)∵bc -ad ≥0,∴ad ≤bc , 又∵bd >0,∴a b ≤cd, ∴a b +1≤c d+1, ∴a +b b ≤c +dd.。

高中不等式基本知识点和练习题(含答案)

高中不等式基本知识点和练习题(含答案)

不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系;不等式的主要性质:(1)对称性: (2)传递性:a b b a <⇔>ca cb b a >⇒>>,(3)加法法则:;(同向可加)c b c a b a +>+⇒>d b c a d c b a +>+⇒>>,(4)乘法法则:; bc ac c b a >⇒>>0,bcac c b a <⇒<>0,(同向同正可乘)bd ac d c b a >⇒>>>>0,0(5)倒数法则: (6)乘方法则:b a ab b a 110,<⇒>>)1*(0>∈>⇒>>n N n b a b a n n 且(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式的解集:()00022≠<++>++a c bx ax c bx ax 或设相应的一元二次方程的两根为,,则不等式的解的各种情()002≠=++a c bx ax 2121x x x x ≤且、ac b 42-=∆况如下表:2、简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。

()()()如:x x x +--<1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。

不等关系与不等式(含解析)

不等关系与不等式(含解析)

不等关系与不等式班级___________ 姓名_____________ 学号__________层级一 学业水平达标1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤4002.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <03.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bdD .若a 2>b 2,则-a <-b4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( ) A .M >N B .M <N C .M =ND .不确定6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.7.比较大小:a 2+b 2+c 2________2(a +b +c )-4.8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).9.(1)若a <b <0,求证:b a <ab ; (2)已知a >b ,1a <1b ,求证:ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -12.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<14.有一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x ,y ,z ,则下列选项中能反映x ,y ,z 关系的是( )A .x +y +z =65B.⎩⎪⎨⎪⎧x +y +z =65,x >y >z ,x ,y ,z ∈N *C.⎩⎪⎨⎪⎧x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N*D.⎩⎪⎨⎪⎧x +y +z =65,x <65,y <65,z <65,x ,y ,z ∈N*5.已知|a |<1,则11+a与1-a 的大小关系为________. 6.设a ,b 为正实数,有下列命题: ①若a 2-b 2=1,则a -b <1; ②若1b -1a =1,则a -b <1; ③若|a -b |=1,则|a -b |<1; ④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号). 7.比较a 2+b 2与2(2a -b )-5的大小;答案解析1.李辉准备用自己节省的零花钱买一台学习机,他现在已存60元.计划从现在起以后每个月节省30元,直到他至少有400元.设x 个月后他至少有400元,则可以用于计算所需要的月数x 的不等式是( )A .30x -60≥400B .30x +60≥400C .30x -60≤400D .30x +40≤400解析:选B x 月后他至少有400元,可表示成30x +60≥400. 2.若abcd <0,且a >0,b >c ,d <0,则( ) A .b <0,c <0 B .b >0,c >0 C .b >0,c <0D .0<c <b 或c <b <0解析:选D 由a >0,d <0,且abcd <0,知bc >0, 又∵b >c ,∴0<c <b 或c <b <0.3.已知:a ,b ,c ,d ∈R ,则下列命题中必成立的是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,c <d ,则a c >bd D .若a 2>b 2,则-a <-b解析:选B 选项A ,若a =4,b =2,c =5,显然不成立,选项C 不满足倒数不等式的条件,如a >b >0,c <0<d 时,不成立;选项D 只有a >b >0时才可以.否则如a =-1,b =0时不成立,故选B.4.设α∈⎝⎛⎭⎫0,π2,β∈⎣⎡⎦⎤0,π2,则2α-β3的范围是( ) A.⎝⎛⎭⎫0,56π B.⎝⎛⎭⎫-π6,56π C.()0,πD.