第4章 气体的热力过程
第四章 理想气体的热力过程及气体压缩

c)各级散热相同,而且每级的中间冷却器向外放 出的热量也相等 d)对提高整机容积效率v有利
三、压气机的效率
【
定温压缩效率
c.T
ws.T ws
-
例 4
5
绝热压缩效率
c.s
ws.s ws.s
压缩前气体的状态相同,压
T
2
】
2' p1
缩后气体的压力相同
趋势
u,h↑(T↑) w↑(v↑) wt↑(p↓) q↑(s↑)
p
h>0 u>0
q>0
w>0
T
h>0
w>0
n0
u>0
n0
wt>0
n 1 wt>0
nk
n
n 1
q>0
n
v
nk s
p-v,T-s图练习(1)
压缩、升温、放热的过程,终态在哪个区域?
p
T
n0
n0
n
n 1 nk
v
n
n 1
nk s
p-v,T-s图练习(2)
p2
c.s
h1 h2 h1 h2
c.s
T1 T2 T1 T2
1
s
小
结
多变过程在p-v图、T-s图上的表示及其综合分析 (会计算状态参数变化,焓、熵、内能的变化, 以及过程中各种功量和热量)
压气机(理论轴功、余隙容积、容积效率、 级间压力)
表4-1
第四章作业 第4-9、4-10、4-15题
2
1
WC p1V1 pdV p2V2
1
WC=Wt=Ws=
《热力学》理想气体的热力过程

p2 p1
v1 v2
n
T2 T1
v1 v2
n1
T2 T1
p2 p1
(n1) / n
n lnp2 lnp1 lnv2 ln v1
(2)利用已知或可求的与n有关的能量求解
2020年10月20日
第四章 理想气体的热力过程
28
例4-3(p80) 有一台空气压缩机,压缩前空气的温度为27 ℃、 压力为0.1 MPa,气缸的容积为5 000 cm3;压缩后空气的温度升 高到213 ℃。压缩过程消耗的功为1.166 kJ。试求压缩过程的多变 指数n。
15
(2)图表法 由
ds
cp0
dT T
Rg
dp p
对可逆绝热过程可得
ln
p2 p1
1 Rg
T2
T1
c
p
0
dT T
A:利用热力性质表中的标准状态熵
ln
p2 p1
1 Rg
T1
T0
c
p
0
dT T
c T2
T0
p0
dT T
1 Rg
s0 T2
s0 T1
T2 工质的热力性质表中还提供了u与h的数值。
2020年10月20日
第四章 理想气体的热力过程
19
例4-2 (p76) 一台燃气轮机装置,从大气吸入温度为17 ℃、压 力为0.1 MPa的空气,然后在压气机中进行绝热压缩,使空气 的压力提高到0.9MPa。试求压气机消耗的轴功:(1)按定值比 热容计算;(2)按空气热力性质表计算。
思路:
定值比热容
2020年10月20日
第四章 理想气体的热力过程
14
变比热容分析
工程热力学第四章理想气体热力过程教案

第四章 理想气体的热力过程概 述热能⇔机械能的相互转化是靠工质在热力设备中吸热、膨胀、压缩等状态变化的过程来实现的,这个状态变化的过程就是热力过程,那么,在前面第一章研究的平衡状态,第二章研究理想气体的性质以及第三章研究分析开、闭口系热力状态变化的工具——热力学第一定律都是为这一章打基础。
前面第三章已提到过相同的工质在相同的温度下,不同的热力过程,能量转化的状况是不同的。
P V q q >,00v p w w ==膨技,,因此工程上实际过程多种多样、复杂、多变,不是可逆过程,据传递能量的工质不一不可能一一加以研究,何况逐个研究不总结规律性的知识用途也不大。
因此,我们仍采用热力学常用的方法,对复杂多样的热力过程进行合理化的假设。
认为是理想气体的可逆过程,这就是我们下面要研究的理想气体○V ○P ○T ○S 。
○P :例如各种环热设备,工质一面流动一面被加热,流动中克服阻力的压力降与其压力相比小很多,故认为压力不变。
○V :汽油机工作时,火花塞一点火,气缸内已被压缩的可燃混合气即燃烧,在一瞬间烧完,这期间气缸与外界无质量交换,活塞移动极微,可近似定容过程。
○T :如往复式压气机,气体在气缸中被压缩时温度升高,为了省功气缸周围有冷却水套,若冷却效果好,气缸中温度几乎不变,可近似定温过程。
○S :例气缸中燃烧产物在气缸中膨胀对外作功过程,由于工质与外界交换的热量很少可略去不计,认为是定熵过程。
