初三数学拓展题1

合集下载

2019-2020学年九年级数学中考复习:综合拓展性专题训练(含答案)

2019-2020学年九年级数学中考复习:综合拓展性专题训练(含答案)

2019-2020学年中考复习:综合拓展性专题训练(含答案)1. 如图,已知A、B是反比例面数kyx=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P 作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形0MPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为【答案】A2.坐标平面上,二次函数362+-=xxy的图形与下列哪一个方程式的图形没有交点?A. x=50 B. x=-50 C. y=50 D. y=-50【答案】D3. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米 C.2米 D.1米【答案】D4. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A .50mB .100mC .160mD .200m【答案】C5. 一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2+--=)(,则小球距离地面的最大高度是( )A .1米B .5米C .6米D .7米【答案】C6. 出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大. 【答案】47. 如图,已知函数x y3-=与bx ax y +=2(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bxax +2x 3+=0的解为【答案】-38、(福建龙岩05)下列是由同型号黑白两种颜色的正三角形瓷砖按一定规律铺设的图形.仔细观察图形可知:图①有1块黑色的瓷砖,可表示为;21)11(1⨯+=图②有3块黑色的瓷砖,可表示为;22)21(21⨯+=+图①图②图③图④图③有6块黑色的瓷砖,可表示为;23)31(321⨯+=++ 实践与探索:⑴请在图④的虚线框内画出第4个图形;(只须画出草图)⑵第10个图形有 块黑色的瓷砖;(直接填写结果) ⑶第n 个图形有 块黑色的瓷砖.(用含n 的代数式表示) 解:⑴如右图;⑵55,12n (n +1)(n 为正整数);9、(2007四川巴中)先阅读下列材料,然后解答问题:从A B C ,,三张卡片中选两张,有三种不同选法,抽象成数学问题就是从3个元素中选取2个元素组合,记作2332C 321⨯==⨯. 一般地,从m 个元素中选取n 个元素组合,记作:(1)(1)C (1)321nm m m m n n n --+=-⨯⨯⨯L L例:从7个元素中选5个元素,共有5776543C 2154321⨯⨯⨯⨯==⨯⨯⨯⨯种不同的选法.问题:从某学习小组10人中选取3人参加活动,不同的选法共有 种.12010、某校组织360名师生去参观三峡工程建设,如果租用甲种客车若干辆刚好坐满;如果租用乙种客车可少租1辆且余40个空位.(1)已知甲种客车比乙种客车少20个座位,求甲、乙两种客车各有多少个座位?(2)已知甲种客车租金是每辆400元,乙种客车租金是每辆480元,•这次参观同时租用这两种客车,其中甲种客车比乙种客车少租1辆,•所用租金比单独租用任何一种客车要节省,按这种方案需用租金多少元?(1)设甲种客车有x 个座位,则乙种客车有(x+20)个座位,依题意,3603604020x x +=++1 解之得x 1=60,x 2=-120(舍) (2)设租用甲种客车y 辆,则租用乙种客车(y+1)辆,由于单独租用甲种客车需6辆,单独租用乙种客车需5辆,租金都是2400元,所以得 400y+480(y+1)<2400, y<2411,∴y=1或2. 当y=1时,y+1=2,则60×1+80×2=220<360(舍). 当y=1时,y+1=3,则60×2+80×3=360. 此时,租金为400×2+480×3=2240(元).11、某商场对今年端午节这天销售A 、B 、C 三种品牌粽子的情况进行了统计,绘制如图6和图7所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大? (2)补全图6中的条形统计图.(3)写出A 品牌粽子在图7中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A 、B 、C 三种品牌的粽子如何进货? 请你提一条合理化的建议.解: (1)C 品牌.(不带单位不扣分) (2)略.(B 品牌的销售量是800个,柱状图上没有标数字不扣分) (3)60°.(不带单位不扣分)(4)略.(合理的解释都给分)12、将一张正方形纸片剪成四个大小形状一样的小正方形,然后将其中的一片又按同样的方法剪成四小片,再将其中的一小片正方形纸片剪成四片,如此循环进行下去,将结果填在下表中,并解答所提出的问题:所剪次数 1 2 3 4 5 … 正方形个数47101316…⑴如果能剪100次,共有多少个正方形?据上表分析,你能发现什么规律? ⑵如果剪n 次共有A n 个正方形,试用含n 、A n 的等式表示这个规律; ⑶利用上面得到的规律,要剪得22个正方形,共需剪几次? ⑷能否将正方形剪成2004个小正方形?为什么?⑸若原正方形的边长为1,设a n 表示第n 次所剪的正方形的边长,试用含n 的式子表示a n ;⑹试猜想a 1+a 2+a 3+…+a n 与原正方形边长的关系,并画图示意这种关系. 解:⑴100×3+1=301,规律是:本次剪完后得到的小正方形的个数比上次剪完后得到的图 7C 品牌 50%品牌4001200销售量(个)0200400600800100012001400图 6C 品牌B 品牌A 品牌小正方形的个数多3个;⑵A n =3n +1;⑶若A n =22,则3n +1=22,∴n =7,故需剪7次; ⑷若A n =2004,则3n +1=2004,此方程无自然数解, ∴不能将原正方形剪成2004个小正方形; ⑸a n =12n ;⑹a 1=12<1,a 1+a 2=12+14=34<1,a 1+a 2+a 3=12+14+18=78<1,……从而猜想到:a 1+a 2+a 3+…+a n <1.直观的几何意义如图所示。

初中数学拓展试题及答案

初中数学拓展试题及答案

初中数学拓展试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是偶数?A. 2B. 3C. 5D. 7答案:A2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 10答案:A3. 如果一个角是直角的一半,那么这个角是:A. 45°B. 90°C. 180°D. 360°答案:A4. 一个长方形的长是10cm,宽是5cm,那么它的面积是:A. 25cm²B. 50cm²C. 75cm²D. 100cm²答案:B5. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 5或-5D. 0答案:C6. 下列哪个是无理数?A. 2B. 3C. πD. 4答案:C7. 一个数的立方是-27,那么这个数是:A. 3B. -3C. 9D. -9答案:B8. 一个数的平方是16,那么这个数可能是:A. 4B. -4C. 4或-4D. 0答案:C9. 一个数的倒数是它本身,那么这个数是:A. 1B. -1C. 1或-1D. 0答案:C10. 一个数的平方根是它本身,那么这个数是:A. 0B. 1C. 0或1D. -1答案:C二、填空题(每题4分,共20分)1. 一个数的平方等于36,这个数是______。

答案:±62. 一个数的立方等于-8,这个数是______。

答案:-23. 一个数的绝对值是4,这个数可能是______。

答案:4或-44. 一个数的倒数是1/3,这个数是______。

答案:35. 一个数的平方根是2,这个数是______。

答案:4三、解答题(每题10分,共50分)1. 计算下列表达式的值:(3x - 2)(x + 4),其中x = 2。

答案:将x = 2代入表达式,得到(3*2 - 2)(2 + 4) = (6 - 2)(6) = 4 * 6 = 24。

2. 一个数的平方减去这个数的两倍再加上1等于0,求这个数。

人教版九年级数学上《一元二次方程》拓展练习 (1)

人教版九年级数学上《一元二次方程》拓展练习 (1)