⎝⎛⎭⎫-π6,π 解析:选D 0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,由同向不等式相加得到-π6<2α-β3<π.5.已知M =2x +1,N =11+x 2,则M ,N 的大小关系为( ) A .M >N B .M <N C .M =ND .不确定 解析:选A ∵2x >0,∴M =2x +1>1,而x 2+1≥1, ∴11+x 2≤1,∴M >N ,故选A. 6.某校高一年级的213名同学去科技馆参观,租用了某公交公司的x 辆公共汽车.如果每辆车坐30人,则最后一辆车不空也不满.则题目中所包含的不等关系为________.解析:根据题意得:⎩⎪⎨⎪⎧30(x -1)<213,30x >213.答案:⎩⎪⎨⎪⎧30(x -1)<213,30x >2137.比较大小:a 2+b 2+c 2________2(a +b +c )-4. 解析:a 2+b 2+c 2-[2(a +b +c )-4] =a 2+b 2+c 2-2a -2b -2c +4=(a -1)2+(b -1)2+(c -1)2+1≥1>0, 故a 2+b 2+c 2>2(a +b +c )-4. 答案:>8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).解析:∵z =-12(x +y )+52(x -y ),-2≤-12(x +y )≤12,5≤52(x -y )≤152,∴3≤-12(x +y )+52(x -y )≤8,∴z 的取值范围是[3,8]. 答案:[3,8]9.(1)若a <b <0,求证:b a <ab ;(2)已知a >b ,1a <1b ,求证:ab >0. 证明:(1)由于b a -a b =b 2-a 2ab =(b +a )(b -a )ab , ∵a <b <0,∴b +a <0,b -a >0,ab >0, ∴(b +a )(b -a )ab <0,故b a <ab .(2)∵1a <1b ,∴1a -1b<0,即b -aab <0,而a >b ,∴b -a <0,∴ab >0.层级二 应试能力达标1.若x ∈R ,y ∈R ,则( ) A .x 2+y 2>2xy -1 B .x 2+y 2=2xy -1 C .x 2+y 2<2xy -1D .x 2+y 2≤2xy -1解析:选A 因为x 2+y 2-(2xy -1)=x 2-2xy +y 2+1=(x -y )2+1>0,所以x 2+y 2>2xy-1,故选A.2.已知a 1∈(0,1),a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .M ≥N解析:选B ∵a 1∈(0,1),a 2∈(0,1),∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0,∴M >N ,故选B.3.若-1<α<β<1,则下列各式中恒成立的是( ) A .-2<α-β<0 B .-2<α-β<-1 C .-1<α-β<0D .-1<α-β<1解析:选A 由-1<α<1,-1<β<1,得-1<-β<1, ∴-2<α-β<2.又∵α<β,故知-2<α-β<0.4.有一家三口的年龄之和为65岁,设父亲、母亲和小孩的年龄分别为x ,y ,z ,则下列选项中能反映x ,y ,z 关系的是( )A .x +y +z =65B.⎩⎪⎨⎪⎧x +y +z =65,x >y >z ,x ,y ,z ∈N *C.⎩⎪⎨⎪⎧x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N*D.⎩⎪⎨⎪⎧x +y +z =65,x <65,y <65,z <65,x ,y ,z ∈N*解析:选C 由题意得x +y +z =65,x >z >0,y >z >0,x ,y ,z ∈N *.故选C. 5.已知|a |<1,则11+a与1-a 的大小关系为________. 解析:由|a |<1,得-1<a <1. ∴1+a >0,1-a >0. 即11+a 1-a =11-a 2∵0<1-a 2≤1,∴11-a 2≥1,∴11+a≥1-a . 答案:11+a≥1-a 6.设a ,b 为正实数,有下列命题:①若a 2-b 2=1,则a -b <1; ②若1b -1a =1,则a -b <1;③若|a -b |=1,则|a -b |<1; ④若|a 3-b 3|=1,则|a -b |<1.其中正确的命题为________(写出所有正确命题的序号).解析:对于①,由题意a ,b 为正实数,则a 2-b 2=1⇒a -b =1a +b ⇒a -b >0⇒a >b >0,故a +b >a -b >0.若a -b ≥1,则1a +b ≥1⇒a +b ≤1≤a -b ,这与a +b >a -b >0矛盾,故a-b <1成立.对于②,取特殊值,a =3,b =34,则a -b >1.对于③,取特殊值,a =9,b =4时,|a -b |>1. 对于④,∵|a 3-b 3|=1,a >0,b >0, ∴a ≠b ,不妨设a >b >0. ∴a 2+ab +b 2>a 2-2ab +b 2>0, ∴(a -b )(a 2+ab +b 2)>(a -b )(a -b )2. 即a 3-b 3>(a -b )3>0, ∴1=|a 3-b 3|>(a -b )3>0, ∴0<a -b <1, 即|a -b |<1.因此正确. 答案:①④7.(1)比较a 2+b 2与2(2a -b )-5的大小; (2)已知a ,b ∈(0,+∞),求证:a a b b ≥(ab )2+a b ,当且仅当a =b 时等号成立.解:(1)∵a 2+b 2-[2(2a -b )-5]=(a -2)2+(b +1)2≥0, ∴a 2+b 2≥2(2a -b )-5,当且仅当a =2,b =-1时,等号成立.。