上述过程实际上是略去次要因素后的一个等同特征,就是过程中有一个状态参数不变,对理想气体()u f t = ()h f t =这研究起来就方便很多,而且只有实际意义。
4—1 研究热力过程的目的及方法一. 目的1.实现预期的能量转化,合理安排热力过程,从而来提高功力装置的热经济性。
2.对确定的过程,也可预计热→功之多少。
二.解决的问题1.根据过程特点,寻找过程方程式 2.分析状态参数在过程中的变化规律3.确定热功转化的数量关系,及过程中,,u h s ∆∆∆的变化 4.在P —V ,T —S 图上直观地表示。
第4章-理想气体的热力性质和热力过程

m
pRgVT1w
1
Ts
0.098MPa36m3 0.28[7kJ/(kgK)]
2
1 73K
1 308K
5.117kg
9
第二节 理想气体的比热容
10
• 热容:指工质温度升高1K所需的热量。
C Q dT
• 比热容:1kg(单位质量)工质温度升高1K所
k
nn1n2n3 ni nk ni i 1
• 第 i 种组元气体的摩尔分数 (mole fraction of a mixture):
xi
ni n
(433)
xi nni nni 1
各组元摩 尔分数之
和为1
37
换算关系
mnM
mi niMi
• 根据热力学第一定律,任意准静态过程:
q d u p d v d h v d p
u是状态参数: uf(T,v)
du(T u)vdT(uv)Tdv
q( T u)vdT[p( u v)T]dv
单位物量的物质 在定容过程中温 度变化1K时热 力学能的变化值
q u
• 定容: dv0 cv (dT)v (T)v 12
3
第一节 理想气体及其状态方程
4
• 理想气体 ideal gas定义:
– 遵循克拉贝龙(Clapeyron)状态方程的气体,
即基本状态参数 p、v、T 满足方程
pv 常数 T 的气体称为理想气体。
理想气体的基本假设:
• 分子为不占体积的弹性质点 uu(T)
• 除碰撞外分子间无作用力
理想气体是实际气体在低压高温时的抽象
热工流体第四章 理想气体的基本热力过程

第一节定容过程
气体比体积保持不变的热力过程称为定容过程。
1、过程方程式
v=c(4-1)
2、状态方程
或 (4-2)
3、过程曲线
图4-1
4、 、 的计算
理想气体的热流学能,焓是温度的单值函数
(4-3)
(4-4)
5、容积变化功与传热量
定容过程比体积变化量Δv=0,所以定容过程体积变化功为
及q=0(4-19)
根据熵的定义,可逆绝热过程有
(4-20)
即
s=c(4-21)
所以可逆绝热过程为定熵过程。
1、过程方程式
(4-22)
κ---绝热指数,理想气体绝热指数,也等于理想气体比热容比。
2、状态方程
(4-23)
(4-24)
(4-25)
3、过程曲线
图4-4
4、 、 的计算
(4-26)
(4-27)
当n=0时, ,为比定压热容;
当n=1时, ,为比定温热容;
当n=κ时, ,为比定熵热容;
当n= 时, ,为比定容热容。
例空气在压气机中被压缩,初始状态为V1=0.052m3,p1=0.1Mpa,t1=40°c,可逆多变压缩至p2=0.565Mpa,V2=0.013 m3,然后排到储气罐,求多变过程的多变指数n,压缩终温t2,容积变化功与换热量,以及压缩过程中气体热力学能、焓的变化值。
当n=1时, ;
当n=κ时, ;
当n= 时, 。
2、状态方程
(4-32)
(4-33)
(4-34)
3、过程曲线
图4-5
4、 、 的计算
(4-35)
(4-36)
5、多变过程容积变化功与传热量
工程热力学第4章

29
4-7 理想气体过程综述
一、各种过程在p-v图和T-s图上的相对位置
定容、定压、定温和定熵(可逆绝热)四个典型过 程都可以理解为多变过程的特例。其在p-v图上和T-s图 上的斜率如下:
( n 0)
0 p v
T cp 0 T cV
30
p p n v v n
Tc Tb
考虑过程等压 c
hc hb
a
q p ha hc 面积amnca
ha hb 面积amnca
38
p-v,T-s图练习(1)
压缩、升温、放热的过程,终态在哪个区域?