《一元二次方程》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)已知关于x的方程x2+mx﹣6=0的一个根为x=3,则实数m的值为()A.﹣2B.﹣1C.1D.22.(5分)若方程x2+mx﹣3=0的一根为3,则m等于()A.﹣2B.﹣1C.1D.23.(5分)关于x的一元二次方程(m﹣2)x2+5x+m2﹣4=0的常数项是0,则()A.m=4B.m=2C.m=2或m=﹣2D.m=﹣24.(5分)已知x=a是方程x2﹣3x﹣5=0的根,代数式a2﹣3a+4的值为()A.6B.9C.14D.﹣65.(5分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=0二、填空题(本大题共5小题,共25.0分)6.(5分)若x=﹣2是关于x的一元二次方程ax2﹣bx+6=0的一个根,则代数式2018﹣2a ﹣b的值为.7.(5分)若关于x的一元二次方程x2+mx+2n=0有一个根是﹣2,则m﹣n=.8.(5分)已知关于x的一元二次方程(m+2)x2+2x+m2﹣4=0的一个根是零,则m=.9.(5分)已知a,b,c为实数,且a+b+c=,a2+b2+c2=2,则2a﹣b﹣c=.10.(5分)已知a是方程x2﹣2017x+1=0的一个根,则a3﹣2017a2﹣=.三、解答题(本大题共5小题,共50.0分)11.(10分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,而这个方程的两个根恰好是等腰△ABC的两条边长.(1)求m的值;(2)求△ABC的周长.12.(10分)已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.13.(10分)观察下列一组方程:①x2﹣x=0;②x2﹣3x+2=0;③x2﹣5x+6=0;④x2﹣7x+12=0;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.(1)若x2+kx+56=0也是“连根一元二次方程”,写出k的值,并解这个一元二次方程;(2)请写出第n个方程和它的根.14.(10分)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=,=,=;(2)2x2﹣7x+2=0(x≠0),求的值.15.(10分)已知关于x的方程(k+1)+(k﹣3)x﹣1=0(1)当k取何值时,它是一元一次方程?(2)当k取何值时,它是一元二次方程?《一元二次方程》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)已知关于x的方程x2+mx﹣6=0的一个根为x=3,则实数m的值为()A.﹣2B.﹣1C.1D.2【分析】把x=3代入方程x2+mx﹣6=0得9+3m﹣6=0,然后解关于m的方程即可.【解答】解:把x=3代入方程x2+mx﹣6=0得9+3m﹣6=0,解得m=﹣1.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.2.(5分)若方程x2+mx﹣3=0的一根为3,则m等于()A.﹣2B.﹣1C.1D.2【分析】把x=3代入方程x2+mx﹣3=0得9+3m﹣3=0,然后解关于m的方程即可.【解答】解:把x=3代入方程x2+mx﹣3=0得9+3m﹣3=0,解得m=﹣2.故选:A.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.3.(5分)关于x的一元二次方程(m﹣2)x2+5x+m2﹣4=0的常数项是0,则()A.m=4B.m=2C.m=2或m=﹣2D.m=﹣2【分析】根据常数项为0可得m2﹣4=0,同时还要保证m﹣2≠0,再解即可.【解答】解:根据题意知,解得m=﹣2,故选:D.【点评】此题主要考查了一元二次方程的一般形式,关键是掌握ax2+bx+c=0(a,b,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.4.(5分)已知x=a是方程x2﹣3x﹣5=0的根,代数式a2﹣3a+4的值为()A.6B.9C.14D.﹣6【分析】利用一元二次方程根的定义得到a2﹣3a=5,然后利用整体代入的方法计算代数式的值.【解答】解:∵x=a是方程x2﹣3x﹣5=0的根,∴a2﹣3a﹣5=0,∴a2﹣3a=5,∴a2﹣3a+4=5+4=9.故选:B.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.5.(5分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=0【分析】依据一元二次方程的定义进行判断即可.【解答】解:A.x+2y=0含有两个未知数,不合题意;B.x2﹣4y=0含有两个未知数,不合题意;C.x2+3x=0是一元二次方程,符合题意;D.x+1=0中未知数的最高次数不是2次,不合题意;故选:C.【点评】本题主要考查的是一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)若x=﹣2是关于x的一元二次方程ax2﹣bx+6=0的一个根,则代数式2018﹣2a ﹣b的值为2021.【分析】把x=﹣2代入方程,求出2a+b=﹣3,再变形后代入,即可求出答案.【解答】解:∵x=﹣2是关于x的一元二次方程ax2﹣bx+6=0的一个根,∴代入得:4a+2b+6=0,4a+2b=﹣6,2a+b=﹣3,∴2018﹣2a﹣b=2018﹣(2a+b)=2018﹣(﹣3)=2021,故答案为:2021.【点评】本题考查了求代数式的值和一元二次方程的解,能求出2a+b=﹣3是解此题的关键.7.(5分)若关于x的一元二次方程x2+mx+2n=0有一个根是﹣2,则m﹣n=2.【分析】把x=﹣2代入方程x2+mx+2n=0得出4﹣2m+2n=0,再求出即可.【解答】解:把x=﹣2代入方程x2+mx+2n=0得:4﹣2m+2n=0,即﹣2m+2n=﹣4,m﹣n=2,故答案为:2.【点评】本题考查了一元二次方程的解,能理解一元二次方程的解的定义是解此题的关键.8.(5分)已知关于x的一元二次方程(m+2)x2+2x+m2﹣4=0的一个根是零,则m=2.【分析】把x=0代入方程,求出m,再判断即可.【解答】解:把x=0代入方程(m+2)x2+2x+m2﹣4=0得:0+0+m2﹣4=0,解得:m=±2,∵方程(m+2)x2+2x+m2﹣4=0是关于x的一元二次方程,∴m+2≠0,即m≠﹣2,所以m=2,故答案为:2.【点评】本题考查了一元二次方程的解和一元二次方程的定义,能根据题意得出m2﹣4=0和m+2≠0是解此题的关键.9.(5分)已知a,b,c为实数,且a+b+c=,a2+b2+c2=2,则2a﹣b﹣c=0.【分析】利用换元法构造一元二次方程,然后利用根与系数的关系解答.【解答】解:由已知得a+b=﹣c①(a+b)2+c2﹣2ab=2 ②将①代入②得(﹣c)2+c2﹣2ab=2,∴ab=c2﹣c+2 ③由①③可知,a、b是关于t的方程t2﹣(﹣c)t+c2﹣c+2=0 ④的两个实数根.∴△=(﹣c)2﹣4(c2﹣c+2)≥0,化简得(c﹣)2≤0,而(c﹣)2≥0,∴c=.将c=代入④,解得t1=t2=,∴a=b=,∴a=b=c=,∴2a﹣b﹣c=0,故答案是:0.【点评】考查了利用换元法根据根与系数的关系构造一元二次方程,还涉及非负数的性质等内容,需要认真对待.10.(5分)已知a是方程x2﹣2017x+1=0的一个根,则a3﹣2017a2﹣=﹣2017.【分析】由方程的根的定义得a2﹣2017a=﹣1、a2+1=2017a,代入原式=a(a2﹣2017a)﹣逐步化简可得.【解答】解:∵a是方程x2﹣2017x+1=0的一个根,∴a2﹣2017a+1=0,即a2﹣2017a=﹣1,a2+1=2017a,则原式=a(a2﹣2017a)﹣=﹣a﹣=﹣=﹣=﹣2017,故答案为:﹣2017.【点评】本题主要考查方程的解的定义,熟练掌握整体代入思想是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)已知2是关于x的方程x2﹣2mx+3m=0的一个根,而这个方程的两个根恰好是等腰△ABC的两条边长.(1)求m的值;(2)求△ABC的周长.【分析】(1)直接把x=2代入方程x2﹣2mx+3m=0可求出m的值;(2)先解方程x2﹣8x+12=0,解得x1=2,x2=6,再利用三角形三边的关系确定等腰三角形的腰与底,然后计算它的周长.【解答】解:(1)把x=2代入方程得4﹣4m+3m=0,解得m=4;(2)当m=4时,原方程变为x2﹣8x+12=0,解得x1=2,x2=6,∵该方程的两个根恰好是等腰△ABC的两条边长,且不存在三边为2,2,6的等腰三角形∴△ABC的腰为6,底边为2,∴△ABC的周长为6+6+2=14.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.12.(10分)已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.(1)已知x=2是方程的一个根,求m的值;(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.【分析】(1)把x=2代入方程x2﹣(2m+3)x+m2+3m+2=0得到关于m的一元二次方程,然后解关于m的方程即可;(2)先计算出判别式,再利用求根公式得到x1=m+2,x2=m+1,则AC=m+2,AB=m+1.然后讨论:当AB=BC时,有m+1=;当AC=BC时,有m+2=,再分别解关于m 的一次方程即可.【解答】解:(1)∵x=2是方程的一个根,∴4﹣2(2m+3)+m2+3m+2=0,∴m=0或m=1;(2)∵△=(2m+3)2﹣4(m2+3m+2)=1,=1;∴x=∴x1=m+2,x2=m+1,∵AB、AC(AB<AC)的长是这个方程的两个实数根,∴AC=m+2,AB=m+1.∵BC=,△ABC是等腰三角形,∴当AB=BC时,有m+1=,∴m=﹣1;当AC=BC时,有m+2=,∴m=﹣2,综上所述,当m=﹣1或m=﹣2时,△ABC是等腰三角形.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了等腰三角形的判定.13.(10分)观察下列一组方程:①x2﹣x=0;②x2﹣3x+2=0;③x2﹣5x+6=0;④x2﹣7x+12=0;…它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”.(1)若x2+kx+56=0也是“连根一元二次方程”,写出k的值,并解这个一元二次方程;(2)请写出第n个方程和它的根.【分析】(1)直接利用连根一元二次方程得出k的值;(2)利用因式分解法得出符合题意的值.【解答】解:(1)由题意可得:k=﹣15,则原方程为:x2﹣15x+56=0,则(x﹣7)(x﹣8)=0,解得:x1=7,x2=8;(2)第n个方程为:x2+(2n﹣1)x+n(n﹣1)=0,(x﹣n)(x﹣n+1)=0,解得:x1=n﹣1,x2=n.【点评】此题主要考查了一元二次方程的解法以及新定义,正确得出规律是解题关键.14.(10分)阅读下列材料:(1)关于x的方程x2﹣3x+1=0(x≠0)方程两边同时乘以得:即,,(2)a3+b3=(a+b)(a2﹣ab+b2);a3﹣b3=(a﹣b)(a2+ab+b2).根据以上材料,解答下列问题:(1)x2﹣4x+1=0(x≠0),则=4,=14,=194;(2)2x2﹣7x+2=0(x≠0),求的值.【分析】(1)模仿例题利用完全平方公式即可解决.(2)模仿例题利用完全平方公式以及立方和公式即可.【解答】解;(1)∵x2﹣4x+1=0,∴x+=4,∴(x+)2=16,∴x2+2+=16,∴x2+=14,∴(x2+)2=196,∴x4++2=196,∴x4+=194.故答案为4,14,194.(2)∵2x2﹣7x+2=0,∴x+=,x2+=,∴=(x+)(x2﹣1+)=×(﹣1)=.【点评】本题考查一元一次方程的解、完全平方公式、立方和公式,解决问题的关键是灵活应用完全平方公式,记住两边平方不能漏项(利用完全平方公式整体平方),属于中考常考题型.15.(10分)已知关于x的方程(k+1)+(k﹣3)x﹣1=0(1)当k取何值时,它是一元一次方程?(2)当k取何值时,它是一元二次方程?【分析】(1)根据二次项的系数为零且一次项的系数不为零是一元一次方程,可得答案;(2)根据一元二次方程:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数,可得答案.【解答】解:(1)由关于x的(k+1)+(k﹣3)x﹣1=0一元一次方程,得或,解得k=﹣1或k=0,当k=﹣1或k=0时,关于x的(k+1)+(k﹣3)x﹣1=0一元一次方程;(2)由关于x的(k+1)+(k﹣3)x﹣1=0一元二次方程,得,解得k=1,当k=1时,关于x的(k+1)+(k﹣3)x﹣1=0一元二次方程.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.。