(易错题精选)初中数学方程与不等式之不等式与不等式组基础测试题附答案解析(1)

(易错题精选)初中数学方程与不等式之不等式与不等式组基础测试题附答案解析(1)

(易错题精选)初中数学方程与不等式之不等式与不等式组基础测试题附答案解析(1)一、选择题1.a 的一半与b 的差是负数,用不等式表示为( )A .102a b -< B .102a b -≤ C .()102a b -< D .102a b -< 【答案】D【解析】【分析】列代数式表示a 的一半与b 的差,是负数即小于0. 【详解】解:根据题意得102a b -< 故选D .【点睛】 本题考查了列不等式,首先要列出表示题中数量关系的代数式,再由不等关系列不等式.2.不等式的解集在数轴上表示正确的是( )A .B .C .D .【答案】C【解析】【分析】 先解不等式,根据解集确定数轴的正确表示方法.【详解】解:不等式2x+1>-3,移项,得2x >-1-3,合并,得2x >-4,化系数为1,得x >-2.【点睛】本题考查解一元一次不等式,注意不等式的性质的应用.3.若x 2+在实数范围内有意义,则x 的取值范围在数轴上表示正确的是( ) A .B .C .D . 【答案】D【解析】【分析】根据二次根式有意义的条件:被开方数为非负数可得x+2≥0,再解不等式即可.【详解】2x +∴被开方数x+2为非负数,∴x+2≥0,解得:x≥-2.故答案选D.【点睛】本题考查了二次根式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件.4.关于x 的不等式组()02332x m x x ->⎧⎨-≥-⎩恰有五个整数解,那么m 的取值范围为( ) A .21m -≤<-B .21m -<<C .1m <-D .2m ≥-【答案】A【解析】【分析】先求出不等式组的解集,然后结合有五个整数解,即可求出m 的取值范围.【详解】 解:()02332x m x x ->⎧⎨-≥-⎩解不等式①,得:x m >,解不等式②,得:3x ≤,∴不等式组的解集为:3m x <≤,∵不等式组恰有五个整数解,∴整数解分别为:3、2、1、0、1-;∴m 的取值范围为21m -≤<-;【点睛】本题考查了解不等式组,根据不等式组的整数解求参数的取值范围,解题的关键是正确求出不等式组的解集,从而求出m 的取值范围.5.若不等式组0,122x a x x -≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .a >-1B .a≥-1C .a≤1D .a <1【答案】D【解析】【分析】首先分别解出两个不等式的解集,再根据解集的规律:大小小大中间找,确定a 的取值范围是a <1.【详解】 解:0122x a x x -≥⎧⎨->-⎩①②, 由①得:x≥a ,由②得:x <1,∵不等式组有解,∴a <1,故选:D .【点睛】此题主要考查了一元一次不等式组的解法,关键是正确解出两个不等式的解集,掌握确定不等式组解集的方法.6.若a b >,则下列不等式中,不成立的是( )A .33a b ->-B .33a b ->-C .33a b > D .22a b -+<-+ 【答案】A【解析】【分析】 根据不等式的性质进行判断即可.【详解】解:A 、根据不等式的性质3,不等式的两边乘以(-3),可得-3a <-3b ,故A 不成立; B 、根据不等式的性质1,不等式的两边减去3,可得a-3>b-3,故B 成立;C 、根据不等式的性质2,不等式的两边乘以13,可得33a b >,故C 成立;D 、根据不等式的性质3,不等式的两边乘以(-1),可得-a <-b ,再根据不等式的性质1,不等式的两边加2,可得-a+2<-b+2,故D 成立.故选:A.【点睛】本题主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.7.