数学分析:第章数项级数

合集下载

数学分析12-1

数学分析12-1
1 1 1 1 1 1 1 1 ) = (1 − ) + ( − ) + L + ( − 2 3 2 3 5 2 2n − 1 2n + 1
1 1 ), = (1 − 2 2n + 1
1 1 ) ∴ lim sn = lim (1 − n→ ∞ n→ ∞ 2 2n + 1
1 = , 2
1 ∴ 级数收敛 , 和为 . 2
第十二章
数项级数
§1 级数的收敛性
一 问题的提出
有限个实数相加是实数,无限个实数相加会 有限个实数相加是实数, 是什么结果? 是什么结果? 一尺之棰,日取其半,万世不竭。 一尺之棰,日取其半,万世不竭。 将每天取下的长度“ 将每天取下的长度“加”起来: 起来:
1 1 1 1 + 2 + 3 +L+ n +L 2 2 2 2
1 1 1 1 + 2 + 3 +L+ n +L 2 2 2 2
——无限个数相加! 无限个数相加! 无限个数相加 直观上感觉结果( 直观上感觉结果(和)应该是1。 应该是 。 再如: 再如: 如果 如果
1−1+1−1+1−1+L
( 1 − 1 ) 1 − 1 ) 1 − 1) L ( + + + ( 结果是0。 结果是 。 结果是1。 结果是 。
1
1 收敛。 例6 证明级数 ∑ 2 收敛。 n =1 n


| um +1 + um + 2 + L + um + p |
1 1 1 L+ = 2 + 2 + 2 ( m + 1) ( m + 2) (m + p) 1 1 1 < + +L+ m ( m + 1) ( m + 1)( m + 2) ( m + p − 1)( m + p ) 1 1 1 1 1 1 = − + − +L+ − m m +1 m +1 m + 2 m + p−1 m + p 1 1 1 = − → 0, ( m → ∞ ) < m m+ p m