人教版九年级数学上册《实际问题与一元二次方程》拓展练习

人教版九年级数学上册《实际问题与一元二次方程》拓展练习

《实际问题与一元二次方程》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为()A.x(x﹣1)=30B.x(x+1)=30C.=30D.=30 2.(5分)某种植物的主干长出若干个数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,求每个支干长出多少个小分支?解:设主干长出x个支干,每个支干有x个小分支,由题意,所列方程正确的是()A.1+x+x2=111B.x+x2=111C.2x+1=111D.2x=1113.(5分)某种品牌运动服经过两次降价,每件零售价由460元降为215,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.460(1+x)2=215B.460(1﹣x)2=215C.460(1﹣2x)2=215D.460(1﹣x2)=2154.(5分)如图,幼儿园计划用30m的围栏靠墙围成一个面积为100m2的矩形小花园(墙长为15m),则与墙垂直的边x为()A.10m或5m B.5m或8m C.10m D.5m5.(5分)如图,某农场拟建一间面积为200平方米的长方形种牛饲养室,饲养室一面靠墙(假设墙足够长),另三面用总长58米的建筑材料围成.若设该长方形垂直于墙的一边长为x米,则下列方程正确的为()A.x(58﹣x)=200B.x(29﹣x)=200C.x(29﹣2x)=200D.x(58﹣2x)=200二、填空题(本大题共5小题,共25.0分)6.(5分)某化肥厂一月份生产化肥500吨,从二月份起,由于改进操作技术,使得第一季度共生产化肥1750吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可列方程为.7.(5分)我国南宋数学家杨辉在1275年提出了一个问题:直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步).问阔及长各几步?若设阔(宽)为x步,则所列方程为.8.(5分)在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有名同学.9.(5分)有一人患了流感,经过两轮传染后共有64人患了流感,那么每轮传染中平均一个人传染给个人.10.(5分)在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题意可列方程为.三、解答题(本大题共5小题,共50.0分)11.(10分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价x(元∕件)…30405060…每天销售量y(件)…500400300200…(1)研究发现,每天销售量y与单价x满足一次函数关系,求出y与x的关系式;(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?12.(10分)列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,设这种玩具的销售单价为x 元.(1)根据销售单价每降低1元,每天可多售出2个,则现在销售数量为个(用含有x的代数式表示)(2)当x为多少元时,厂家每天可获利润20000元?13.(10分)某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.14.(10分)利民商场经营某种品牌的T恤,购进时的单价是300元,根据市场调查:在一段时间内,销售单价是400元时,销售量是60件,销售单价每涨10元,销售量就减少1件.设这种T恤的销售单价为x元(x>400)时,销售量为y件、销售利润为W元.(1)请分别用含x的代数式表示y和W(把结果填入下表):销售单价(元)x销售量y(件)销售利润W(元)(2)该商场计划实现销售利润10000元,并尽可能增加销售量,那么x的值应当是多少?15.(10分)某水果店以每公斤2元的价格购进某种水果若干公斤,然后以每公斤4元的价格出售,每天可售出100公斤.通过市场调查发现,这种水果每公斤的售价每降低0.1元,每天可多售出20公斤.为了保证每天至少售出260公斤,该水果店决定降价销售.(1)若将这种水果每公斤的售价降低x元,则每天的销售量是公斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,售价应为多少?《实际问题与一元二次方程》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)要组织一次篮球比赛,赛制为主客场形式(每两队之间都需在主客场各赛一场),计划安排30场比赛,设邀请x个球队参加比赛,根据题意可列方程为()A.x(x﹣1)=30B.x(x+1)=30C.=30D.=30【分析】由于每两队之间都需在主客场各赛一场,即每个队都要与其余队比赛一场.等量关系为:队的个数×(队的个数﹣1)=30,把相关数值代入即可.【解答】解:设邀请x个球队参加比赛,根据题意可列方程为:x(x﹣1)=30.故选:A.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是读懂题意,得到总场数的等量关系.2.(5分)某种植物的主干长出若干个数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,求每个支干长出多少个小分支?解:设主干长出x个支干,每个支干有x个小分支,由题意,所列方程正确的是()A.1+x+x2=111B.x+x2=111C.2x+1=111D.2x=111【分析】设主干长出x个支干,每个支干又长出x个小分支,得方程1+x+x2=111,整理即可.【解答】解:设每个支干长出的小分支的数目是x个,根据题意列方程得:x2+x+1=111,故选:A.【点评】考查了一元二次方程的应用,本题设长为x个支干,把小分枝用x2表示是关键.3.(5分)某种品牌运动服经过两次降价,每件零售价由460元降为215,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.460(1+x)2=215B.460(1﹣x)2=215C.460(1﹣2x)2=215D.460(1﹣x2)=215【分析】设每次降价的百分率为x,根据该运动服的原价及经过两次降价后的价格,即可得出关于x的一元二次方程,此题得解.【解答】解:设每次降价的百分率为x,根据题意得:460(1﹣x)2=215.故选:B.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4.(5分)如图,幼儿园计划用30m的围栏靠墙围成一个面积为100m2的矩形小花园(墙长为15m),则与墙垂直的边x为()A.10m或5m B.5m或8m C.10m D.5m【分析】设与墙垂直的边长x米,则与墙平行的边长为(30﹣2x)米,根据矩形的面积公式结合矩形小花园的面积为100m2,即可得出关于x的一元二次方程,解之取其较大值即可得出结论.【解答】解:设与墙垂直的边长x米,则与墙平行的边长为(30﹣2x)米,根据题意得:(30﹣2x)x=100,整理得:x2﹣15x+50=0,解得:x1=5,x2=10.当x=5时,30﹣2x=20>15,∴x=5舍去.故选:C.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.5.(5分)如图,某农场拟建一间面积为200平方米的长方形种牛饲养室,饲养室一面靠墙(假设墙足够长),另三面用总长58米的建筑材料围成.若设该长方形垂直于墙的一边长为x米,则下列方程正确的为()A.x(58﹣x)=200B.x(29﹣x)=200C.x(29﹣2x)=200D.x(58﹣2x)=200【分析】由建筑材料的长度结合垂直于墙的边长为xm,即可表示出平行于墙的一边的长度,然后根据长方形的面积公式结合牛饲养室的面积为200m2,即可得出关于x的一元二次方程.【解答】解:∵垂直于墙的边长为xm,∴平行于墙的一边为(58﹣2x)m.根据题意得:x(58﹣2x)=200,故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,解题的关键是:(1)根据建筑材料的长度用含x的代数式表示出平行于墙的一边的长度;(2)根据长方形的面积公式列出一元二次方程.二、填空题(本大题共5小题,共25.0分)6.(5分)某化肥厂一月份生产化肥500吨,从二月份起,由于改进操作技术,使得第一季度共生产化肥1750吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可列方程为500+500(1+x)+500(1+x)2=1750.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),根据二、三月份平均每月的增长为x,则二月份的产量是500(1+x)吨,三月份的产量是500(1+x)(1+x)=500(1+x)2,再根据第一季度共生产钢铁1750吨列方程即可.【解答】解:依题意得二月份的产量是500(1+x),三月份的产量是500(1+x)(1+x)=500(1+x)2,∴500+500(1+x)+500(1+x)2=1750.故答案为:500+500(1+x)+500(1+x)2=1750.【点评】本题考查了由实际问题抽象出一元二次方程,能够根据增长率分别表示出各月的产量,这里注意已知的是一季度的产量,即三个月的产量之和.7.(5分)我国南宋数学家杨辉在1275年提出了一个问题:直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步).问阔及长各几步?若设阔(宽)为x步,则所列方程为x(x+12)=864.【分析】利用长乘以宽=864,进而得出答案.【解答】解:设阔(宽)为x步,则所列方程为:x(x+12)=864.故答案为:x(x+12)=864.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确表示出矩形的长是解题关键.8.(5分)在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有11名同学.【分析】设参加聚会的有x名学生,根据“在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品”,列出关于x的一元二次方程,解之即可.【解答】解:设参加聚会的有x名学生,根据题意得:x(x﹣1)=110,解得:x1=11,x2=﹣10(舍去),即参加聚会的有11名同学,故答案为:11.【点评】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.9.(5分)有一人患了流感,经过两轮传染后共有64人患了流感,那么每轮传染中平均一个人传染给7个人.【分析】设每轮传染中平均一个人传染给x个人,根据经过两轮传染后共有64人患了流感,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:设每轮传染中平均一个人传染给x个人,根据题意得:1+x+x(1+x)=64,解得:x1=7,x2=﹣9(不合题意,舍去).答:每轮传染中平均一个人传染给7个人.故答案为:7.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.(5分)在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题意可列方程为x(x﹣1)=110.【分析】设有x人参加聚会,则每人送出(x﹣1)件礼物,根据共送礼物110件,列出方程.【解答】解:设有x人参加聚会,则每人送出(x﹣1)件礼物,由题意得,x(x﹣1)=110.故答案是:x(x﹣1)=110.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.三、解答题(本大题共5小题,共50.0分)11.(10分)某工厂设计了一款成本为20元/件的工艺品投放市场进行试销,经过调查,得到如下数据:销售单价x(元∕件)…30405060…每天销售量y(件)…500400300200…(1)研究发现,每天销售量y与单价x满足一次函数关系,求出y与x的关系式;(2)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润8000元?【分析】(1)利用待定系数法求解可得;(2)根据“总利润=单件利润×销售量”可得关于x的一元二次方程,解之即可得.【解答】解:(1)设y=kx+b,根据题意可得,解得:,则y=﹣10x+800;(2)根据题意,得:(x﹣20)(﹣10x+800)=8000,整理,得:x2﹣100x+2400=0,解得:x1=40,x2=60,∵销售单价最高不能超过45元/件,∴x=40,答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元.【点评】本题主要考查一元二次方程的应用,解题的关键是熟练掌握待定系数法求函数解析式及找到题目蕴含的相等关系.12.(10分)列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,设这种玩具的销售单价为x 元.(1)根据销售单价每降低1元,每天可多售出2个,则现在销售数量为(1120﹣2x)个(用含有x的代数式表示)(2)当x为多少元时,厂家每天可获利润20000元?【分析】(1)根据每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,可得现在销售数量为[160+2(480﹣x)]个,化简即可;(2)根据单件利润×销售量=总利润,列方程求解即可.【解答】解:(1)根据题意,可得现在销售数量为160+2(480﹣x)=(1120﹣2x)个.故答案为(1120﹣2x);(2)由题意,得:(x﹣360)[160+2(480﹣x)]=20000,整理,得:x2﹣920x+211600=0,解得:x1=x2=460,答:这种玩具的销售单价为460元时,厂家每天可获利润20000元.【点评】本题考查了一元二次方程的应用、一元二次方程的解法,理解题意找到题目蕴含的相等关系列出方程是解题的关键.13.(10分)某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.【分析】(1)根据当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆,即可求出当售价为22万元/辆时,平均每周的销售量,再根据销售利润=一辆汽车的利润×销售数量列式计算;(2)设每辆汽车降价x万元,根据每辆的盈利×销售的辆数=90万元,列方程求出x 的值,进而得到每辆汽车的售价.【解答】解:(1)由题意,可得当售价为22万元/辆时,平均每周的销售量是:×1+8=14,则此时,平均每周的销售利润是:(22﹣15)×14=98(万元);(2)设每辆汽车降价x万元,根据题意得:(25﹣x﹣15)(8+2x)=90,解得x1=1,x2=5,当x=1时,销售数量为8+2×1=10(辆);当x=5时,销售数量为8+2×5=18(辆),为了尽快减少库存,则x=5,此时每辆汽车的售价为25﹣5=20(万元),答:每辆汽车的售价为20万元.【点评】此题主要考查了一元二次方程的应用,本题关键是会表示一辆汽车的利润,销售量增加的部分.找到关键描述语,找到等量关系:每辆的盈利×销售的辆数=90万元是解决问题的关键.14.(10分)利民商场经营某种品牌的T恤,购进时的单价是300元,根据市场调查:在一段时间内,销售单价是400元时,销售量是60件,销售单价每涨10元,销售量就减少1件.设这种T恤的销售单价为x元(x>400)时,销售量为y件、销售利润为W元.(1)请分别用含x的代数式表示y和W(把结果填入下表):销售单价(元)x销售量y(件)﹣x+100销售利润W(元)﹣x2+130x﹣30000(2)该商场计划实现销售利润10000元,并尽可能增加销售量,那么x的值应当是多少?【分析】(1)根据销售单价每涨10元,销售量就减少1件,可以表示出y与x的关系,根据利润=每件的利润×销售量,即可表示出W与x的关系.(2)列出方程即可解决问题;【解答】解:(1)由题意y=60﹣=﹣x+100.W=(x﹣300)•(﹣x+100)=﹣x2+130x﹣30000.故答案为﹣x+100,﹣x2+130x﹣30000.(2)由题意﹣x2+130x﹣30000=10000,解得x=500或800,为了尽可能增加销售量,x=500.答:该商场计划实现销售利润10000元,并尽可能增加销售量,那么x的值应当是500.【点评】本题考查一元二次方程的应用,解题的关键是理解题意,记住利润、销售量、每件的利润之间的关系.15.(10分)某水果店以每公斤2元的价格购进某种水果若干公斤,然后以每公斤4元的价格出售,每天可售出100公斤.通过市场调查发现,这种水果每公斤的售价每降低0.1元,每天可多售出20公斤.为了保证每天至少售出260公斤,该水果店决定降价销售.(1)若将这种水果每公斤的售价降低x元,则每天的销售量是100+200x公斤(用含x的代数式表示);(2)销售这种水果要想每天盈利300元,售价应为多少?【分析】(1)销售量=原来销售量+下降销售量,据此列式即可;(2)根据销售量×每斤利润=总利润列出方程求解即可.【解答】解:(1)将这种水果每斤的售价降低x元,则每天的销售量是100+×20=100+200x(公斤);故答案为:100+200x;(2)根据题意得:(4﹣2﹣x)(100+200x)=300,解得:x=或x=1,当x=时,销售量是100+200×=200<260;当x=1时,销售量是100+200=300(公斤).∵每天至少售出260公斤,∴x=1.则4﹣1=3(元)答:售价应为3元.【点评】题主要考查的是一元二次方程的应用,明确利润、销售量、售价之间的关系是解题的关键.。

