第四章 液压缸(柱塞式)
液压 第四章液压缸

π (D − d )
2 2
4Leabharlann − p2πD4
2
2
= ( p1 − p2 )
πD
4
2
− p1
πd
4
因为: 因为:A无>A有 比较上述结果: 比较上述结果:v <v有,F无>F有
无
即活塞杆伸出时,速度较慢,推力较大; 即活塞杆伸出时,速度较慢,推力较大; 活塞杆缩回时,速度较快,推力较小。 活塞杆缩回时,速度较快,推力较小。 因此适用于伸出时承受工作载荷,缩回时为 因此适用于伸出时承受工作载荷, 空载或轻载场合。 空载或轻载场合。 速度比: 速度比:
二、柱塞式液压缸(单作用式) 柱塞式液压缸(单作用式)
特点: )柱塞与缸体不接触。 特点:1)柱塞与缸体不接触。 2 )柱塞重量大 水平安装时会下垂, 柱塞重量大,水平安装时会下垂 水平安装时会下垂, 引起单边磨损,故多垂直使用。 引起单边磨损,故多垂直使用。 3)柱塞工作时受恒压。 )柱塞工作时受恒压。 4)柱塞缸是单作用缸。为得到双向 )柱塞缸是单作用缸。 运动,常成对使用。 运动,常成对使用。
v有 D2 λv = = 2 v无 D − d 2
无
当活塞杆直径愈小时, 差值愈小。 当活塞杆直径愈小时,v 与v有差值愈小。
③差动连接: 差动连接: 当单杆缸两腔同时通入压力 油时,由于无杆腔的有效 由于无杆腔的有效 面积大于有杆腔的有效面 积,则活塞受到的向右的 作用力大于向左的作用力, 作用力大于向左的作用力, 活塞右移, 活塞右移,并将有杆腔的 油液挤出,流进无杆腔, 油液挤出,流进无杆腔, 加快活塞杆的右移速度。 加快活塞杆的右移速度。 这种连接方式称~。 这种连接方式称 。
其运动速度和推力的计算: 其运动速度和推力的计算:
第四章 液压缸

D2
4
( p1 p2 )
d2
4
p1 ]m
4F d 2 p1 D m ( p1 p2 ) p1 p2
※按国标圆整为标准尺寸。
(4).活塞杆直径 d
1)按λv 确定
D2 v 2 D d2
v 1 dD v
2)按工作压力确定
※按国标圆整为标准尺寸。
(2).速度和速比
qv 4qv v1 A1 D2 q 4qv v2 v A2 ( D 2 d 2 )
对速度要求高时:由v、q ,确定D ;或已知v、 D ,确定q 。 对速度没有要求:由q、D、d 确定v 。 v2、d 由速比λv 确定
D2 v2 2 速比:v v1 D d2
4.2液压缸的类型、特点和基本参数计算
液压缸的分类
按结构形式分: 活塞缸:又分单杆活塞缸、双杆活塞缸 柱塞缸:又分单柱塞缸和双柱塞缸 摆动缸:又分单叶片摆动缸、双叶片摆动缸 按作用方式分: 单作用液压缸: 一个方向的运动依靠液压作用力实 现,另一个方向依靠弹簧力、重力等实现; 双作用液压缸:两个方向的运动都依靠液压作用力来 实现; 复合式缸:活塞缸与活塞缸的组合、活塞缸与柱塞缸 的组合、活塞缸与机械结构的组合等。
3) 应用 两个方向力和速度一样的场合。
职能符号:
4)安装方式
双杆活塞缸根据安装方式不同又分为活塞杆固 定式和缸筒固定式两种。 注:本章所论及的液压缸,除特别指明外,均以 缸筒固定,活塞杆运动
{
缸固定 L=3 l 杆固定 L=2 l
l——活塞有效工作行程。
当缸筒固定时,运动部件移动范围是活塞 有效行程的三倍;当活塞杆固定时,运动部件 移动范围是活塞有效行程的两倍 。
液压缸原理