项级数的概念

项级数的概念

项级数的概念项级数是数学中的一个概念,指的是一个无穷序列的和。

在项级数中,每一项都是具有固定模式的数列中的某一项,而项级数的和就是这些数列中所有的项的总和。

项级数可以表示为:S = a1 + a2 + a3 + ... + an + ...其中,a1, a2, a3, ... 是一个数列的项,n 是一项的位置。

举个例子,如果项级数为:1 + 2 + 3 + 4 + ... ,那么a1 = 1,a2 = 2,a3 = 3,... ,n 表示数列中项的编号。

项级数可以分为两类:收敛项级数和发散项级数。

当项级数的和存在且有限时,我们称其为收敛项级数;当项级数的和不存在或为无穷大时,我们称其为发散项级数。

对于收敛项级数,我们常常使用极限的概念来表示。

如果项级数S具有有限的和S,则对于任意的正数ε,存在一个正整数N,使得当n>N时,Sn - S < ε。

其中,Sn 表示项级数的前n项和。

为了更好地理解项级数的概念,我们可以看一些经典的例子。

1. 等差数列:1, 2, 3, 4, ...这是一个常见的等差数列,每一项与前一项之差都相等。

项级数可以表示为:1 + 2 + 3 + 4 + ... ,它是一个发散项级数,和无穷大。

2. 等比数列:1, 1/2, 1/4, 1/8, ...这是一个等比数列,每一项都是前一项的1/2倍。

项级数可以表示为:1 + 1/2 + 1/4 + 1/8 + ... ,它是一个收敛项级数,和为2。

3. 调和级数:1, 1/2, 1/3, 1/4, ...这是一个调和级数,每一项是倒数数列。

项级数可以表示为:1 + 1/2 + 1/3 + 1/4 + ... ,它是一个发散项级数,和无穷大。

4. 幂级数:1, 1/2, 1/4, 1/8, ...这是一个幂级数,每一项都是前一项的1/2倍。

项级数可以表示为:1 + 1/2 + 1/4 + 1/8 + ... ,它是一个收敛项级数,和为2。

数学分析12.3一般项级数

数学分析12.3一般项级数

第十二章 数项级数2 一般项级数一、交错级数概念:若级数各项符号正负相间,即u 1-u 2+u 3-u 4+…+(-1)n+1u n +…(u n >0, n=1,2,…),则称它为交错级数.定理12.11:(莱布尼茨判别法)若交错级数∑∞=+1n n 1n u (-1)满足:(1)数列{u n }单调递减;(2)∞n lim +→u n =0,则该级数收敛.证:交错级数的部分和数列{S n }的奇数项和偶数项分别为: S 2m-1=u 1-(u 2-u 3)-…-(u 2m-2-u 2m-1),S 2m =(u 1-u 2)+(u 3-u 4)…+(u 2m-1-u 2m ). 由条件(1)知上述两式括号内的数皆非负,从而 数列{S 2m-1}递减,数列{S 2m }递增. 又由条件(2)知0<S 2m-1-S 2m =u 2m →0 (m →∞),从而{[S 2m ,S 2m-1]}形成一个区间套, 由区间套定理,存在唯一的一个数S ,使得∞m lim +→S 2m-1=∞m lim +→S 2m =S.∴数列{S n }收敛,即该交错级数收敛.推论:若交错级数满足莱布尼茨判别法的条件,则该收敛级数的余项估计式为|R n |≤u n+1.二、绝对收敛级数及其性质概念:若级数各项绝对值所组成的级数|u 1|+|u 2|+…+|u n |+…收敛, 则称它为绝对收敛级数. 若级数收敛,但不绝对收敛,则称该级数为条件收敛级数.定理12.12:绝对收敛级数一定收敛.证:若级数|u 1|+|u 2|+…+|u n |+…收敛,由柯西收敛准则知, 对任意ε>0,总存在正数N ,使得对n>N 和任意正整数r ,有 |u n+1|+|u n+2|+…+|u n+r |<ε,∴|u n+1+u n+2+…+u n+r |<ε, ∴u 1+u 2+…+u n +…收敛. 得证!例1:证明:级数∑!n a n收敛.证:∵n1n ∞n u u lim++→=1n alim ∞n ++→=0<1,∴原级数绝对收敛.性质1:级数的重排:正整数列{1,2,…,n,…}到它自身的一一映射 f:n →k(n)称为正整数列的重排,相应地对数列{u n }按映射F:u n →u k(n)所得到的数列{u k(n)}称原数列的重排;同样的,级数∑∞=1n k(n)u 也是级数∑∞=1n nu 的重排. 记v n =u k(n),即∑∞=1n k(n)u =v 1+v 2+…+v n +….定理12.13:若级数∑n u 绝对收敛,且其和等于S ,则任意重排后所得到的级数∑n v 也绝对收敛,且有相同的和数.证:不妨设∑n u 为正项级数,用S n 表示它的第n 个部分和, 记T m =v 1+v 2+…+v m 表示级数∑n v 的第m 个部分和.∵级数∑n v 是∑n u 的重排,∴对每一个v k 都等于某一ki u (1≤k ≤m).记n=max{i 1,i 2,…i m }, 则对任何m ,都存在n ,使T m ≤S n .由∞n lim +→S n =S 知,对任何正整数m 有T m ≤S, 即∑n v 收敛,其和T ≤S.又级数∑n u 也是∑n v 的重排,∴S ≤T ,推得T=S.若∑n u 为一般级数且绝对收敛,即正项级数∑n u 收敛,同理可推得 级数∑n v 收敛,∴级数∑n v 收敛. 令p n =2u u nn +,q n =2u u nn -;则当u n ≥0时,p n =u n ,q n =u n ;当u n <0时,p n =0,q n =-u n ≥0. 从而有 0≤p n ≤|u n |,0≤q n ≤|u n |,p n +q n =|u n |,p n -q n =u n . 又∑n u 收敛, ∴∑n p ,∑n q 都是正项的收敛级数,且S=∑n u =∑n p -∑n q .同理得:∑n v =∑'n p -∑'n q ,其中∑'n p ,∑'n q 分别是∑n p ,∑n q 的重排. ∴∑n v =∑'n p -∑'n q =∑n p -∑n q =S. 得证!性质2:级数的乘积:由a ∑n u =∑n au 可推得有限项和与级数的乘积:(a 1+a 2+…+a m )∑∞=1n n u =∑∑∞==1n n m1k k u a .继而可推广到无穷级数之间的乘积:设收敛级数∑n u =A, ∑nv=B.将两个级数中每一项所有可能的乘积列表如下:这些乘积u i v j按各种方法排成不同的级数,如按正方形顺序相加,得u1v1+u1v2+u2v2+u2v1+u1v3+u2v3+u3v3+u3v2+u3v1+…,如下表:或按对角线顺序相加,得u1v1+u1v2+u2v1+u1v3+u2v2+u3v1+…,如下表:定理12.14:(柯西定理) 设绝对收敛级数∑n u=A, ∑n v=B,则由它们中每一项所有可能的乘积u i v j按任意顺序排列所得到的级数∑n w绝对收敛,且其和等于AB.证:设级数∑n w,∑n u,∑n v的部分和分别为:S n =|w 1|+|w 2|+…+|w n |,A m =|u 1|+|u 2|+…+|u m |,B m =|v 1|+|v 2|+…+|v m |. 其中w k =kkj i v u (k=1,2,…,n),m=max{i 1,j 1,i 2,j 2,…,i n ,j n },则必有S n ≤A m B m .∵绝对收敛级数∑n u 与∑n v 的部分和数列{A m }和{B m }都有界, ∴{S n }有界,从而级数∑n w 绝对收敛. 利用绝对收敛级数的可重排性, 将绝对收敛级数∑n w 按正方形顺序重排如下: u 1v 1+(u 1v 2+u 2v 2+u 2v 1)+(u 1v 3+u 2v 3+u 3v 3+u 3v 2+u 3v 1)+…, 把每一括号作一项,得新级数:p 1+p 2+p 3+…+p m +…收敛, 且与∑n w 和数相同,其部分和P m =A m B m . 