北师大版九年级数学上册--第二单元 2.3拓展练习1(含答案)

北师大版九年级数学上册--第二单元 2.3拓展练习1(含答案)

《一元二次方程的解法-公式法》拓展练习11.在一块长16m,宽12m的矩形荒地上,要建造一个花园.要求花园所占面积为荒地面积的一半,下面分别是小颖和小明的设计方案(空白部分是花园):(1)你认为小颖的结果对吗?请简要说明理由.(2)请你帮助求出图中x的值(结果精确到0.1,π取3,21414.).(3)请你在已给出的矩形中画出与小颖和小明不同的设计方案的草图,并在图中标注必要的数据.2.从社会效益和经济效益出发,某地制定了三年规划,投入资金进行生态环境建设,并以此发展旅游产业.根据规划,第一年度投入资金800万元,第二年度比第一年度减少13,第三年度比第二年度减少12.第一年度当地旅游业收入估计为400万元,要使三年内的投入资金与旅游业总收入持平,则旅游业收入的年平均增长率应是多少?(以下数据供选用:1414≈.3606≈.,计算结果精确到百分位)3.如果关于x的一元二次方程mx2-2(m+2)x+m+5=0没有实数根,试判断关于x 的方程(m-5)x2-2(m+1)x+m=0的根的情况.4.已知x1、x2是关于x的方程(x-2)(x—m)=(p-2)(p-m)的两个实根.(1)求x1、x2的值;(2)若x1、x2是某直角三角形的两直角边的长,问当实数m、P满足什么条件时,此直角三角形的面积最大?并求出其最大值.参考答案:1.解:(1)设小路的宽为xm ,(12-2x )(16-2x )=12×12×16,整理,得x 2-14x +24=0.解得x 1=2,x 2=12(舍去).∴小路的宽为2m ,所以小颖的结果不对.(2)阴影部分的面积实际上是一个整圆的面积.∴πx 2=12×12×16.∴x =42≈5.7(m ),即x 的值约为5.7.(3)如图.2.解:设三年内旅游业收入的年平均增长率为x ,根据题意,得方程400+400(1+x )+400(1+x )2=800+800×111180011.332⎛⎫⎛⎫⎛⎫-+⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化简,得x 2+3x -1=0. 解得1231331322x x -+--==,(不合题意,应舍去). 133 3.60630.30330%.22x --==≈≈ 答:三年内旅游业收入的年平均增长率应约为30%3.()2mx 2m 2x m 50-+++=没有实数根,则△1<0. ,∴m >4.当m ≠5时,.∵m >4,∴△2>0,方程()()2m 5x 2m 1x m 0--++=有两个不相等的实根;当m =5时,方程为12x +5=0,方程有一个实根.4.提示:(1)原方程可化为()()22x m 2x 2m p m 2p 2m -++=-++. ∴()()12x p x p m 20.x p x m p 2-+--=∴==-+,.(2)221211122(2)()()22228m m S x x p m p p ++==-+=--+, 所以,当22m p +=且m >-2时,以x 1、x 2为两直角边长的直角三角形的面积最大,最大面积为2(2)8m +(或212p ).。

九年级数学拓展培训试题

九年级数学拓展培训试题

班级:___________姓名:___________九年级数学拓展培训数学试卷时间:120分钟 总分:150分1.反比例函数xky =的图象经过点(-1,2),则这个函数的图象位于( ) A .第一,二象限 B .第三,四象限 C .第一,三象限 D .第二,四象限2.下列各点在双曲线 ) A .(3,-4) B .(-2,-6) C .(-2,6) D .(4,-3) 3.二次函数y=(x-1)2+2的顶点的坐标是( )A .(1,2)B .(1,-2)C .2)D .2)4k<0)的图象上有两点1P (2,1y )和2P (3,2y ),那么( ) A .021<<y y B .021>>y y C .012<<y y D .012>>y y5.已知二次函数c x x y ++=2的图象与x 轴的一个交点为(1,0),则它与x 轴的另一个交点坐标是( )A.(1,0)B.(-1,0)C.(2,0)D.(-2,0)6.抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是( ) A.先向左平移2个单位,再向上平移3个单位 B.先向左平移2个单位,再向下平移3个位 C.先向右平移2个单位,再向下平移3个单位 D.先向右平移2个单位,再向上平移3个单位7.根据下图所示程序计算函数值,若输入的x 的值为 ) A8.图是二次函数y=ax 2+bx+c 的图象,则a 、b 、c 满足( ) A.a>0,b>0,c>0 B.a>0,b<0,c>0 C.a>0,b>0,c<0 D.a>0,b<0,c<09.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例A 的坐标为(-2,-2),则k 的值为( )A .1B .-3C .4D .1或-310.函数2y ax a =-与 ) A . B . C . D .11.如图,过x 轴正半轴上的任意一点P ,作y 轴的平行线,A 、B 两点.若点C 是y 轴上任意一点,连接AC 、BC ,则△ABC 的面积为( )A .3B .4C .5D .1012.已知二次函数y=ax 2+bx+c 的图象如图所示,有以下结论:①a+b+c <0;②a-b+c >2;③abc >0;④4a-2b+c <0;⑤c-a >1.其中所有正确结论的序号是( ) A .①② B .①③④ C .①②③⑤ D .①②③④⑤二、填空题(24分)13.在抛物线2x y =,22x y =,23x y =中,开口最大的是_______________. 14.y =(m-2)23mx- 是反比例函数,则m 的值为.15.把二次函数225y x x =++化成顶点式为: . 16.已知二次函数2y ax bx c =++中,函数y 与自变量x 的部分对应值如下表:则此二次函数的对称轴为 .17.已知二次函数y=-x 2+2x+m 的部分图象如图所示,则关于x 的一元二次方程022=++-m x x 的解为 。