p
T
v
39
s
p-v,T-s图练习(2)
膨胀、降温、放热的过程,终态在哪个区域?
p
T
v
40
s
p-v,T-s图练习(3)
1 2
wt vdp 0
1
2
q p h wt h c
T2 p T1
T2 T1 1 Tds
2
四、Δu、 Δh、Δs和c
u c
T2 V T1
T2 T1
h c
T2 p T1
T2 T1
11
s
2
1
T2 dT cp s c p ln T T1
三、 定容过程的功量和热量
因为dv = 0,所以膨胀功为零,即
2
w pdv 0
1
注意和p-v 图对应
技术功: t vdp v( p1 p2 ) Rg (T1 T2 ) w
1
2
热量:
q Tds cV dT
工程热力学4
方法 1) 抽象分类
p vT s n
基本过程
2) 可逆过程 (不可逆再修正)
研究热力学过程的依据
1) 热力学第一定律 q du w dh wt
稳定流动能量方程
q
h
1 2
c2
gz
ws
cn cv
v
理想气体基本过程的p-v,T-s图
pT s v
T2
(
p2
)
k 1 k
T1 p1
T
sv
n0
p
n0 T
n 1
n 1 p
nk
n
n
v
nk s
u在p-v,T-s图上的变化趋势
u =T
u cvdT
pv RT
p u>0
T
u>0
n0 n 1
n0 n 1
nk
n
v
n
nk s
h在p-v,T-s图上的变化趋势
p
T
n0
n0
n
n 1 nk
v
n
n 1
nk s
p-v,T-s图练习(2)
膨胀、降温、放热的过程,终态在哪个区域?
p
T
n0
n0
n
n 1 nk
v
n
n 1
nk s
p-v,T-s图练习(3)
膨胀、升温、吸热的过程,终态在哪个区域?
p
T
n0
n0
n
n 1 nk
v
n
n 1
nk s
理想气体基本过程的计算
工程热力学第三版课后习题答案沈维道(第四章)
第四章 理想气体的热力过程
4—1 有 2.3 千克的 CO, 初态 T1 = 477K,p1 = 0.32MPa , 经可逆定容加热, 终温 T2 = 600K , 设 CO 为理想气体,求 ∆U 、 ∆H 、 ∆S ,过程功及过程热量。 (1)设比热容为定值; (2)变 值比热容,按气体性质表。 解: (1)定值比热容
4—3 试由 w = 算式。 解: 可逆过程的过程功 w =
2 2
∫
1
pdv,wt = − ∫ vdp 导出理想气体进行可逆绝热过程时过程功和技术功的计
1
∫
2
1
pdv ,由绝热过程方式可知 p1v1κ = pvκ , p =
p1v1κ vκ
所以
w = p1v1κ ∫
v2
v1
dv 1 1 = ( p1v1 − p2 v2 ) = Rg (T − T ) κ v κ −1 κ −1 1 2
60.08K = 13546.39J/mol 100K
1 ( H m,1 − H m,2 ) M 1 (9123.608 − 13546.39)J/(mol ⋅ K) = −138.21× 103 J/kg = −3 32.0 × 10 kg/mol
4—6 3kg 空气, p1 = 1MPa,T1 = 900K ,绝热膨胀到 p2 = 0.1MPa 。设比热容为定
Rg =
R 8.3145J/(mol ⋅ K) = = 0.260J/(kg ⋅ K) T1 = t1 + 273 = 40 + 273 = 313K M 32.0 × 10−3 kg/mol
p1 0.1MPa = 0.260J/(kg ⋅ K) × 313K ln = −112.82J/kg p2 4MPa
工程热力学第4章 气体与蒸汽的热力过程
分析热力过程的一般步骤
➢ 确定过程方程 p = f ( v )
➢ 确定初态、终态参数的关系及热力学 能、焓、熵的变化量
➢ 确定过程中系统与外界交换的能量
➢ 在p-v图和T-s图画出过程曲线,直观地 表达过程中工质状态参数的变化规律及 能量转换
§4-1 理想气体的热力过程
例4:将理想气体在可逆绝热过程中所作技术功的 大小,表示在T-s图上。
[分析]:
绝热过程技术功:
wt cp(T1T2)
cp(T1T2)
1 T
2' 2
q12
=面积1ba2’1
a
bS
五、多变过程
❖ 工程实际中有些热力过程,p、v、T有明显变化, 且系统与外界交换的Q不可忽略。则不能用上述4种 基本热力过程来描述。