即有∞m lim +→P m =∞m lim +→A m B m =∞m lim +→A m ∞m lim +→B m =AB. 得证!例2:证明:级数1+2r+…+(n+1)r n +…(|r|<1)绝对收敛,并求其和.证:等比级数∑∞=0n n r =1+r+r 2+…+r n +…=r-11(|r|<1),绝对收敛. 将(∑∞=0n n r )2的所有可能的项按对角线顺序相加得:1+(r+r)+(r 2+r 2+ r 2)+…+(r n +…+r n )+… (括号内共有n+1个r n ) =1+2r+…+(n+1)r n +…=2r)-(11. ∴所求级数绝对收敛,其和为2r)-(11.二、阿贝尔判别法和狄利克雷判别法引理:(分部求和公式,也称阿贝尔变换)设εi ,v i (i=1,2,…,n)为两组实数, 若令T k =v 1+v 2+…+v k (k=1,2,…,n),则有如下分部求和公式成立:∑=n1i ii vε=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .证:以v 1=T 1, v k =(T k -T k-1) (k=2,3,…,n)分别乘以εk (k=1,2,…,n),则∑=n1i ii vε=ε1v 1+ε2v 2+…+εn v n =ε1T 1+ε2(T 2-T 1)+…+εn (T n -T n-1)=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .推论:(阿贝尔引理)若(1)ε1, ε2,…, εn 是单调数组;(2)对任一正整数k(1≤k ≤n)有|T k |=|v 1+v 2+…+v k |≤A ,记ε=kmax {|εk |},有∑=n1k k k v ε≤3εA.证:由(1)知ε1-ε2, ε2-ε3, …, εn-1-εn 同号,于是由分部求和公式及(2)有∑=n1k k kv ε=|(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n |≤A|(ε1-ε2)+(ε2-ε3)+…+(εn-1-εn )|+A|εn |=A|(ε1-εn )|+ A|εn | ≤A(|ε1|+2|εn |)≤3εA.定理12.15:(阿贝尔判别法)若{a n }为单调有界数列,且级数∑n b 收敛, 则级数∑n n b a =a 1b 1+a 2b 2+…+a n b n +…收敛.证:由级数∑n b 收敛,依柯西准则,对任给正数ε, 存在正数N, 使 当n>N 时,对一切正整数p ,都有∑++=pn 1n k kb<ε.又数列{a n }单调有界,∴存在正数M ,使|a n |≤M ,根据阿贝尔引理有∑++=pn 1n k k kb a≤3εM. ∴级数∑n n b a 收敛.注:由阿贝尔判别法知,若级数∑n u 收敛,则下述两个级数:(1)∑p nn u (p>0);(2)∑+1n u n 都收敛.定理12.16:(狄利克雷判别法)若数列{a n }单调递减,且∞n lim +→a n =0,又且级数∑n b 的部分和数列有界,则级数∑n n b a 收敛.例3:证明:若数列{a n }单调递减,且∞n lim +→a n =0,则级数∑sinnx a n 和∑cosnx a n 对任何x ∈(0,2π)都收敛.证:2sin 2x (21+∑=n 1k coskx )=sin 2x +2sin 2x cosx+2sin 2x cos2x+…+2sin 2xcosnx= sin 2x +(sin 23x-sin 2x )+…+[sin(n+21)x-sin(n-21)x]=sin(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k coskx =2x 2sinx 21n sin ⎪⎭⎫ ⎝⎛+-21=21sinnxcot 2x +2cosnx -21.又-21cot 2x -1≤21sinnxcot 2x +2cosnx -21≤21cot 2x ,即当x ∈(0,2π)时,∑cosnx 的部分和数列有界,由狄利克雷判别法知级数∑cosnx an收敛.2sin 2x (∑=n 1k sinkx -21cot 2x )=2sin 2x sinx+2sin 2x sin2x+…+2sin 2x sinnx-cos 2x= (cos 2x-cos 23x) +…+[cos(n-21)x-cos(n+21)x]-cos 2x =-cos(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k sinkx =21cot 2x -2x 2sin x 21n cos ⎪⎭⎫ ⎝⎛+=2x 2sinx 21n cos -2x cos ⎪⎭⎫ ⎝⎛+.又- csc 2x =2x sin 1-≤2x 2sin x 21n cos -2x cos ⎪⎭⎫ ⎝⎛+≤2x sin1=csc 2x ,即当x ∈(0,2π)时,∑sinnx 的部分和数列有界,由狄利克雷判别法知级数∑sinnx an收敛.注:作为例3的特例,级数∑n sinnx 和∑ncosnx对一切x ∈(0,2π)都收敛.习题1、下列级数哪些是绝对收敛,条件收敛或发散的:(1)∑!n sinnx ;(2)∑+-1n n )1(n;(3)∑+n1p n n (-1);(4)∑-n 2sin )1(n ;(5)∑⎪⎪⎭⎫ ⎝⎛+n 1n (-1)n ;(6)∑++1n 1)ln(n (-1)n ;(7)n n 13n 1002n )1(∑⎪⎭⎫ ⎝⎛++-;(8)nn x !n ∑⎪⎭⎫ ⎝⎛. 解:(1)∵!n sinnx <2n 1(n>4);又级数∑2n1收敛,∴原级数绝对收敛. (2)∵1n n)1(limn ∞n +-+→=1≠0;∴原级数发散. (3)∵当p ≤0时,n1p n ∞n n(-1)lim++→≠0;∴原级数发散;当p>1时,n1p n n(-1)+≤p n 1;又级数∑p n1(p>1)收敛,∴原级数绝对收敛. 当0<p ≤1时,令u n =n1p n1+,则n1n u u +=1n 1p n 1p 1)(n n++++=1n 1pn1)1n (n 11n++⎪⎭⎫⎝⎛+<1n 1pn 1n n 11n+⎪⎭⎫ ⎝⎛+=p1)n(n 1n 11n⎪⎭⎫ ⎝⎛++,∵np ∞n n 11lim ⎪⎭⎫ ⎝⎛++→=e p>1, 1n 1∞n n lim ++→=1,∴当n 充分大时,npn 11⎪⎭⎫ ⎝⎛+>1n 1n +,即 p n 11⎪⎭⎫ ⎝⎛+>1)n(n 1n+,从而n1n u u +<1,即u n+1<u n ,∴{u n }在n 充分大后单调减. 又∞n lim +→u n =n1p ∞n n1lim++→=0(0<p ≤1),由莱布尼兹判别法知原级数条件收敛.(4)∵n2n2sin)1(limn ∞n -+→=1, 且级数∑n2发散,∴原级数不绝对收敛. 又{n2sin }单调减,且n2sin lim ∞n +→=0,由莱布尼兹判别法知原级数条件收敛. (5)∵级数∑n(-1)n收敛,而级数∑n1发散,∴原级数发散.(6)∵1n 1)ln(n (-1)n ++>1n 1+(n ≥2),且∑+1n 1发散,∴原级数不绝对收敛.又{1n 1)ln(n ++}单调减且1n 1)ln(n lim ∞n +++→=0,∴原级数条件收敛. (7)记u n =n13n 1002n ⎪⎭⎫⎝⎛++,则n ∞n u lim +→=13n 1002n lim ∞n +++→=32,∴原级数绝对收敛. (8)记u n =n n x !n ⎪⎭⎫ ⎝⎛,则n 1n ∞n u u lim ++→=n∞n 1n n x lim ⎪⎭⎫⎝⎛++→=|e x |, ∴当-e<x<e 时,n1n ∞n u u lim++→<1,原级数绝对收敛; 当x ≥e 或x ≤-e 时,n1n ∞n u u lim++→≥1,即当n 充分大时,|u n+1|≥|u n |>0,∴n ∞n u lim +→≠0,∴原级数发散.2、应用阿贝尔判别法或狄利克雷判别法判断下列级数的收敛性:(1)nn n x 1x n (-1)+⋅∑ (x>0); (2)∑a n sinnx, x ∈(0,2π) (a>0); (3)nnxcos )1(2n∑-, x ∈(0,π).