中考复习数学拓展练习1-2(含答案)

初2020届数学拓展练习(1)1、如图,矩形OABC的边OA=2,OC=4,点E是边AB上的一个动点(不与点A、B重合),过点E的反比例函数y=(x>0)的图象与边BC交于点F.当四边形AOFE的面积最大时,FC的长度为()A.0.8B.1C.1.6D.1.8=S矩形OABC﹣S△BEF﹣S△【分析】四边形OABC为矩形,OA=2,OC=4,可设E(k,2),F(4,k),再由S四边形AOFE OCF即可得出四边形面积的表达式,由二次函数的性质可得出当k=4时,四边形AOFE的面积最大,故可得出E、F两点的位置.【解答】解:∵四边形OABC为矩形,OA=2,OC=4,∴设E(k,2),F(4,k),=(4﹣k)(2﹣k)=k2﹣k+4,∴BE=4﹣k,BF=2﹣k,∴S△BEF=S△OCF=×4×k=k,S矩形OABC=2×4=8,∴S四边形AOFE=S矩形OABC﹣S△BEF﹣S△OCF=8﹣(k2﹣k+4)﹣k ∵S△OAE=﹣k2+k+4=﹣(k﹣4)2+5,∵﹣<0,∴当k=4时,四边形AOFE的面积最大,∴CF=k=1.故选:B.2、重庆朝天门码头位于置庆市油中半岛的嘉陵江与长江交汇处,是重庆最古老的码头.如图,小王在码头某点E处测得朝天门广场上的某高楼AB的顶端A的仰角为45°,接着他沿着坡度为1:2.4的斜坡EC 走了26米到达坡顶C处,到C处后继续朝高楼AB的方向前行16米到D处,在D处测得A的仰角为74°,则此时小王距高楼的距离BD的为()米(结果精确到1米,参考数据:sin74°≈0.96,cos74°≈0.28,tan74°≈3.49)A.12B.13C.15D.16【分析】过E作EH⊥AB交AB的延长线于H,过C作CG⊥EH于G,则CG=BH,BC=GH,解直角三角形即可得到结论.【解答】解:过E作EH⊥AB交AB的延长线于H,过C作CG⊥EH于G,则CG=BH,BC=GH,∵CE=26,=1:2.4,∴CG=10,EG=24,∴BH=CG=10,设BD=x,在Rt△ABD中,∵∠ADB=74°,∴AB=tan74°•x=3.49x,∴AH=AB+BH=3.49x+10,∵EH=EG+GH=24+16+x,∵∠AEH=45°,∴AH=EH,∴3.49x+10=24+16+x,解得:x≈12,∴BD=12,答:小王距高楼的距离BD为12米.故选:A.3、如果关于x的方程有非正整数解,且关于x的不等式组有解,那么符合条件的所有整数a的和是()A.﹣10B.﹣7C.﹣9D.﹣8【分析】由不等式组无解确定出a的取值,再根据一元一次方程有非正整数解确定出a的值,再求出之和即可.【解答】解:不等式组整理得:,由不等式组有解,即5a+6≥4a+1,解得a≥﹣5,方程去分母得:2x+3=3a+6,解得:x=,由方程有非正整数解,得到a=﹣1,﹣3,﹣5,∴符合条件的所有整数a的和是为﹣9,故选:C.4、A,C,B三地依次在一条笔直的道路上甲、乙两车同时分别从A,B两地出发,相向而行.甲车从A地行驶到B地就停止,乙车从B地行驶到A地后,立即以相同的速度返回B地,在整个行驶的过程中,甲、乙两车均保持匀速行驶,甲、乙两车距C地的距离之和y(km)与甲车出发时间(t)之间的部分函数关系如图所示,则甲车到达B地时,乙车距B地的距离为km.【分析】先根据函数图象提供的信息,求得乙车的速度和甲车的速度,还可以求AB和AC的长,根据甲到达B地的时间,计算乙车距B地的距离.【解答】解:由题意得:A地到C地甲走了2个小时,乙走了个小时,设甲的速度为akm/h,则乙的速度为akm/h,根据题意得:,a=60,故甲的速度为60km/h,则乙的速度为90km/h,则A、C两地的距离为:2×60=120km,A、B两地的距离为:,甲到达B地的时间为:h,甲车到达B地时,乙车距B地的距离为:300×2﹣90×5=150km.故答案为:1505、如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若B′D=B′C,则B′D的长为.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得B'G的长,求出B'H的长,再由勾股定理即可得出结果.【解答】解:过B′点作GH∥AD,如图所示:则∠B′GE=90°.当B′C=B′D时,AG=DH=DC=8.由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4;故答案为:4.6、如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,对称轴为直线x=2,点A的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P为抛物线上一点(不与点A重合),联结PC.当∠PCB=∠ACB时,求点P的坐标;(3)在(2)的条件下,将抛物线沿竖直方向向下平移,平移后的抛物线的顶点为点D,点P的对应点为点Q,当OD⊥DQ时,求抛物线平移的距离.【分析】(1)由抛物线的对称性质得到点B的坐标,把点A、B的坐标分别代入抛物线解析式,列出方程组,通过解方程组求得系数的值;根据抛物线解析式求得顶点坐标;(2)过点P作PN⊥x轴于N,过点C作CM⊥PN,交NP的延长线于点M,构造矩形COMN和直角三角形,利用锐角三角函数的定义求得=,故设PM=a,MC=3a,PN=3﹣a.易得P(3a,3﹣a),由二次函数图象上点的坐标特征列出关于a的方程,通过解方程求得a的值,易得点P的坐标;(3)设抛物线平移的距离为m,得y=(x﹣2)2﹣1﹣m.从而求得D(2,﹣1﹣m).过点D作直线EF∥x轴,交y轴于点E,交PQ延长线于点F.易推知∠EOD=∠QDF,则tan∠EOD=tan∠QDF,根据锐角三角函数定义列出关于m的方程,通过解方程求得m的值.【解答】解:(1)∵对称轴为直线x=2,点A的坐标为(1,0),∴点B的坐标是(3,0).将A(1,0),B(3,0)分别代入y=x2+bx+c,得.解得.则该抛物线解析式是:y=x2﹣4x+3.由y=x2﹣4x+3=(x﹣2)2﹣1知,该抛物线顶点坐标是(2,﹣1);(2)如图1,过点P作PN⊥x轴于N,过点C作CM⊥PN,交NP的延长线于点M,∵∠CON=90°,∴四边形CONM是矩形.∴∠CMN=90°,CO=MN、∴y=x2﹣4x+3,∴C(0,3).∵B(3,0),∴OB=OC=3.∵∠COB=90°,∴∠OCB=∠BCM=45°.又∵∠ACB=∠PCB,∴∠OCB﹣∠ACB=∠BCM﹣∠PCB,即∠OCA=∠PCM.∴tan∠OCA=tan∠PCM.∴=.故设PM=a,MC=3a,PN=3﹣a.∴P(3a,3﹣a),将其代入抛物线解析式y=x2﹣4x+3,得(3a)2﹣4(3﹣a)+3=3﹣a.解得a 1=,a2=0(舍去).∴P(,).(3)设抛物线平移的距离为m,得y=(x﹣2)2﹣1﹣m.∴D(2,﹣1﹣m).过点D作直线EF∥x轴,交y轴于点E,交PQ延长线于点F,∵∠OED=∠QFD=∠ODQ=90°,∴∠EOD+∠ODE=90°,∠ODE+∠QDP=90°.∴∠EOD=∠QDF.∴tan∠EOD=tan∠QDF,∴=.∴=.解得m=.故抛物线平移的距离为.7、如图,▱ABCD中,∠BAC=90°,AB=AC,点E是边AD上一点,且BE=BC,BE交AC于点F,过点C作BE的垂线,垂足为点O,与AD交于点G.(1)若AB=,求AE的长;(2)求证;BF=CO+EO.【分析】(1)过E作EH⊥BA交BA的延长线于于H,根据等腰直角三角形的性质得到∠ABC=45°,BC=BE=2,根据平行线的性质得到∠HAE=∠ABC=45°,设AH=HE=a,得到AE=a,根据勾股定理即可得到结论;(2)由(1)知,∠OBC=30°,得到BF=OB﹣OF=OC﹣OE,过G作GH⊥BC于H,求出OE=(2﹣)OC,把OE=(2﹣)OC代入OC﹣OE求得BF=2(﹣1)OC,代入求得CO+EO=2(﹣1)OC,于是得到结论.【解答】解:(1)过E作EP⊥BA交BA的延长线于于P,∵∠BAC=90°,AB=AC,∴∠ABC=45°,BC=BE=2,∵AD∥BC,∴∠PAE=∠ABC=45°,∴设AP=PE=a,∴AE=a,在Rt△EBP中,∵BP2+EP2=BE2,∴(a+)2+a2=22,∴a=,∴AE=﹣1;(2)过A作AM⊥BC于M,GH⊥BC于H,EN⊥BC于N,则AM=GH=EN=BC=1,∴sin∠EBC=,∴∠EBC=30°,∴OC=BC=1,∴∠OBC=30°,∵BE=BC,∴∠BEC=75°,∵∠CFE=45°+30°=75°,∴CF=CE,∴OF=OE,∵OC⊥BO,∴BO=OC,∴BF=OB﹣OF=OC﹣OE,过G作GH⊥BC于H,∴GH=EN=OC=CG=(OC+OG)=(OC+OE),∴OC=(OC+OE),∴OE=(2﹣)OC,∴BF=OB﹣OF=OC﹣OE=2(﹣1)OC,∵CO+EO=OC+(2﹣)OC=2(﹣1)OC,∴BF=CO+EO.初2020届数学拓展练习(2)1、如图,正方形ABCD的顶点C、D在函数y=(k≠0)的图象上,已知点A的坐标为(﹣,3),点C的横坐标为4,则k的值为()A.5B.6C.7D.8【分析】连接AC,BD交于点J.设C(4,m).利用旋转的性质求出点D的坐标,利用C,D都在y=的图象上,构建方程即可解决问题.【解答】解:连接AC,BD交于点J.设C(4,m).