F Ap
4
(D2 d 2 ) p
v
q 1 (D 2 d 2 ) 4
式中:p-供油压力;A-活塞有效面积;q-供油量;d-活塞杆 直径;D-活塞直径。
2012-8 东昌学院· 机电工程系 8
2.单活塞杆液压缸
2012-8
东昌学院· 机电工程系
9
(1)结构特点:
这种液压缸的活塞只有一端从缸的端头伸出。其结构组 成与双活塞杆液压缸相似。
27
摆动式液压缸的输出扭矩和转速计算方法如下:
Mt
D 2 d 2
1 D 2 d 2 1 pbrdr pb[( ) ( ) ] pb( D 2 d 2 ) 2 2 2 8
1 pb( D 2 d 2 ) 8
由于存在摩擦, M<Mt
输出角速度:
M 所以机械效率为: Mt
为了实现双向往复运动,即实现两个方向的液压驱动,可 采用双柱塞缸并排安装的方案。
2012-8
东昌学院· 机电工程系
24
(6)柱塞只靠钢套支撑而不与缸体接触,这样缸筒易于加工, 故适于做长行程的液压缸。太长,有时需要加辅助导向机 构。
2012-8
东昌学院· 机电工程系
25
四、摆动式液压缸
摆动式液压缸是一种作往复旋转运动的执行元件。 符号:
1 2 扇形的面积(中心角α )为: F ( D d 2 ) 8
2012-8 东昌学院· 机电工程系 28
则摆动油缸(转子叶片)转过α 角所排出的液体体积为:
1 2 V (D d 2 )b 8
V 1 ( D 2 d 2 )b Qt t 8 t 1 2 ( D d 2 )b 8 Qt 2 ( D d 2 )b
第四章:液压缸(含习题答案)

d D 1 1
v
(3)活塞杆直径d也可按受力情况初选,然后根据校核最后确定。 表4-4 活塞杆直径的选取 活塞杆受力情况 受 拉 受压及拉 受压及拉 受压及拉 工作压力p/MPa — p≤5 5<p≤7 p>7 活塞杆直径d d = (0.3~0.5) D d = (0.5~0.55) D d = (0.6~0.7) D d = 0.7D
38-30
第三节 液压缸的设计和计算
液压缸设计步骤
一、液压缸工作压力的确定 根据负载计算工作压力,也可根据用途查表。 二、液压缸内径和活塞杆直径的确定 内径根据工作负载和工作压力确定。必要时校核强度。 三、液压缸其他部位尺寸的确定 四、液压缸的强度和刚度校核
38-31
第三节 液压缸的设计和计算
一、液压缸工作压力p的确定 F=pA
注意: ① v3>v1, v3>v2 ; F3<F1 ,F3<F2 ,差 动连接是一种减小推力而获得较高 速度的方法。 ② A1=2A2,则差动液压缸在左右两个 运动方向上速度相等时,推力也相 等。(向左运动:有杆腔通压力油 ,无杆腔排油回油箱)
q 4qVV v1 A1 πD 2
v2
4qVV q A2 π D 2 d 2
38-10
第一节 液压缸的类型及特点
二、柱塞式液压缸 单作用式液压缸大多是柱塞式的,单向液压驱动,靠外力回程。
推力:
π 2 F pA m p d m 4
输出速度:
qV V 4 qV V v A πd 2
液压缸