解:(1)∵当x>0时,0<n n x 1x +<n n x x =1,且n n1n 1n x 1xx 1x ++++=1n 1n x 1x x ++++; 若0<x ≤1,则1n 1n x 1x x ++++≤1;若x>1,则1n 1n x1x x ++++>1, 即数列{n n x 1x +}单调有界. 又级数∑n(-1)n收敛,由阿贝尔判别法知原级数收敛. (2)∵当a>0时,数列{a n1}单调递减,且∞n lim +→a n 1=0, 又当x ∈(0,2π)时,∑=n1k sinkx ≤csc 2x,即∑sinnx 的部分和数列有界,由狄利克雷判别法知原级数收敛. (3)∵数列{n 1}单调递减,且∞n lim+→n1=0,又当x ∈(0,π), ∑=n1k 2kkx cos (-1)=∑=+n1k k21cos2kx (-1)≤∑=n 1k k 2(-1)+∑=n1k k 2cos2kx (-1)≤21+∑=n1k cos2kx 21.又由2sinx ∑=n 1k cos2kx =4sin(2n+1)x-4sinx ,得∑=n1k cos2kx =2sinx4sinx -1)x 4sin(2n +≤sinx 2+2, 即对任意x ∈(0,π),级数nx cos )1(2n ∑-有界, 根据狄利克雷判别法知原级数收敛.3、设a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0.证明:级数∑+⋯++na a a (-1)n211-n 收敛.证:由a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0知, {na a a n21+⋯++}单调减且趋于0,由莱布尼茨判别法知原级数收敛.4、设p n =2u u nn +,q n =2u u nn -.证明:若∑n u 条件收敛,则级数∑n p 与∑n q 都是发散的. 证:若∑n u 条件收敛,则∑n u 发散, ∴∑n p =∑+2u u nn =∑2u n +∑2u n,发散; ∑n q =∑-2u u nn =∑2u n -∑2u n,发散.5、写出下列级数的乘积:(1)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx ; (2)⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n 0n n!(-1)n!1. 解:(1)当|x|<1时,两个级数均绝对收敛,乘积按对角线一般项为:w n =k-n k-n n1k 1-k 1)xk -(n (-1)·kx +∑==xn-1∑=+n1k k-n 1)k -k(n (-1), 从而有w 2m =x2m-1∑=+2m1k k-2m 1)k -k(2m (-1)=[-2m+…+(-1)m (m 2+m)+2m+…+(-1)m-1(m 2+m)]=0; w 2m+1=x 2m∑+=++12m 1k 1k -2m 2)k -k(2m (-1)=x 2m[∑+=++12m 1k 1k -2m 1)k -k(2m (-1)+∑+=+12m 1k 1k -2m k (-1)]=-x 2m∑+=+12m 1k k-2m 1)k -k(2m (-1)+x2m∑+=+12m 1k 1k -2m k (-1)=- w 2m +x2m∑+=-12m 1k 1k k (-1)=x2m∑+=-12m 1k 1k k (-1)=x 2m(1-2+3-4+…-2m+2m+1)=(m+1) x 2m.∴⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx =∑∞=+0m 2m 1)x (m . (|x|<1).(2)两个级数均绝对收敛,其乘积按对角线一般项为:w 0=1, w n =k)!-(n (-1)·k!1k -n nk ∑==n!1∑=nk k -n k)!-(n k!n!(-1)=n!1)-(1n=0(n=1,2,…) ∴⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n0n n!(-1)n!1=1.注:二项式n 次幂展开式:(1-1)n=∑=nk k -n k)!-(n k!n!(-1).6、证明级数∑∞=0n n n!a 与∑∞=0n n n!b 绝对收敛,且它们的乘积等于∑∞=+0n nn!b)(a .证:n!a 1)!(n a limn 1n ∞n +++→=1n alim ∞n ++→=0,∴∑∞=0n n n!a 绝对收敛. 同理∑∞=0n nn!b 绝对收敛. 按对角线顺序,其乘积各项为:C 0=1=!0b)(a 0+, ……,C n =k)!-(n b k!a k -n n1k k ⋅∑==n!∑=n 0k k -n k k)!-(n k!n!b a =n!b)(a n +. ∴∑∞=0n n n!a ·∑∞=0n n n!b =∑∞=+0n nn!b)(a .7、重排级数∑+-n1)1(1n ,使它成为发散级数. 解:∑+-n 1)1(1n =1-21+31-41+…+n 1)1(1n +-+…=∑∞=1k 1-2k 1-∑∞=1k 2k 1,∑∞=1k 1-2k 1∵∑∞=1k 2k 1和∑∞=1k 1-2k 1是发散的正项级数,∴存在n 1,使u 1=∑=1n 1k 1-2k 1-21>1,又∑∞+=1n k 11-2k 1发散,∴存在n 2>n 1,使u 2=∑+=21n 1n k 1-2k 1-41>21,同理存在n 3>n 2,使u 3=∑+=32n 1n k 1-2k 1-61>31,…,u i+1=∑++=1i i n 1n k 1-2k 1-1)2(i 1+>1i 1+,可得原级数的一个重排∑∞=1i i u . ∵u i >i 1,且∑i 1发散,∴∑∞=1i i u 必发散.8、证明:级数∑-n)1(]n [收敛.证:记A L ={n|[n ]=L}, L=1,2,…,显然A L 中元素n 满足L 2≤n<(L+1)2,且A L 中元素个数为2L+1. 记U L =∑∈-L A n ]n [n )1(,则有u L =∑∈-LA n Ln )1(=(-1)L V L , 其中V L =∑∈L A n n 1,则V L -V L+1=∑=+2L0s 2s L 1-∑+=++1)2(L 0s 2s)1(L 1=∑=++++2Ls 22s])1s)[(L (L 1L 2-1L 2)1(L 12+++-2L 2)1(L 12+++≥∑=+++2L0s 22L]2)1[(L 1L 2-L 2)1(L 22++=222L]2)1[(L L]2)12[(L -1)L 2(L 2+++++=2222L]2)1[(L L)2-1-L 2L -L L 2(2++-+=222L]2)1[(L 1)-3L L (2++->0(当L ≥4时). ∴当L ≥4时, { V L }是单调下降数列. 当n ∈A L 时,21)(L 1+<n 1≤2L 1, ∴21)(L 1L 2++<V L ≤2L 1L 2+,可见∞L lim +→V L =0,从而∑∞=1L L u =∑∞=1L L LV (-1)收敛. 设级数∑∞=-1n ]n [n )1(的部分和为S N ,记级数∑∞=1n n u 的部分和为U M ,则S N =∑=-N1n ]n [n )1(,U M =∑=M1n n u ,任一个S N 均被包含在某相邻两个部分和U M , U M+1之间,即有|S N -U M |≤|U M+1-U M |,由级数∑∞=1n n u 收敛,知∞M lim +→U M+1-U M =0,∴∞N lim +→S N -U M =0,即极限∞N lim +→S N =∞N lim +→U M =∑∞=1n n u 存在,∴级数∑-n)1(]n [收敛.。