若x y >,则下列各式正确的是( )A .0x y -<B .11x y -<-C .34x y +>+D .xm ym >【答案】B【解析】【分析】根据不等式的基本性质解答即可.【详解】由x >y 可得:x-y >0,1-x <1-y ,x+3>y+3,故选:B .【点睛】此题考查不等式的性质,熟练运用不等式的性质是解题的关键.8.不等式组21512x x ①②->⎧⎪⎨+≥⎪⎩中,不等式①和②的解集在数轴上表示正确的是( ) A .B .C .D .【答案】C【解析】分析:根据解一元一次不等式组的一般步骤解答,并把解集表示在数轴上,再作判断即可. 详解:解不等式①,得:x 1<;解不等式②,得:x 3≥-;∴原不等式组的解集为:3x 1-≤<,将解集表示在数轴上为:故选C.点睛:掌握“解一元一次不等式组的解法和将不等式的解集表示在数轴上的方法”是解答本题的关键.9.若a b <,则下列变形错误的是( )A .22a b <B .22a b +<+C .1122a b <D .22a b -<- 【答案】D【解析】【分析】根据不等式的性质解答.【详解】∵a b <,∴22a b <,故A 正确;∵a b <,∴22a b +<+,故B 正确;∵a b <,∴1122a b <,故C 正确; ∵a b <,∴2-a>2-b ,故D 错误,故选:D.【点睛】此题考查不等式的性质,熟记性质定理并运用解题是关键.10.运行程序如图所示,规定:从“输入一个值”到”结果是否“为一次程序操作.如果程序操作进行了三次才停止,那么x 的取值范围是( )A .11x ≥B .1123x ≤≤C .1123x <≤D .23x ≤【答案】C【解析】【分析】根据运算程序,前两次运算结果小于等于95,第三次运算结果大于95列出不等式组,然后求解即可.【详解】解依题意得:()()219522119522211195x x x ⎧+≤⎪⎪++≤⎨⎪⎡⎤+++>⎪⎣⎦⎩①②③ 解不等式①得,x≤47,解不等式②得,x≤23,解不等式③得,x >11,所以,x 的取值范围是11<x≤23.故选:C .【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运输程序并列出不等式组是解题的关键.11.某商品进价为800元,出售时标价为1200元,后来商店准备打折出售,但要保持利润率不低于20%,则最多打( )折.A .6折B .7折C .8折D .9折【答案】C【解析】【分析】设打了x 折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.【详解】解:设打了x 折,由题意得,1200×0.1x ﹣800≥800×20%,解得:x≥8.答:至多打8折.故选:C【点睛】本题考查一元一次不等式的应用,正确理解利润率的含义,理解利润=进价×利润率,是解题的关键.12.若关于x 的不等式组0521x a x -⎧⎨-<⎩…的整数解只有3个,则a 的取值范围是( ) A .6≤a <7B .5≤a <6C .4<a ≤5D .5<a ≤6【答案】B【解析】【分析】根据解不等式可得,2<x ≤a ,然后根据题意只有3个整数解,可得a 的范围.【详解】解不等式x ﹣a ≤0,得:x ≤a ,解不等式5﹣2x <1,得:x >2,则不等式组的解集为2<x ≤a .∵不等式组的整数解只有3个,∴5≤a <6.故选:B .【点睛】本题主要考查不等式的解法,根据题意得出a 的取值范围是解题的关键.13.若不等式组236x x x m -<-⎧⎨<⎩无解,那么m 的取值范围是( ) A .m >2B .m <2C .m ≥2D .m ≤2 【答案】D【解析】【分析】先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m 的取值范围.