活塞式液压缸
活塞式液压缸由缸体、活塞和活塞杆、端盖等 主要部件组成。 活塞式液压缸通常有单杆和双杆两种形式。又 有缸体固定、活塞移动与活塞杆固定、缸体移动 两种运动方式。
双杆活塞缸
结构特点: 结构特点:活塞两侧均装有活塞杆,两侧有效 工作面积一样。
双杆活塞式液压缸, 双杆活塞式液压缸,活塞两侧都装有活 塞杆,由于两腔的有效面积相等, 塞杆,由于两腔的有效面积相等,故供油压力 和流量不变时, 和流量不变时,活塞往返的作用力和运动速度 都相等, 都相等,即 :
柱塞缸(单作用)
●单向液压驱动,回程靠外力(垂直放 置时的重力或弹簧的弹力等外力)。
柱塞上的作用力:
F = pA = p
π
4
d2
柱塞的速度:
v= q A = 4q
柱塞式液压缸
πd 2
双柱塞缸(两个柱塞缸合用)
●双向液压驱动
摆动式液压缸
•摆动式液压缸也称摆动马达。 当它通入液压油时, 它的主轴输出小于360°的摆动运动。
π 2 π 2 2 F2 = p1 A2 − p2 A1 = p1 ( D − d ) − p2 D 4 4 q 4q υ2 = = A2 π( D2 − d 2 )
比较两种形式,即无杆腔进油(活塞杆伸出) 时,推力大,速度低,有杆腔进油时(活塞杆缩 回),推力小,速度高。
适用于往返运动速度及推力不同的场合, 一个方向有较大负载但运行速度较低,另一 个方向空载快速退回。
气体的来源
气体对液压系统的影响
排气方法 1 、 排气孔 对要求不高的液压缸将油口设置在 液压缸最高处,使空气随油液排往油箱。 2 、 排气阀和排气塞 对速度平稳性要求高的液 压缸,则要求设置排气阀或排气塞排气。
第4章液压缸

第4章液压缸液压缸是液压系统的执行元件,它将液体的压力能转换成工作机构的机械能,用来实现直线往复运动或小于300o的摆动。
液压缸结构简单,配置灵活,设计、制造比较容易,使用维护方便,被广泛应用于各种机械设备中。
4.1 液压缸的类型、特点和基本参数计算液压缸按结构特点,分为活塞缸、柱塞缸、组合缸和摆动缸四类。
其中,活塞缸和柱塞缸用以实现直线运动,输出推力和速度;摆动缸用以实现小于300°的转动,输出转矩和角速度。
组合缸具有较特殊的结构和功用。
工程中以活塞缸应用最为广泛。
液压缸按作用方式和供油方向不同,可分为单作用式和双作用式两种。
单作用液压缸只能从一个方向供油,液压作用力只能使活塞(或柱塞)作单方向运动,反方向运动必须靠外力(如弹簧力或自重等)实现,如图4.1所示;双作用液压缸可从两个方向供油,由液压作用力实现两个方向的运动,如图4.2所示。
图4.1 单作用液压缸(a)无弹簧式(b)弹簧式(c)柱塞式图4.2 双作用液压缸(a)单杆式(b)双杆式4.1.1活塞式液压缸在缸体内作相对往复运动的组件为活塞的液压缸,称活塞缸。
活塞缸可分为双杆式和单杆式两种结构。
按其安装方式的不同,又分为缸体固定式和活塞杆固定式两种。
1.双杆活塞缸双杆活塞缸是活塞两端都带有活塞杆的液压缸,其工作原理如图4.3所示。
双杆活塞缸的特点是当两活塞杆直径相同,分别向两腔的供油压力和流量都相等时,活塞(或缸体)两个方向的运动速度和推力也都相等,即具有等推力、等速度特性。
因此,这种液压缸常用于要求往复运动速度和负载相同的场合,如各种磨床。
(a)(b)(c)图4.3双杆活塞缸(a)缸体固定(b)活塞杆固定(c)职能符号1-缸体2-活塞3-活塞杆4-工作台图4.3(a)为缸体固定式结构简图。
缸体1固定在机床床身上,工作台4与活塞杆3相连。
缸体的两端设有进、出油口,动力由活塞杆传出,进油腔位置与活塞运动方向相反。
当油液从a口进入缸左腔时,推动活塞2带动工作台向右运动,缸右腔中的油液从b口回油;反之,右腔进压力油,左腔回油时,活塞带动工作台向左运动。
简述柱塞式液压缸的工作原理和用途