数学分析数项级数_2022年学习资料

数学分析数项级数_2022年学习资料

§2数项级数的收敛性及其基本性质-无穷项函数相加,对每一个固定的X,每一项便变成-一个数,因此,我们从无穷 数相加谈起,这种级-数称为数项级数,或简称为无穷级数。-定义-设有数列:山1,u2,3,L,un,L-用加 把这些数依次连接起来所得的式子-4+2+4+L+un+L-这仅是一种形-式上的相加。-称为无穷级数或数项级 ,简称级数。-记为:∑w或∑4-k=
1-31-2P-1-1-动1-六21--这里用到-2一<1当p>1这就证明了部分和-数列有上界,故-启p1 技数
比较判别法-定理10.6-比较判别法设有两个正项级数-∑4,=4+42+L,-n=l-∑=出+%+L,-n 1-若对充分大的n(即存在N,当n>N时有-un≤CVn-其中c>0与n无关,则-1当∑收敛时,∑4收敛; ∑“发散时,∑发散。
k可以取任意大,因而无上界。故卫=1时,级数-三发散(级教三}-也称为调和级数。-当p<1时,由于对任意正 数k,有≥-因此-会是因-右边的部分和数列无上界推出左边也无上界,-在p<1也发散。-当p>1时,设2≤n 2k+l-类似于前面的做法,有
n=1+水++儿+-=1+++++++L-+2加+2+L十女-<1+÷+京儿+六+品-=++儿+°j
问题:-1.无穷多项相加究竟是什么意思?加得起来吗?-2.对这种无穷项相加的“无穷级数”,它的运算-规律与 有限和”有什么异同?-历史上:-很多是“形式运算”,后来由于应用的深入-和广泛,形式运算常出现矛盾:

数学分析中的级数理论

数学分析中的级数理论

数学分析中的级数理论数学分析中的级数理论是数学分析学科的重要部分,研究了无限级数的收敛性、发散性、求和等重要性质。

无限级数,实质上就是将无穷多的数加在一起所得到的和,它们在物理、工程、经济等领域都有广泛应用。

第一章:无穷级数的定义与性质1.1 无穷级数的概念在数学中,无穷级数是具有形式 $\sum_{n=1}^{\infty}a_n$ 的无穷和,其中 $a_n$ 是数列 $\{ a_n \}$ 的第 $n$ 项。

1.2 无穷级数的收敛性和发散性无穷级数的收敛性和发散性是研究无穷级数的重要内容。

若 $\sum_{n=1}^{\infty}a_n$ 的部分和数列 $\{ s_n \}$ 收敛于$s$,则称无穷级数 $\sum_{n=1}^{\infty}a_n$ 收敛,记作$\sum_{n=1}^{\infty}a_n=s$,$s$ 称为无穷级数$\sum_{n=1}^{\infty}a_n$ 的和。

若 $\sum_{n=1}^{\infty}a_n$ 的部分和数列 $\{ s_n \}$ 发散,则称无穷级数 $\sum_{n=1}^{\infty}a_n$ 发散。

1.3 无穷级数收敛的充分条件无穷级数收敛的充分条件有:(1)级数 $\sum_{n=1}^{\infty}a_n$ 绝对收敛,则$\sum_{n=1}^{\infty}a_n$ 收敛。

(2)级数 $\sum_{n=1}^{\infty}a_n$ 单调递减且不为负数,则$\sum_{n=1}^{\infty}a_n$ 收敛。

1.4 级数收敛的判别法级数收敛的判别法有很多,这里只介绍比较常用的几种:(1)比较判别法设 ${a_n}$ 和 ${b_n}$ 是两个数列,则:若 $\sum_{n=1}^{\infty}b_n$ 收敛而 $|a_n| \leqslant b_n$,则$\sum_{n=1}^{\infty}a_n$ 绝对收敛。

若 $\sum_{n=1}^{\infty}b_n$ 发散而 $|a_n| \geqslant b_n$,则$\sum_{n=1}^{\infty}a_n$ 发散。

数学分析数项级数

数学分析数项级数

数学分析数项级数数项级数是由一组数相加而成的序列。

数项级数在数学中有着非常重要的地位,常用于研究数学分析、微积分和数论等领域。

首先,我们来定义数项级数。

数项级数是由一组实数a1, a2,a3, ... 组成的序列,将其相加得到的序列表示为:S1 = a1, S2 = a1 + a2, S3 = a1 + a2 + a3, ... 一般地,第n个部分和Sn为Sn = a1 +a2 + ... + an。

我们首先来讨论数项级数的部分和序列。

部分和序列是数项级数中非常重要的概念。

如果部分和序列Sn收敛于一个实数S,即lim(n→∞)Sn = S,那么我们称该数项级数是收敛的,并称S为该数项级数的和。

如果部分和序列Sn不收敛,我们称该数项级数是发散的。

接下来,我们来研究一些收敛数项级数的性质。

首先是数项级数的有界性。

如果数项级数收敛,那么它的部分和序列一定是有界的。

这是因为收敛数列的定义就包含了它的部分和序列是有界的。

其次,我们来看数项级数的比较判别法。

这是判断数项级数的敛散性的一种常用方法。

如果对于一个正数b来说,数项级数绝对值的部分和序列Sn满足Sn≤b,那么我们称该数项级数是收敛的。

该方法常用于判定数项级数在无穷大时的敛散性。

再次,我们来看数项级数的比值判别法。

如果数项级数的部分和序列Sn满足lim(n→∞) ,Sn+1 / Sn, = L,那么我们有下面的结论:1)当L<1时,数项级数是收敛的;2)当L>1时,数项级数是发散的;3)当L=1时,该方法无法判定数项级数的敛散性。

最后,我们来看数项级数的积分判别法。

对于一个连续递减的正函数f(x),如果数项级数的部分和序列Sn与函数f(x)的积分∫(n→∞) f(x) dx之间存在以下关系:1)当∫(n→∞) f(x) dx收敛时,数项级数也是收敛的;2)当∫(n→∞) f(x) dx发散时,数项级数也是发散的。

以上是数项级数的一些基本概念和性质。

数学分析之数项级数

数学分析之数项级数
收敛, 但级数 1 1 1 1 却是发散的.
推 论 如 果 加 括 弧 后 所 成 的 级 数 发 散 ,则 原 来 级 数 也 发 散 .
性质4 (级数收敛的必要条件)
当 n无限,它 增的 大u 一 时 n趋般 于 ,即 项 零
级数收敛 ln im un 0.
证 s un 则 u nsn sn 1, n1 ln i u m nln i s m nln i s m n 1 ss0.
当q1时, ln i m qnln i m sn
如果q 1时
收敛 发散
当q1时, snn a 级数发散 当q1时,级a 数 a a a 变 为
ln im sn不存在 级数发散
综上 aqn
当q 1 时,收敛;
n0
当q 1 时,发散.
例2 讨论数项级数
11 1
(* )
1223 n (n 1 )
1 1 1 . m mp m
因此, 对 任 意 0,可 取 N1, 当m>N及任意正
整数 p,由上式可得 u m 1u m 2 u m pm 1,
依 级 数 收 敛 的 柯 西 准 则 , 知 级 数 n 1 2收敛.
1
注 级数 n 1 n ( n 1 ) 的收敛性已由例2的证明过程所
( c u n d v n ) cu n dv n . 根据级数收敛的柯西准则, 级数 un 的收敛与否与
级数前面有限项的取值无关.从而可得到以下定理. 定理12.3 去掉、增加或改变级数的有限项并不改变 级数的敛散性.
性质3 若级数 un收敛,则 un也收敛
n1
nk1
(k1).且其逆亦真.
Chapt 12 数项级数
级数是数学分析三大组成部分之一, 是逼近理论的基础,是研究函数、进行近 似计算的一种有用的工具. 级数理论的主要 内容是研究级数的收敛性以及级数的应用.