∵四边形ABCD是正方形,∴AJ=JC,∵A(﹣,3),C(4,m),∴J(,),∵点D是由点A绕点J顺时针旋转90°得到D,可得D(,),∵C,D都在y=的图象上,∴4m=•,解得m=或﹣,∴C(4,),∴k=6,故选:B.2、冬季,武隆仙女山迎来滑雪季,如图为滑雪场某段赛道示意图,AB段为助滑段,长为12米,坡角α为16°,一个曲面平台BCD连接了助滑坡AB与着陆坡DE,已知着陆坡DE的坡度为i=1:2.4,DE长度为19.5米,B、D之间的垂直距离为5.5米,则一人从A出发到E处下降的垂直距离为()米(参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29,结果保留一位小数)A.15.9B.16.4C.24.5D.16.0【分析】作BF⊥AP于F,DG⊥AP于G,DH⊥PE于H,根据正弦的定义求出AF,根据坡度的概念求出DH,结合图形计算,得到答案.【解答】解:作BF⊥AP于F,DG⊥AP于G,DH⊥PE于H,在Rt△AFB中,sinα=,∴AF=AB•sinα≈3.36,设DH=x米,∵DE的坡度为i=1:2.4,∴HE=2.4x,由勾股定理得,(2.4x)2+x2=19.52,解得,x=7.5,∴一人从A出发到E处下降的垂直距离=3.36+5.5+7.5≈16.4(米),故选:B.3、若关于x的不等式组有且只有四个整数解,且一次函数y=(k+1)x+k+5的图象不经过第三象限,则符合题意的整数k的和为()A.﹣15B.﹣11C.﹣9D.﹣5【分析】根据关于x不等式组有且只有四个整数解得出k的取值范围,再由一次函数y=(k+1)x+k+5的图象不经过第三象限得出k取值范围,再找出其公共解集即可.【解答】解:解不等式组得,<x≤2,∵不等式组有且只有四个整数解,∴其整数解为:﹣1,0,1,2,∴﹣2≤<﹣1,即﹣6≤k<﹣3.∵一次函数y=(k+1)x+k+5的图象不经过第三象限,∴,解得﹣5≤k<﹣1,∴﹣5≤k<﹣1,与﹣6≤k<﹣3的公共整数为﹣5,﹣4.符合题意的整数k的和为﹣9,故选:C.4、一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1,y2与x的函数关系图象如图1所示,S与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当时,两车相遇;③当时,两车相距80km;④图2中C点坐标为(3,240);⑤当时两车相距200km.其中正确的有:①②(请写出所有正确判断的序号).【分析】根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,此时a=3,故①正确;根据相遇可知y1=y2,列方程求解可得x的值为,故②正确;分两种情况考虑,相遇前和相遇后两车相距60km,x=是相遇前的时间,故③错误;先确定b的值,根据函数的图象可以得到C的点的坐标,故④错误;分两车相遇前和两车相遇后两种情况讨论,即可求得x的值,当x=h时不合题意,故⑤不正确.【解答】解:∵由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=3,故①正确;设y1=kx+b,将(0,300)、(3,0)代入,得:,解得,∴y1=﹣100x+300,设y2=mx,将点(5,300)代入,得:5m=300,解得:m=60,∴慢车离乙地的距离y2解析式为:y2=60x;∴当y1=y2时,两车相遇,可得:﹣100x+300=60x,解得:x=h,故②正确;分两种情况考虑,相遇前两车相距60km,﹣100x+300﹣60x=60,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=60,解得,x=h,∴当x=h时,两车相距60km,故③错误;快车每小时行驶=100千米,慢车每小时行驶60千米,两地之间的距离为300千米,∴b=300÷(100+60)=,由函数的图象可以得到C的点的横坐标为3,即快车到达乙地,此时慢车所走的路程为3×60=180千米,∴C点坐标为(3,180),故④错误;分两种情况考虑,相遇前两车相距200km,﹣100x+300﹣60x=200,解得,x=h,相遇后两车相距60km,60x﹣(﹣100x+300)=200,解得,x=,∵,∴当x=h不合题意,舍去.∴当x=h时,两车相距200km,故⑤不正确.故答案为:①②5、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是.【分析】根据题意,在N的运动过程中A′在以M为圆心、AD为直径的圆上的弧AD上运动,当A′C取最小值时,由两点之间线段最短知此时M、A′、C三点共线,得出A′的位置,进而利用锐角三角函数关系求出A′C的长即可.【解答】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴A′C=MC﹣MA′=﹣1.故答案为:﹣1.6、如图,抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(l,0)两点,与y轴交于点C.(1)求抛物线的解析式;=2S△PCO,求出P点的坐标;(2)点P是抛物线上的动点,且满足S△P AO(3)连接BC,点E是x轴一动点,点F是抛物线上一动点,若以B、C、E、F为顶点的四边形是平行四边形时,请直接写出点F的坐标.【分析】(1)由待定系数法可求解析式;(2)求出点C坐标,可得OA=OC=3,由面积关系列出方程可求解;(3)分两种情况讨论,利用平行四边形的性质可求解.【解答】解:(1)∵抛物线y=ax2+bx+3与x轴交于A(﹣3,0),B(l,0)两点,∴解得:,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵抛物线y=﹣x2﹣2x+3与y轴交于点C,∴点C(0,3)∴OA=OC=3,=2S△PCO,∴×3×|﹣x2﹣2x+3|=2××3×|x|,设点P(x,﹣x2﹣2x+3)∵S△P AO∴x=±或x=﹣2±,∴点P(,﹣2)或(﹣,2)或(﹣2+,﹣4+2)或(﹣2﹣,﹣4﹣2);(3)若BC为边,且四边形BCFE是平行四边形,∴CF∥BE,∴点F与点C纵坐标相等,∴3=﹣x2﹣2x+3,∴x1=﹣2,x2=0,∴点F(﹣2,3)若BC为边,且四边形BCEF是平行四边形,∴BE与CF互相平分,∵BE中点纵坐标为0,且点C纵坐标为3,∴点F的纵坐标为﹣3,∴﹣3=﹣x2﹣2x+3∴x=﹣1±,∴点F(﹣1+,﹣3)或(﹣1﹣,﹣3);若BC为对角线,则四边形BECF是平行四边形,∴BC与EF互相平分,∵BC中点纵坐标为,且点E的纵坐标为0,∴点F的纵坐标为3,∴点F(﹣2,3),综上所述,点F坐标(﹣2,3)或(﹣1+,﹣3)或(﹣1﹣,﹣3).7、在▱ABCD中,连接对角线BD,AB=BD,AB⊥BD,点E在线段AD上,点F在线段DC上,且∠BEF=∠BDC,连接BF.(1)当BC=,∠FBC=15°时,求CF的长度;(2)求证:BC﹣2ED=DF.【分析】(1)证出△DBC是等腰直角三角形,得出∠DBC=45°,BD=CD=BC=,求出∠DBF=∠DBC﹣∠FBC=30°,由直角三角形的性质得出DF=BD=,即可得出答案;(2)过点F作FN∥BC,交BD于N,FH∥BD,交BC于H,作MB⊥BC,交CD的延长线于M,连接EH、ME,则四边形BHFN是平行四边形,得出FN=BH,△DNF∽△DBC,证出△DNF是等腰直角三角形,BD=CD,∠FHC=∠DBC =∠C=45°,得出BH=FN=DF,∠DBM=45°,证出△DBM是等腰直角三角形,得出BD=CD=DM,证明△EDB≌△EDM(SAS),得出∠DME=∠DBE,BE=EM,证出ED是△MHC的中位线,得出HC=2ED,进而得出结论.【解答】(1)解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AB=BD,AB⊥BD,∴AB=BD=CD,BD⊥CD,∴△DBC是等腰直角三角形,∴∠DBC=45°,BD=CD=BC=×=,∵∠FBC=15°,∴∠DBF=∠DBC﹣∠FBC=30°,∴DF=BD=,∴CF=CD﹣DF=﹣=;(2)证明:过点F作FN∥BC,交BD于N,FH∥BD,交BC于H,作MB⊥BC,交CD的延长线于M,连接EH、ME,如图所示:则四边形BHFN是平行四边形,∴FN=BH,△DNF∽△DBC,∵△DBC是等腰直角三角形,∴△DNF是等腰直角三角形,BD=CD,∠FHC=∠DBC=∠C=45°,∴BH=FN=DF,∠DBM=45°,∴△DBM是等腰直角三角形,∴BD=DM,∴BD=CD=DM,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EDB=∠DBC=45°,∴∠EDM=90°﹣∠EDB=90°﹣45°=45°,∴∠EDB=∠EDM,在△EDB和△EDM中,,∴△EDB≌△EDM(SAS),∴∠DME=∠DBE,BE=EM,∵∠EHB=∠C+∠CMH=45°+∠DME,∠EBH=∠DBC+∠DBE=45°+∠DME,∴∠EHB=∠EBH,∴BE=EH,∴BE=EM=EH,∵∠MBH=90°,∴M、E、H三点共线,∴ED是△MHC的中位线,∴HC=2ED,∴BC﹣HC=BC﹣2ED=BH=DF,即BC﹣2ED=DF.。