简述柱塞式液压缸的工作原理和用途
柱塞式液压缸是一种常见的液压执行元件,它的工作原理是利用液压系统中的液体压力来推动柱塞行进,完成力的传递和动作。
柱塞式液压缸由柱塞、油缸、密封装置和连接件等组成。
油缸中装有液压油,当液压油通过管道进入柱塞的一侧时,压力会将柱塞推动向另一侧,从而产生线性运动。
柱塞的线性运动可用于推动其他机械部件,实现各种工作任务。
柱塞式液压缸的用途非常广泛。
它常见于各种工程机械、冶金设备、煤矿机械、船舶、农机等。
它可以用于举升、推拉、弯曲、剪切等工作,具有传动力大、动作平稳、响应迅速等优点。
同时,柱塞式液压缸具有自锁性能,即使在液压系统停止工作时,它也能保持位置不会发生位移。
因此,柱塞式液压缸在工业中有着广泛的应用。
液压-第04章液压执行元件

由于柱塞的瞬时方位角呈周期性变化,液压马达总
的输出转矩也周期性变化,所以液压马达输出的转矩是 脉动的,通常只计算马达的平均转矩。
Ft Ft Ft FN
Ft
F F
13
4.1.3 低速大扭矩液压马达
低速大扭矩液压马达是相对于高速马达而言的,通常 这类马达在结构形式上多为径向柱塞式,其特点是:最低转 速低,大约在5~10转/分;输出扭矩大,可达几万牛顿米; 径向尺寸大,转动惯量大。
动、制动、调速和换向。通常高速马达的输出转矩不
大,最低稳定转速较高,只能满足高速小扭矩工况。
9
柱塞式马达的工作原理
当压力油输入液压马达时,处于压力腔的柱塞被顶 出,压在斜盘上,斜盘对柱塞产生反力,该力可分解为 轴向分力和垂直于轴向的分力。其中,垂直于轴向的分 力使缸体产生转矩。
Ft Ft Ft Ft FN
由上式可见,液压马达的总效率亦同于液压泵的总效 率,等于机械效率与容积效率的乘积。
8
4.1.2
高速液压马达
一般来说,额定转速高于 500r/min 的马达属于高 速马达,额定转速低于 500r/min 的马达属于低速马达。
高速液压马达基本型式:齿轮式、叶片式和轴向 柱塞式等。 它们的主要特点是转速高,转动惯量小,便于启
(2.32)
马达的实际输出转矩小于理论输出转矩: pV T m (2.33) 2 因马达实际存在机械摩擦,故实际输出转矩应考虑机 械效率。
7
• 功率和总效率 马达的输入功率为
N i pq
马达的输出功率为 N o 2nT 马达的总效率为
(2.34) (2.35) (2.36)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
缸 筒
柱 塞 p q ( a ) 图4.3柱塞式液压缸
2柱塞式液压缸是 单作用的它的回程 Q V需要借助自重或弹簧
等其它外力来完成。 如果要获得双向运动,
4Q V 2 d
p1
d
可将两柱塞液压缸成
对使用为减轻柱塞的 重量,有时制成空心 d p2 Q
d 2 m
柱塞。成对连接推力
为:
F ( p1 p2 )
4
图4.3柱塞式液压缸
式中:d—柱塞直径,p1—进油压力,p2—另一缸的回油压力。
3
4.1.2 柱塞式液压缸
当活塞式液压缸行程较长时,加工难度大,使得制造成本 增加。 某些场合所用的液压缸并不要求双向控制,柱塞式液压缸 正是满足了这种使用要求的一种价格低廉的液压缸。
A
缸 筒
图4.3柱塞式液压缸
柱 塞 p q
( a )
1
如图 4.3 ( a )所示,柱塞缸由缸筒、柱塞、 导套、密封圈和压盖等零件组成,柱塞和缸筒内 壁不接触,因此缸筒内孔不需精加工,工艺性好, 成本低。