【详解】解:236x x x m -<-⎧⎨<⎩②①由①得,x >2,由②得,x <m ,又因为不等式组无解,所以根据“大大小小解不了”原则,m ≤2.故选:D .【点睛】此题考查解一元一次不等式组,解题关键在于掌握求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.14.关于x 的不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,则a 的取值范围是( )A .3a <B .23a <≤C .23a ≤<D .23a <<【答案】C【解析】【分析】 此题可先根据一元一次不等式组解出x 的取值范围,再根据不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,求出实数a 的取值范围.【详解】 解:由不等式113x -≤,可得:x ≤4, 由不等式a ﹣x <2,可得:x >a ﹣2, 由以上可得不等式组的解集为:a ﹣2<x ≤4, 因为不等式组1132x a x -⎧≤⎪⎨⎪-<⎩恰好只有四个整数解,所以可得:0≤a ﹣2<1,解得:2≤a <3,故选C .【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.根据原不等式组恰有4个整数解列出关于a 的不等式是解答本题的关键.15.已知关于x 的不等式4x a 3+>1的解都是不等式2x 13+>0的解,则a 的范围是( ) A .a 5=B .a 5≥C .a 5≤D .a 5< 【答案】C【解析】【分析】先把a 看作常数求出两个不等式的解集,再根据同大取大列出不等式求解即可.【详解】 由413x a +>得,34a x ->, 由210,3x +> 得,1,2x >- ∵关于x 的不等式413x a +>的解都是不等式2103x +>的解, ∴3142a -≥-, 解得 5.a ≤即a 的取值范围是: 5.a ≤故选:C.【点睛】考查不等式的解析,掌握一元一次不等式的求法是解题的关键.16.如果不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,m 的取值范围为( ) A .m <4B .m ≥4C .m ≤4D .无法确定 【答案】C【解析】【分析】表示出不等式组中第一个不等式的解集,根据不等式组的解集确定出m 的范围即可.【详解】解不等式﹣x+2<x ﹣6得:x >4,由不等式组26x x x m -+<-⎧⎨>⎩的解集为x >4,得到m≤4, 故选:C .【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.17.下列不等式变形正确的是( )A .由a b >,得22a b -<-B .由a b >,得22a b -<-C .由a b >,得a b >D .由a b >,得22a b > 【答案】B【解析】【分析】根据不等式的基本性质结合特殊值法逐项判断即可.【详解】解:A 、由a >b ,不等式两边同时减去2可得a-2>b-2,故此选项错误;B 、由a >b ,不等式两边同时乘以-2可得-2a <-2b ,故此选项正确;C 、当a >b >0时,才有|a|>|b|;当0>a >b 时,有|a|<|b|,故此选项错误;D 、由a >b ,得a 2>b 2错误,例如:1>-2,有12<(-2)2,故此选项错误. 故选:B .【点睛】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.18.如图,不等式组315215x x --⎧⎨-<⎩…的解集在数轴上表示为( ) A . B .C .D .【答案】C【解析】【分析】根据解一元一次不等式组的步骤:先解第一个不等式,再解第二个不等式,然后在数轴上表示出两个解集找公共部分即可.