u cV (T2 T1 )
h c p (T2 T1 )
s
c
p
ln
T2 T1
Rg ln
p2 p1
3. 能量转换
w 2 1
pdv
p1v1n
2 1
dv vn
n
1 1(
p1v1
p2v2 )
R n
1(T1
T2 )
wt nw
nRT111
p2 p1
(n1)/n
q
u
w
cV
(T2
T1)
R n
1(T1
ucV(T2 T1)
hcp(T2 T1)
sv
cV
lnT2 T1
Rg
l
nv2 v1
cV
l
nT2 T1
cV
l
np2 p1
第04章理想气体的热力过程及气体压缩
第四章 理想气体的热力过程及气体压缩1.基本概念分析热力过程的一般步骤:1.依据热力过程特性建立过程方程式,p=f(v);2.确定初、终状态的基本状态参数;3.将过程线表示在p-v 图及T —s 图上,使过程直观,便于分析讨论。
4.计算过程中传递的热量和功量。
绝热过程:系统与外界没有热量交换情况下所进行的状态变化过程,即0=q δ或0=q 称为绝热过程。
定熵过程:系统与外界没有热量交换情况下所进行的可逆热力过程,称为定熵过程。
多变过程:凡过程方程为=n pv 常数的过程,称为多变过程。
定容过程:定量工质容积保持不变时的热力过程称为定容过程。
定压过程:定量工质压力保持不变时的热力过程称为定压过程。
定温过程:定量工质温度保持不变时的热力过程称为定温过程。
单级活塞式压气机工作原理:吸气过程、压缩过程、排气过程,活塞每往返一次,完成以上三个过程。
活塞式压气机的容积效率:活塞式压气机的有效容积和活塞排量之比,称为容积效率。
活塞式压气机的余隙:为了安置进、排气阀以及避免活塞与汽缸端盖间的碰撞,在汽缸端盖与活塞行程终点间留有一定的余隙,称为余隙容积,简称余隙。
最佳增压比:使多级压缩中间冷却压气机耗功最小时,各级的增压比称为最佳增压比。
压气机的效率:在相同的初态及增压比条件下,可逆压缩过程中压气机所消耗的功与实际不可逆压缩过程中压气机所消耗的功之比,称为压气机的效率。
热机循环:若循环的结果是工质将外界的热能在一定条件下连续不断地转变为机械能,则此循环称为热机循环。
2.常用公式气体主要热力过程的基本公式z 级压气机,最佳级间升压比:β3.重要图表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
kkdckvdcvcvpvpdvppvddpddvvdppppdvppccvv0d0dcpp0vvd00pkkdkc0pvpdppvddvdvvkpdvppcddv0dpvpv0dp
v2 T2 p1
v1
T1 p2
代人(1)得
s
cv
ln
T2 T1
R ln T2 T1
R ln
p2 p1
cp
ln
T2 T1
R ln
p2 p1
(3)
结论
s
cv
ln
p2 p1
cp
ln
v2 v1
s
cv
ln
T2 T1
R ln
v2 v1
s
cp
ln T2 T1
R ln
p2 p1
适用条件:
1)理想气体,定值比热 2)可逆与不可逆(尽管过程中用到可逆 的条件,但因焓是状态参数)
第四章
理想气体的热力过程及 气体的压缩
第一节 四个典型的热力过程
一、研究热力过程的目的 系统与外界进行能量传递,必须要通过工质的热力
过程来实现,没有热力过程就不能进行能量交换。 工程上实施热力过程有两个目的
1)完成能量交换 2)使气体达到一定的状态
二、研究热力过程所需的基本知识
1.热力学第一定律(能量方程) 2.理想气体状态方程
ss1
T T1e cv
( (
( (
T
TSS2T))vv
S2T2
) )
s s1
T e1 scvs1
cv
T e 1
ss1
T1
cv
e ss1
Tc e 1vcvLeabharlann 1Tc1v cTv
cv1 cvT
c1v
cT2v
0, 0,
故T是S的增函数 故T是S的增函数
0,故T f (s)是上凹曲线 0,故T f (s)是上凹曲线
四、分析热力过程应掌握的内容 1.热力过程的特点 2.过程方程(即初始状态参数遵守的方程) 3.过程中系统与外界交换能量的计算 4.热力过程在P-v图,T-S图上的表达
五.四种典型热力过程分析(定容,定压,定温,等熵)
1.定容过程 ①特点 v=const 或v1=v2 ②过程方程 ③能量分析
2
w 1 pdv 0