数学分析数项级数

数学分析数项级数
傅里叶级数的应用
傅里叶级数在信号处理、图像处理、通信等领域有着广泛的应用。通过傅里叶变换,可 以将信号从时域转换到频域,从而更好地理解和处理信号。
泰勒级数
01
泰勒级数的定义
泰勒级数是无穷级数,用于逼近一个 函数。泰勒级数展开式由多项式和无 穷小量组成,可以用来近似表示任意 函数。
02
泰勒级数的性质
数学分析数项级数
目录
• 数项级数的基本概念 • 数项级数的性质 • 数项级数的求和法 • 数项级数的应用 • 数项级数的扩展
01
数项级数的基本概念
级数的定义
定义
级数是无穷数列的和,表示为Σ,其 中每一项都是正项或负项。
特点
级数中的每一项都是无穷小量,但整 个级数的和可能是有限的或无限的。
级数的分类
泰勒级数具有收敛性、唯一性和可微 性等重要性质。这些性质使得泰勒级 数成为分析函数的有力工具。
03
泰勒级数的应用
泰勒级数在数学分析、物理和工程等 领域有着广泛的应用。通过泰勒展开 ,可以更好地理解和分析函数的性质 ,如求函数的极限、证明不等式等。
感谢您的观看
THANKS
有穷级数
所有项的和是有限的,例如1+2+3+...+100。
无穷级数
所有项的和是无限的,例如1+1/2+1/3+...。
级数的收敛与发散
收敛
级数的和是有限的,即级数 收敛。
发散
级数的和是无限的,即级数 发散。
判定方法
通过比较测试、柯西收敛准 则等判定级数的收敛与发散 。
02
数项级数的性质
收敛级数的性质
数项级数的扩展
幂级数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学分析:第章数项级数 The Standardization Office was revised on the afternoon of December 13, 2020第十二章 数 项 级 数目的与要求:1.使学生掌握数项级数收敛性的定义和收敛级数的性质,掌握等比级数与调和级数的敛散性;2. 掌握判别正项级数敛散性的各种方法,包括比较判别法,比式判别法,根式判别法和积分判别法.重点与难点:本章重点是数项级数收敛性的定义,基本性质和判别正项级数敛散性的各种方法;难点则是应用柯西收敛准则判别级数的敛散性.第一节 级数的收敛性一 级数的概念在初等数学中,我们知道:任意有限个实数n u u u ,,,21 相加,其结果仍是一个实数,在本章将讨论无限多个实数相加所可能出现的情形及特征.如+++++n 2121212132 从直观上可知,其和为1. 又如, +-++-+)1(1)1(1. 其和无意义;若将其改写为: +-+-+-)11()11()11( 则其和为:0;若写为: ++-++-+]1)1[(]1)1[(1 则和为:1.(其结果完全不同). 问题:无限多个实数相加是否存在和;如果存在,和等于什么.1 级数的概念定义1 给定一个数列{}n u ,将它的各项依次用加号“+”连接起来的表达式+++++n u u u u 321 (1)称为数项级数或无穷级数(简称级数),其中n u 称为级数(1)的通项.级数(1)简记为:∑∞=1n n u ,或∑n u .2 级数的部分和n n k k n u u u u S +++==∑= 211称之为级数∑∞=1n n u 的第n 个部分和,简称部分和.3 级数的收敛性定义2 若数项级数∑∞=1n n u 的部分和数列{}n S 收敛于S (即S S n n =∞→lim ),则称数项级数∑∞=1n n u 收敛 ,称S 为数项级数∑∞=1n n u 的和,记作=S ∑∞=1n n u = +++++n u u u u 321.若部分和数列{}n S 发散,则称数项级数∑∞=1n n u 发散.例1 试讨论等比级数(几何级数)∑∞=--+++++=1121n n n aq aq aq a aq ,)0(≠a的收敛性.解:见P2.例2 讨论级数 ++++⋅+⋅+⋅)1(1431321211n n的收敛性.解:见P2.二 收敛级数的性质1 级数与数列的联系由于级数∑∞=1n n u 的敛散性是由它的部分和数列{}n S 来确定的,因而也可以认为数项级数∑∞=1n n u 是数列{}n S 的另一表现形式.反之,对于任意的数列{}n a ,总可视其为数项级数∑∞=1n n u+-++-+-+=-)()()(123121n n a a a a a a a的部分和数列,此时数列{}n a 与级数 +-++-+-+-)()()(123121n n a a a a a a a 有相同的敛散性,因此,有2 级数收敛的准则定理1(级数收敛的Cauchy 准则) 级数(1)收敛的充要条件是:任给正数ε,总存在正整数N ,使得当N m >以及对任意的正整数p ,都有 ε<++++++p m m m u u u 21.注:级数(1)发散的充要条件是:存在某个00>ε,对任何正整数N ,总存在正整数 00),(p N m >,有 0210000ε≥++++++p m m m u u u .3 级数收敛的必要条件推论 (必要条件) 若级数(1)收敛,则0lim =∞→n n u . 注:此条件只是必要的,并非充分的,如下面的例3.例3 讨论调和级数 +++++n 131211 的敛散性.解:显然,有 01limlim ==∞→∞→nu n n n ,但当令 m p =时,有 m m m m u u u u 2321+++++++ mm m m 21312111+++++++= 2121212121=++++≥m m m m . 因此,取210=ε,对任何正整数N ,只要N m >和m p =就有 0210000ε≥++++++p m m m u u u ,故调和级数发散.例4 应用级数收敛的柯西准则证明级数 ∑21n收敛. 证明:由于 p m m m u u u ++++++ 21=222)(1)2(1)1(1p m m m ++++++ ))(11)2)(1(1)1(1p m p m m m m m +-+++++++< mp m m 111<+-=. 故对0>∀ε,取]1[ε=N ,使当N m >及对任何正整数p ,都有 p m m m u u u ++++++ 21ε<<m1.故级数 ∑21n 收敛. 4 收敛级数的性质定理2 若级数∑∞=1n n u 与∑∞=1n n v 都有收敛,则对任意常数d c ,,级数)(1n n n dv cu +∑∞=也收敛,且 )(1n n n dv cu +∑∞=∑∑∞=∞=+=11n n n n v d u c .即对于收敛级数来说,交换律和结合律成立.定理3 去掉、增加或改变级数的有限个项并不改变级数的敛散性.(即级数的敛散性与级数的有限个项无关,但其和是要改变的).若级数∑∞=1n n u 收敛,设其和为S ,则级数 ++++21n n u u 也收敛,且其和为n n S S R -=.并称为级数∑∞=1n n u 的第n 个余项(简称余项),它代表用n S 代替S 时所产生的误差.定理4 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和. 注意:从级数加括号后的收敛,不能推断加括号前的级数也收敛(即去括号法则不成立).如: +-++-+-)11()11()11( ++++=000收敛,而级数 +-+-1111是发散的.作业 P5 1,2,3,4,5,6,7.第二节 正 项 级 数一 正项级数收敛性的一般判别原则若级数各项的符号都相同,则称为同号级数.而对于同号级数,只须研究各项都由正数组成的级数——正项级数.因负项级数同正项级数仅相差一个负号,而这并不影响其收敛性.1 正项级数收敛的充要条件定理5 正项级数∑∞=1n n u 收敛⇔部分和数列{}n S 有界.证明:由于对n ∀,0>n u ,故{}n S 是递增的,因此,有∑∞=1n n u 收敛⇔{}n S 收敛⇔{}n S 有界.2 比较原则定理6(比较原则) 设∑∞=1n n u 和∑∞=1n n v 均为正项级数,如果存在某个正数N ,使得对N n >∀都有n n v u ≤,则 (1)若级数∑∞=1n n v 收敛,则级数∑∞=1n n u 也收敛;(2)若级数∑∞=1n n u 发散,则级数∑∞=1n n v 也发散.证明:由定义及定理5即可得.例1 考察∑∞=+-1211n n n 的收敛性.解:由于当2≥n 时,有 222)1(1)1(1111-≤-=-≤+-n n n n n n n , 因正项级数∑∞=-22)1(1n n 收敛,故∑∞=+-1211n n n 收敛.3 比较判别法的极限形式推论(比较判别法的极限形式) 设 ∑∞=1n n u 和∑∞=1n n v 是两个正项级数,若 l v u nnn =∞→lim ,则 (1) 当+∞<<l 0时,级数∑∞=1n n u 、∑∞=1n n v 同时收敛或同时发散; (2)当0=l 且级数∑∞=1n n v 收敛时,级数∑∞=1n n u 也收敛; (3)当+∞=l 且∑∞=1n n v 发散时,级数∑∞=1n n u 也发散.证明:由比较原则即可得.例2 讨论级数 ∑-n n 21的收敛性. 解:利用级数∑n 21的收敛性,由推论可知级数∑-n n 21收敛.例3 由级数∑n 1的发散性,可知级数∑n 1sin 是发散的.二 比式判别法和根式判别法1 比式判别法定理7 (达朗贝尔判别法,或称比式判别法)设∑n u 为正项级数,且存在某个正整数0N 及常数)1,0(∈q :(1) 若对0N n >∀,有 q u u nn ≤+1,则级数∑n u 收敛 ; (2) 若对0N n >∀,有 11≥+nn u u ,则级数∑n u 发散. 证明:(1)不妨设对一切n ,有q u u n n ≤+1成立,于是,有 q u u ≤12, ,23q u u ≤, ,1q u u n n ≤-. 故112312--≤⋅⋅⋅n n n q u u u u u u , 即 11-≤n n q u u ,由于,当)1,0(∈q 时,级数 ∑∞=-11n n q收敛,由比较原则,可知级数∑n u 收敛.(2) 因此时0lim ≠∞→n n u ,故级数∑n u 发散. 2 比式判别法的极限形式推论(比式判别法的极限形式)设∑n u 为正项级数,且 q u u nn n =+∞→1lim , 则 (1)当1<q 时,级数∑n u 收敛;(2) 当1>q (可为∞+)时,级数∑n u 发散;(3) 当1=q 时,级数∑n u 可能收敛,也可能发散.如:∑n 1,∑21n. 证明:由比式判别法和极限定义即可得. 