第2章 一元二次方程 单元同步拓展训练 2021—2022学年北师大版数学九年级上册(无答案)

第2章一元二次方程单元同步拓展训练一.选择题1.下列方程中,是一元二次方程的是()A.ax2+bx+c=0 B.x2+y+3=0C.(x﹣1)(x+1)=1 D.(x+2)(x﹣1)=x22.将一元二次方程4x2+81=5x化为一般形式后,常数项为81,二次项系数和一次项系数分别为()A.4,5 B.4,﹣5 C.4,81 D.4x2,﹣5x3.若x2+mx+19=(x﹣5)2﹣n,则m+n的值是()A.﹣16 B.16 C.﹣4 D.44.若x=3是关于x的一元二次方程x2﹣mx﹣3=0的一个解,则m的值是()A.2 B.1 C.0 D.﹣25.若一元二次方程x2﹣2x﹣1=0的两个根为m,n,则一次函数y=(m+n)x+mn的图象是()A.B.C.D.6.关于x的一元二次方程ax2+5x+3=0有两个不相等的实数根,则实数a的取值范围是()A.a<且a≠0 B.a>C.a≤且a≠0 D.a≥7.某机械厂一月份生产零件50万个,第一季度生产零件200万个.设该厂二、三月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=200B.50+50(1+x)2=200C.50+50(1+x)+50(1+x)2=200D.50+50(1+x)+50(1+2x)=2008.已知(a2+b2+2)(a2+b2)=8,那么a2+b2的值是()A.2 B.﹣4 C.2或﹣4 D.不确定9.准备在一块长为30m,宽为24m的长方形花圃内修建四条宽度相等且与各边垂直的小路,如图所示,四条小路的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80m2,则小路的宽度为()A.1m B.m C.2m D.m10.定义[x]为不大于实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x](﹣2≤x<2)的图象如图所示,则方程[x]=x2+x的解为()A.0或﹣2 B.0 C.﹣1±D.0或﹣1二.填空题11.把方程(2x+3)(x﹣6)=﹣10化为一元二次方程的一般形式,其结果是.12.若关于x的方程(m﹣2)x2+mx﹣3=0是一元二次方程,则m满足的条件是.13.关于x的一元二次方程(2m﹣4)x2+3mx+m2﹣4=0有一根为0,则m=.14.在等腰三角形ABC中,BC=6,AB,AC的长是关于的方程x2﹣10x+m=0的两根,则m 的值是.15.根据疫情需要,某防疫物资制造厂原来每件产品的成本是100元,为提高的生产效率改进了生产技术,连续两次降低成本,两次降低后的成本是81元,则平均每次降低成本的百分率是 .16.《代数学》中记载,形如x 2+10x =39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x 2的正方形,再以正方形的边长为一边向外构造四个面积为x 的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8﹣5=3.”小聪按此方法解关于x 的方程x 2+12x +m =0,构造图2,已知阴影部分的面积为60,则该方程的正数解为 .三.解答题 17.解方程:(1)x 2+10x +9=0; (2)x 2﹣x =.18.已知关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0. (1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个根x 1,x 2,且x 12+x 22=8,求k 的值.19.小明同学解一元二次方程x 2﹣2x ﹣2=0的过程如下: 解:x 2﹣2x =2,第一步;x 2﹣2x +1=2,第二步;(x ﹣1)2=2,第三步;x ﹣1=±,第四步;x 1=1+,x 2=1﹣,第五步.(1)小明解方程的方法是 ,他的求解过程从第 步开始出现错误; (2)请用小明的方法完成这个方程的正确解题过程.20.已知关于x 的一元二次方程x 2+(2m +1)x +m 2﹣1=0有两个不相等的实数根. (1)求m 的取值范围; (2)设x 1,x 2是方程的两根且,求m 的值.21.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从去年年底至今年3月20日,猪肉价格不断走高,3月20日比去年年底价格上涨了60%.某市民在今年3月20日购买2.5千克猪肉至少要花200元钱,那么去年年底猪肉的最低价格为每千克多少元?(2)3月20日,猪肉价格为每千克60元,3月21日,某市决定投入储备猪肉并规定其销售价在每千克60元的基础上下调a %出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克60元的情况下,该天的两种猪肉总销量比3月20日增加了a %,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比3月20日提高了a %,求a 的值.22.如图,四边形ACDE 是证明勾股定理时用到的一个图形,a ,b ,c 是全等的Rt △ABC 和Rt △BED 的边长,易知AE =c ,这时我们把关于x 的形如ax 2+cx +b =0的一元二次方程称为“勾系一元二次方程”.请解决下列问题:(1)求证:关于x 的“勾系一元二次方程”ax 2+cx +b =0必有实数根;(2)若x =﹣1是“勾系一元二次方程”ax 2+cx +b =0的一个根,且四边形ACDE 的周长是12,求△ABC 的面积.23.阅读理解,并回答问题:若x 1,x 2是方程ax 2+bx +c =0的两个实数根,则有ax 2+bx +c =a (x ﹣x 1)(x ﹣x 2).即ax 2+bx +c =ax 2﹣a (x 1+x 2)x +ax 1x 2,于是b =﹣a (x 1+x 2),c =ax 1x 2.由此可得一元二次方程的根与系数关系:x 1+x 2=﹣,x 1x 2=.这就是我们众所周知的韦达定理. (1)已知m ,n 是方程x 2﹣x ﹣100=0的两个实数根,不解方程求m 2+n 2的值; (2)若x 1,x 2,x 3,是关于x 的方程x (x ﹣2)2=t 的三个实数根,且x 1<x 2<x 3; ①x 1x 2+x 2x 3+x 3x 1的值;②求x 3﹣x 1的最大值.。