【详解】由题意可知:不等式组315215xx①②--⎧⎨-<⎩…,不等式①的解集为2x≥-,不等式②的解集为3x<,不等式组的解集为23x-≤<,在数轴上表示应为.故选C.【点睛】本题主要考查了一元一次不等式组的解法,熟知和掌握不等式组解法的步骤和在数轴上表示解集是解题关键.19.若关于x的不等式x<a恰有2个正整数解,则a的取值范围为()A.2<a≤3B.2≤a<3 C.0<a<3 D.0<a≤2【答案】A【解析】【分析】结合题意,可确定这两个正整数解应为1和2,至此即可求出a的取值范围【详解】由于x<a恰有2个正整数解,即为1和2,故2<a≤3故正确答案为A【点睛】此题考查了不等式的整数解,列出关于a的不等式是解题的关键20.下列命题中逆命题是真命题的是()A.若a > 0,b > 0,则a·b > 0 B.对顶角相等C.内错角相等,两直线平行D.所有的直角都相等【答案】C【解析】【分析】先写出各命题的逆命题,再分别根据不等式的性质、对顶角、平行线的性质、角的概念逐项判断即可.【详解】A 、逆命题:若0a b ->,则0,0a b >>反例:2,1a b ==-时,2(1)0a b -=-->即此逆命题是假命题,此项不符题意B 、逆命题:如果两个角相等,那么这两个角是对顶角相等的角不一定是对顶角即此逆命题是假命题,此项不符题意C 、逆命题:两直线平行,内错角相等此逆命题是真命题,此项符合题意D 、逆命题:相等的角都是直角此逆命题是假命题,此项不符题意故选:C .【点睛】本题考查了不等式的性质、对顶角、平行线的性质、角的概念,熟记各性质与定义是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:不等式与不等关系
考纲要求:
①了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.
②了解不等式的常见性质.
教学重点:不等式的性质的灵活应用与两实数大小比较的方法.
教材复习
不等式的性质:①对称性:;②传递性:.
③可加性:;④加法性质:
⑤移项法则:⑥可乘性:;
⑦乘法性质:⑧乘方性质:
⑨开方性质:
⑩倒数法则:
主要方法:比较两数大小的一般方法是:作差比较法与作商比较法.
典例分析:
考点一:不等式的性质
问题1.若,,则下列命题:;;
;中能成立的个数是
问题2.已知,,求及的取值范围.
问题3.已知,,用不等式性质证明:.
考点二:比较数(式)的大小
问题4.若,试比较与的大小;
设,,且,试比较与的大小.
考点三:利用不等式表示不等关系
问题5.已知枝郁金香和枝丁香的价格最多元,而枝郁金香和枝丁香的价格不小于元.设郁金香、丁香的单价分别为元、元,则满足上述不等关系的不等式组为
课后作业:
已知,,那么的大小的关系是
已知满足且,则下列不等式中恒成立的是(填序号)①②③④
设,则“”是“”成立的
充分非必要条件必要非充分条件充要条件既不充分也不必要条件(济南练习)若,则下列不等式成立的是
(浙江六校联考)若,则“”是“”的
充分非必要条件必要非充分条件充要条件既不充分也不必要条件(泰安模拟)已知,若,则
走向高考:
(四川文)已知,,,为实数,且>.则“>”是“->-”的充分非必要条件必要非充分条件充要条件既不充分也不必要条件
(安徽文)“”是“且”的
必要不充分条件充分不必要条件充要条件既不充分也不必要条件
(北京)已知满足,且,那么下列选项中不一定成立的是
(上海春)若,则下列不等式成立的是
(江西)若,,则不等式等价于
或或或
(广东文)“”是“”成立的
充分非必要条件必要非充分条件既非充分也非必要条件充要条件
(湖南文)设,,给出下列三个结论:
①>②<③.
其中所有的正确结论的序号是①①②②③①②③(上海春)如果,那么下列不等式成立的是
(北京文)设,且,则。

相关文档
最新文档