例4 讨论级数 +-+⋅⋅-+⋅⋅++⋅⋅⋅⋅+⋅⋅+)]1(41[951)]1(32[852951852515212n n 的收敛性.例5 讨论级数)0(1>∑-x nx n 的收敛性. 3 根式判别法定理8(柯西判别法,或称根式判别法) 设∑n u 为正项级数,且存在某个正整数0N 及正常数l ,(1)若对0N n >∀,有 1<≤l u n n , 则级数∑n u 收敛;(2)若对0N n >∀,有 1≥n n u , 则级数∑n u 发散. 证明:由比较判别法即可得.4 根式判别法的极限形式 推论(根式判别法的极限形式)设∑n u 为正项级数,且 l u n n n =∞→lim , 则 (1)当1<l 时,级数∑n u 收敛;(2)当1>l (可为∞+)时,级数∑n u 发散;(3)当1=q 时,级数∑n u 可能收敛,也可能发散.如:∑n 1,∑21n .例6 讨论级数 ∑-+nn2)1(2的敛散性.解:由上推论即得. 说明:因 ⇒=+∞→q u u nn n 1limq u n n n =∞→lim 这就说明凡能用比式判别法判定收敛性的级数,也能用根式判别法来判断,即根式判别法较之比式判别法更有效.但反之不能,如例6. 三 积分判别法积分判别法是利用非负函数的单调性和积分性质,并以反常积分为比较对象来判断正项级数的敛散性.定理9 设)(x f 为[),1+∞上非负减函数,则正项级数∑)(n f 与反常积分⎰+∞1)(dxx f 同时收敛或同时发散.证明:由假设)(x f 为[),1+∞上非负减函数,则对任何正数A ,)(x f 在[1,A]上可积,从而有 ⎰--≤≤nn n f dx x f n f 1)1()()(, ,3,2=n依次相加,得 ∑⎰∑∑-====-≤≤11122)()1()()(m n mmn mn n f n f dx x f n f若反常积分收敛,则对m ∀,有⎰⎰∑+∞=+≤+≤=111)()1()()1()(dx x f f dx x f f n f S mmn m .于是,知 级数 ∑)(n f 收敛.反之,若级数∑)(n f 收敛,则对任意正整数)1(>m ,有∑∑⎰=≤=≤-=-S n f n f S dx x f m n m m)()()(1111.又因)(x f 为[),1+∞上非负减函数,故对任何1>A ,有 S S dx x f n A<≤≤⎰1)(0, 1+≤≤n A n .故知,反常积分⎰+∞1)(dx x f 收敛.同理可证它们同时发散. 例7 讨论下列级数(1) ∑∞=11n p n,(2)∑∞=2)(ln 1n p n n , (3) ∑∞=3)ln )(ln (ln 1n pn n n 的敛散性.作业 P16 1,2,3,4,5,6,7,8,9.第三节 一般项级数一 交错级数1 交错级数的定义若级数的各项符号正负相间,即+-++-+-n n u u u u u )1(4321 ),2,1,0( =>n u n (1)则称(1)为交错级数.2 交错级数收敛的判别定理11 (莱布尼茨判别法) 若交错级数(1)满足下述两个条件: 1. 数列{}n u 单调递减; 2. 0lim =∞→n n u则级数(1)收敛.证 ( 证明部分和数列{}n S 的两个子列{}m S 2和{}12-m S 收敛于同一极限.) 考察交错级数(1)的部分和数列{}n S 的偶子列{}m S 2和奇子列{}12-m S)()(122232112--------=m m m u u u u u S ,)()()(21243212m m m u u u u u u S -++-+-=- .由条件1. 上述两式中各个括号内的数都是非负的,从而数列{}12-m S 是递减的,而数列{}m S 2是递增的.又由条件2.知道002212→=-<-m m m u S S )(∞→m ,从而{}],[122-m m S S 是一个区间套.由区间套定理,存在唯一的一个数S ,使得 S S S m m m m ==∞→-∞→212lim lim .所以数列{}n S 收敛,即交错级数(1) 收敛.推论 若交错级数(1)满足莱布尼茨判别法的条件,则收敛的交错级数(1)的余和n R 的符号与余和的首项相同 ,并有1+≤n n u R .例1 判别级数n x nn n∑∞=-1)1( )0(>x 的敛散性.解 10≤<x 时 , 由莱布尼茨判别法知, n x nn n∑∞=-1)1(收敛;1>x 时, 通项0)1(→/-n x n n, 所以n x n n n ∑∞=-1)1(发散.二绝对收敛级数及其性质1 绝对收敛和条件收敛若级数∑∞=1nnu各项绝对值所组成的级数∑∞=1nnu收敛,则称原级数∑∞=1nnu为绝对收敛.若级数∑∞=1nnu收敛,但各项绝对值所组成的级数∑∞=1nnu不收敛,则称原级数∑∞=1nnu为条件收敛.以级数∑∞=-11)1(n nn为例, 先说明收敛⇒/绝对收敛.2 绝对收敛与收敛的关系定理12 绝对收敛的级数一定收敛.证( 用柯西收敛准则 ).一般项级数判敛时, 先应判其是否绝对收敛.例2 判断级数∑∞=1!nnna是绝对收敛还是条件收敛.3 绝对收敛级数的性质1. 绝对收敛级数可重排性我们把正整数列{} ,,,2,1n 到它自身的一一映射f :)(n k n →称为正整数列的重排,相应的对于数列{}n u 按映射F :)(n k n u u → 所得到的数列{})(n k u 称为原数列{}n u 的重排,相应于此,我们也称级数∑∞=1)(n n k u 是级数∑∞=1n n u 的重排.定理13 设级数∑∞=1n n u 绝对收敛,且其和等于S ,则任意重排后所得到的级数∑∞=1)(n n k u也绝对收敛亦有相同的和数.2 级数的乘积设有收敛级数∑∞=1n n u A =与收敛级数∑∞=1n n v B =,则它们的乘积∑∞=1n n u ∑∞=⋅1n n v按正方形排列顺序有:∑∞=1n n u ∑∞=⋅1n nv+++++++++=132333323112222111v u v u v u v u v u v u v u v u v u按对角线排列顺序有:∑∞=1n n u ∑∞=⋅1n nv++++++++++=14233241132231122111v u v u v u v u v u v u v u v u v u v u定理14 若级数∑∞=1n n u A =与级数∑∞=1n n v B =都绝对收敛,则按任意顺序排列所得到的级数乘积∑∞=1n n u ∑∞=⋅1n n v 也绝对收敛,且其和等于AB .例3 等比级数+++++=-n r r r r2111, 1<r 是绝对收敛的,将20⎪⎭⎫⎝⎛∑∞=n n r 按对角线顺序排列,则得到+++++++++++=-)()()(1)1(12222n n n r r r r r r r r r ++++++=n r n r r )1(3212.三 阿贝尔判别法和狄利克雷判别法对于型如∑∞=1n n n b a 的级数的判敛,可用阿贝尔判别法和狄利克雷判别法.1 阿贝尔判别法引理 (分部求和公式,或称阿贝尔变换)设i ε和i v ),,2,1(n i =为两组实数.记 ∑==k i i k v 1σ),,2,1(n k =. 则 n n n i i i i n i i i v σεσεεε+-=∑∑-=-=1111)(.推论 (阿贝尔引理) 设(1) i ε),,2,1(n i =是单调数组;(2) 对任一正整数k ()n k ≤≤1,有A k ≤σ,这里∑==ki i k v 1σ),,2,1(n k =,则记{}k nk εε≤≤=1max 时,有A v nk k k εε31≤∑=.定理15 (阿贝尔判别法 ) 若{}n a 为单调有界数列,且级数∑∞=1n n b 收敛,则级数 ∑∞=1n n n b a 收敛.证 ( 用柯西收敛准则 , 利用阿贝尔引理估计尾项 )由∑∞=1n n b 收敛,依柯西收敛准则,对任给0>ε,存在正数N ,使当N n >时, 对任一正整数p ,都有ε<∑++=pn n k kb1.又由于数列{}n a 单调有界,所以存在0>M ,使M a n ≤,应用阿贝尔引理可得到εM ba pn n k kk31≤∑++=.由柯西收敛准则知级数∑∞=1n n n b a 收敛.2 狄利克雷判别法定理16 (狄利克雷判别法) 若数列{}n a 单调递减,且0lim =∞→n n a ,又级数∑∞=1n n b 的部分和数列有界,则级数∑∞=1n n n b a 收敛.注1. 取数列{}n a 单调递减,且0lim =∞→n n a , ∑∞=1n n b ∑∞=+-=11)1(n n ,由狄利克雷判别法 , 得交错级数∑∞=+-11)1(n n n a 收敛. 可见莱布尼茨判别法是狄利克雷判别法的特例.2. 由狄利克雷判别法可导出阿贝尔判别法.事实上,由数列{}n a 单调有界,可知{}n a 收敛,设a a n → ()∞→n . 考虑级数∑∑∞=∞=+-11)(n n n n n b a b a a , a a n -单调趋于零,因∑∞=1n n b 收敛,从而∑∞=1n n b 的部分和有界,故级数∑∞=-1)(n n n b a a 收敛,又级数∑∞=1n n b a收敛,于是级数∑∑∞=∞=+-11)(n n n n n b a b a a 收敛.即级数∑∞=1n n n b a 收敛.例4 设数列{}n a 单调递减,且0lim =∞→n n a .证明级数∑∞=1sin n n nx a 和∑∞=1cos n n nx a对任何)2,0(π∈x 收敛.证 ++⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛+∑= 2sin 23sin 2sin cos 212sin 21x x x kx x n k⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛++x n x n 21sin 21sinx n ⎪⎭⎫ ⎝⎛+=21sin ,)2,0(π∈x 时,02sin≠x,故得到2sin 221sin cos 211x x n kx n k ⎪⎭⎫ ⎝⎛+=+∑=. 可见)2,0(π∈x 时, 级数∑∞=1cos k kx 的部分和有界.由狄利克雷判别法推得级数∑∞=1cos n n nx a收敛 . 同理可得级数数∑∞=1sin n n nx a 收敛 . 作业 P24 1,2,4, 5,8.。

相关文档
最新文档