判断等值线的大小
p
TT
在P-v图2 '上,曲线的
斜率为:
2'
1
q0
q0
1 dp
p
vdp pdv 0
dv 2 v
2'
q
2
v
2
s
4.等熵过程
⑴首先应导出等熵过程方程 由能量方程
Tds cvdT pdv
知等熵时 ds 0
即 cv dT pdv 0
又 ppvvRRTTddTT 11((ppddvvvvddpp)) RR
s
cp
ln
T2 T1
cp
ln
v2 v1
④在图上的表达
在P-V图上表达直观
p
2’
1
2
q0 q0
v
在T-S图上要分析曲线的特征
s
s2
s1
cp
ln
T2 T1
或s
s1
cp
ln
T T1
ss1
T T1e cp
(
T p
)
p
T cp
0
T
定压过程
2T T
( p2
)p
cp2
0
定容过程 2
1 2’
q0 q0
s
分析判断
pv dv pv ln v2
1
v
v1
Q pv RT c d( pv) 0
pdv vdp 0 pdv vdp
2
2
wt 1 vdp 1 pdv w
s R ln v2 R ln p2
v1
p1
④表达
pp 2'
在P-V图上 pv=c,即等轴双曲线
在T-S图上更加直观
1
注:可利用状态方程
S 2 cv
cv c2v
故定容过程在T-S图上应如下图所示
T 2
1
2'
q0
q0
v
s
2.定压过程
①特点
p1 p2
②过程方程 ③能量交换
pv RT v2 T2 v1 T1
2
w pdv p(v2 v1)
1
2
wt vdp 0
1
q h wt h(定压过程系统的吸热量用于提高其焓)
PV RT
p2 T2
p1
T1
2
wt 1 vdp v( p1 p2 )
q u (定容过程系统的吸热量用于提高其内能)
s
cv
ln T2 T1
cv
ln
p2 p1
④在图上的表示 在p-v图上很直观
p
2
1
2'
T
2'
q0
q0
v
为在T-S图上分析,将
s
cv
ln T2 T1
s
s1
cv
ln
T T1
s2 ss22
1 v2 11 vv22
s1 ss11
R ln RR llnn
0 00
v1 vv11
v2 vvvvv11122
v2 v1
3.定温过程
①特点 T=C或 T1 T2 ②过程方程
pv RT p1v1 p2v2 c
③能量变化
uu 00 hh 00
2
w pdv
掌握判断过程,记住结论
例3 在T-S图上判断两条等容线比容值的大小
分析:在T-S图上任给两等容线
v1
v2
v1、v2,作等温线1-2。对于1-2
T
过程有:
1
2
s s1 s2
掌握判断过程,记住结论
s
ss
ln
llvnn2 vvvvv11122
v2 vvvvv11122
s2 s1 ss22 ss11
T
过程有:
1
2
s s1 s2
s s2 s1 R ln
s s2 s1 R ln
lllPPPPPnnn11222sPPPPPP111222 P1
s2
s1s1
s1 s1
RR
1 PR2
1 P2
1 P2
s2 s2 s2
R ln 0
0
0
P1 P1 P1
P2 PPPP1122 P1
例1 在T-S图上等P线与等V线有何区别
等压过程斜率
T s
p
T cp
等容过程斜率
T s
v
T cv
因为 cp cv
所以
T s
v
T s
p
因此,在T-S图上,等容线比等压线陡
例2 在T-S图上判断两条等压线压力值的大小
分析:在T-S图上任给两等压线
p1
p2
p1、p2,作等温线1-2。对于1-2
得 由 得 所以
ds
cv
dT T
p T
dv
pR Tv
ds
cv
dT T
R v
dv
s2
s1
cv
ln T2 T1
R ln
v2 v1
(1)
由PV=RT得
T2 p2v2 T1 p1v1
代人(1)得
s
cv
ln
p2 p1
cv
ln
v2 v1
R ln
v2 v1
cv
ln
p2 p1
cp
ln
v2 v1
(2)
由PV=RT得
3.热量δq、内能du 、 焓dh、膨胀功w、技术功wt、熵
ds的计算公式
q Tds du cvdt dh cpdT w pdv wt vdp
q、u、h、w、wt的计算都已学过,唯独熵没有学过,
下面介绍用基本状态参数求熵变化的计算公式
三、用p,v,t求Δs的公式导出
可逆时能量方程为
q du pdv cvdt pdv Tds