人教版数学九年级上册期中综合拓展练习

人教版数学九年级上册期中综合拓展一.选择题1.关于x的方程(m﹣3)x﹣mx+6=0是一元二次方程,则它的一次项系数是()A.﹣1B.1C.3D.3或﹣12.抛物线y=﹣(x﹣2)2+3,下列说法正确的是()A.开口向下,顶点坐标(2,3)B.开口向上,顶点坐标(2,﹣3)C.开口向下,顶点坐标(﹣2,3)D.开口向上,顶点坐标(2,﹣3)3.若a为方程x2+x﹣5=0的解,则a2+a+1的值为()A.12B.6C.9D.164.已知关于x的一元二次方程x2﹣(2m﹣1)x+m2=0有实数根,则m的取值范围是()A.m≠0B.m≤C.m<D.m>5.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)26.二次函数y=x2+3x+化为y=(x﹣h)2+k的形式,结果正确的是()A.B.C.D.7.某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),并在如图所示位置留2m宽的门,已知计划中的建筑材料可建围墙(不包括门)的总长度为50m.设饲养室长为xm,占地面积为ym2,则y关于x的函数表达式是()A.y=﹣x2+50x B.y=﹣x2+24xC.y=﹣x2+25x D.y=﹣x2+26x8.已知关于x的一元二次方程3x2+4x﹣5=0,下列说法正确的是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.没有实数根D.无法确定9.抛物线y=x2+bx+3的对称轴是直线x=1,若关于x的一元二次方程x2+bx+3﹣m=0(m为实数)在﹣1<x<2的范围内有实数根,则m的取值范围为()A.2≤m<6B.m≥2C.6<m<11D.2≤m<1110.已知抛物线y=ax2+bx+c上部分点的横坐标x与纵坐标y的对应值如表:x…﹣10123…y…30﹣1m3…有以下几个结论:①抛物线y=ax2+bx+c的开口向下;②抛物线y=ax2+bx+c的对称轴为直线x=﹣1;③方程ax2+bx+c=0的根为0和2;④当y>0时,x的取值范围是x<0或x>2;其中正确的是()A.①④B.②④C.②③D.③④二.填空题11.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表所示:x…﹣5﹣4﹣3﹣2﹣1…y…﹣8﹣3010…当y<﹣3时,x的取值范围是.12.写出一个根为1的一元二次方程是.13.已知代数式2x﹣y的值是5,则代数式4x﹣2y﹣13的值是.14.点P1(﹣2,y1),P2(0,y2),P3(1,y3)均在二次函数y=﹣x2﹣2x+c的图象上,则y1,y2,y3的大小关系是.15.据权威部门发布的消息,2019年第一季度安徽省城镇居民人均可支配收入约为0.75万元,若第三季度安徽省城镇居民人均可支配收入为y万元,平均每个季度城镇居民人均可支配收入增长的百分率为x,则y与x之间的函数表达式是.16.如图,已知正方形OBCD的三个顶点坐标分别为B(1,0),C(1,1),D(0,1).若抛物线y=(x﹣h)2与正方形OBCD的边共有3个公共点,则h的取值范围是.三.解答题17.解方程:(1)x2+4x=5;(2)x(x+2)=3x+6.18.已知抛物线y=ax2﹣2ax﹣3+2a2(a≠0).(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点P(m,y1),Q(3,y2)在抛物线上,若y1<y2,求m的取值范围.19.关于x的方程2x2+(m+2)x+m=0.(1)求证:方程总有两个实数根;(2)请你选择一个合适的m的值,使得方程的两个根都是整数,并求此时方程的根.20.如图,抛物线顶点为A(1,2),且过原点,与x轴的另一个交点为B,(1)求抛物线的解析式和B点坐标;(2)抛物线上是否存在点M,使△OBM的面积等于2?若存在,请写出M点坐标,若不存在,说明理由;21.2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p(元/只)和销量q(只)与第x天的关系如下表:第x天12345销售价格p(元23456/只)销量q(只)7075808590物价部门发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q(只)与第x天的关系为q=﹣2x2+80x﹣200 (6≤x≤30,且x为整数),已知该型号口罩的进货价格为0.5元/只.(1)直接写出该药店该月前5天的销售价格p与x和销量q与x之间的函数关系式;(2)求该药店该月销售该型号口罩获得的利润W(元)与x的函数关系式,并判断第几天的利润最大;(3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m倍的罚款,若罚款金额不低于2000元,则m的取值范围为.22.有这样一个问题,探究函数y=的图象与性质.小范根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小范的探究过程,请补充完成:(1)化简函数解析式,当x≥1时,y=,当x<1时,y=;(2)根据(1)中的结果,请在所给坐标系中画出函数y=的图象;(3)结合函数图象,写出该函数的一条性质:;(4)结合画出的函数图象,解决问题:若关于x的方程ax+1=只有一个实数解,直接写出实数a的取值范围:.参考答案一.选择题1.解:由题意得:m2﹣2m﹣1=2,m﹣3≠0,解得m=﹣1或m=3.m=3不符合题意,舍去,所以它的一次项系数﹣m=1.故选:B.2.解:∵抛物线y=﹣(x﹣2)2+3中a=﹣1<0,∴抛物线的开口向下,顶点为(2,3)故选:A.3.解:∵a为方程x2+x﹣5=0的解,∴a2+a﹣5=0,∴a2+a=5则a2+a+1=5+1=6.故选:B.4.解:根据题意得,△=b2﹣4ac=[﹣(2m﹣1)]2﹣4m2=﹣4m+1≥0,解得:m≤,故选:B.5.解:将抛物线y=2x2向左平移3个单位所得直线解析式为:y=2(x+3)2;故选:C.6.解:y =x 2+3x +=(x 2+6x +9﹣9+5)=(x +3)2+2. 故选:A .7.解:设饲养室长为xm ,占地面积为ym 2,则y 关于x 的函数表达式是:y =x •(50+2﹣x )=﹣x 2+26x . 故选:D .8.解:∵△=42﹣4×3×(﹣5)=76>0, ∴方程有两个不相等的实数根. 故选:B .9.解:∵抛物线y =x 2+bx +3的对称轴为直线x =1, ∴﹣=1,得b =﹣2,∴y =x 2﹣2x +3=(x ﹣1)2+2,∴当x =1时,y 最小值=2,当x =﹣1时,y 最大值=6. ∴当﹣1<x <2时,y 的取值范围是2≤y <6, 当y =m 时,m =x 2﹣2x +3,即x 2+bx +3﹣m =0,∵关于x 的一元二次方程x 2+bx +3﹣m =0(m 为实数)在﹣1<x <2的范围内有实数根, ∴m 的取值范围是2≤m <6, 故选:A .10.解:设抛物线的解析式为y =ax 2+bx +c , 将(﹣1,3)、(0,0)、(3,3)代入得:,解得:,∴抛物线的解析式为y=x2﹣2x=x(x﹣2)=(x﹣1)2﹣1,由a=1>0知抛物线的开口向上,故①错误;抛物线的对称轴为直线x=1,故②错误;当y=0时,x(x﹣2)=0,解得x=0或x=2,∴方程ax2+bx+c=0的根为0和2,故③正确;当y>0时,x(x﹣2)>0,解得x<0或x>2,故④正确;故选:D.二.填空题11.解:由表可知,二次函数的对称轴为直线x=﹣2,抛物线的开口向下,且x=0时,y=﹣3,所以,y<﹣3时,x的取值范围为x<﹣4或x>0.故答案为x<﹣4或x>0.12.解:形如(x﹣1)(ax+b)=0(a≠0)的一元二次方程都有一个根是1,当a=1,b=0时,可以写出一个一元二次方程:x(x﹣1)=0.故答案可以是:x(x﹣1)=0.13.解:由2x﹣y=5,得到原式=2(2x﹣y)﹣13=10﹣13=﹣3,故答案为:﹣314.解:二次函数y=﹣x2﹣2x+c的二次项系数a=﹣1,∴函数图象开口向下又∵对称轴为x=﹣1,∴y1=y2>y3点故答案为:y1=y2>y3.15.解:平均每个季度城镇居民人均可支配收入增长的百分率为x,根据题意可得:y与x之间的函数关系为:y=0.75(1+x)2.故答案为:y=0.75(1+x)2.16.解:∵函数y=(x﹣h)2的图象为开口向上,顶点在x轴上的抛物线,∴其图象与正方形OBCD的边若有两个公共点为点O和点B,把点O坐标代入y=(x﹣h)2,得0=(0﹣h)2∴h=0;把点B坐标代入y=(x﹣h)2,得0=(1﹣h)2∴h=1.抛物线y=(x﹣h)2与正方形OBCD的边共有3个公共点,则h的取值范围是0<h<1.故答案为:0<h<1.三.解答题17.解:(1)x2+4x﹣5=0,(x+5)(x﹣1)=0,x+5=0或x﹣1=0,所以x1=﹣5,x2=1;(2)x(x+2)﹣3(x+2)=0,(x+2)(x﹣3)=0,x+2=0或x﹣3=0,所以x1=﹣2,x2=3.18.解:(1)∵抛物线y=ax2﹣2ax﹣3+2a2=a(x﹣1)2+2a2﹣a﹣3.∴抛物线的对称轴为直线x=1;(2)∵抛物线的顶点在x轴上,∴2a2﹣a﹣3=0,解得a=或a=﹣1,∴抛物线为y=x2﹣3x+或y=﹣x2+2x﹣1;(3)∵抛物线的对称轴为x=1,则Q(3,y2)关于x=1对称点的坐标为(﹣1,y2),∴当a>0,﹣1<m<3时,y1<y2;当a<0,m<﹣1或m>3时,y1<y2.19.(1)证明:△=(m+2)2﹣4×2×m,=(m﹣2)2,无论m取任何实数,(m﹣2)2≥0,即△≥0,∴原方程总有两个实数根.(2)解:∵△=(m﹣2)2,由求根公式,得x1=,x2=,∴原方程的根为:x1=﹣1,x2=﹣,∵方程的两个根都是整数,∴取m=﹣2,方程的两根为x1=1,x2=﹣1.20.解:(1)设抛物线解析式为y=a(x﹣1)2+2,把(0,0)代入得a(0﹣1)2+2=0,解得a=﹣2∴抛物线解析式为y=﹣2(x﹣1)2+2(即y=﹣2x2+4x);解方程﹣2x2+4x=0得x1=0,x2=2,则B(2,0),(2)存在.M点坐标为(1,2)或或;设M点坐标为(x,﹣2x2+4x),∵,∴|﹣2x2+4x|=2,∴﹣2x2+4x=2或﹣2x2+4x=﹣2,解得x1=x2=1,,∴存在这样的M点,M点坐标为(1,2)或或.21.解:(1)根据表格数据可知:前5天的某型号口罩销售价格p(元/只)和销量q(只)与第x天的关系为:p=x+1,1≤x≤5且x为整数;q=5x+65,1≤x≤5且x为整数;(2)当1≤x≤5且x为整数时,W=(x+1﹣0.5)(5x+65)=5x2+x+;当6≤x≤30且x为整数时,W=(1﹣0.5)(﹣2x2+80x﹣200)=﹣x2+40x﹣100.即有W=,当1≤x≤5且x为整数时,售价,销量均随x的增大而增大,故当x=5时,W有最大值为:495元;当6≤x≤30且x为整数时,W═﹣x2+40x﹣100=﹣(x﹣20)2+300,故当x=20时,W有最大值为:300元;由495>300,可知:第5天时利润最大为495元.(3)根据题意可知:获得的正常利润之外的非法所得部分为:(2﹣1)×70+(3﹣1)×75+(4﹣1)×80+(5﹣1)×85+(6﹣1)×90=1250(元),∴1250m≥2000,解得m≥.则m的取值范围为m≥.故答案为:m≥.22.解:(1)当x≥1时,y==x,当x<1时,y==1;故答案为:x;1;(2)根据(1)中的结果,在所给坐标系中画出函数y=的图象如下:(3)结合函数图象,该函数的一条性质为:不过原点;故答案为:不过原点;(4)∵y=ax+1过点(0,1)∴当a<0或a≥1时,方程ax+1=只有一个实数解.故答案为:a<0或a≥1.。

沪教版(上海)九年级数学综合拓展卷(一)

沪教版(上海)九年级数学综合拓展卷(一)沪教版(上海)九年级综合拓展卷(一)姓名:________ 班级:________ 成绩:________一、单选题1 . 设a、b是一元二次方程x2﹣2x﹣1=0的两个根,则a2+a+3b的值为()A.5B.6C.7D.82 . 若将抛物线y=先向左平移2个单位,再向下平移1个单位得到一个新的抛物线,则新抛物线的顶点坐标是A.B.C.D.3 . 若非零向量、满足|-|=||,则()A.|2|>|-2|B.|2|<|-2|C.|2|>|2-|D.|2|<|2-|4 . 如图,梯形ABCD中,,AC、BD交于E,若::9,则:为A.1:9B.1:4C.1:3D.9:15 . 已知⊙O1和⊙O2的半径分别为2cm和3cm,两圆的圆心距为5cm,则两圆的位置关系是A.外切B.外离C.相交D.内切6 . 用一根长26m的细绳围成面积为42m2的长方形,则长方形的长和宽分别为().A.6m,7m B.3m,14m C.14m,3m D.7m,6m二、填空题7 . 若tanα=1(0°<α<90°),则sinα=_____.8 . 当时,的方向与的方向是______方向,当时,的方向与的方向是______方向.9 . 如图,在△ABC中,∠ACB=90o,∠ABC=30o,AC=1.现在将△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,连接BB′,则BB′的长度为▲.10 . 如图,在平面直角坐标系中,点M、N分别为反比例函数y =和y=的图象上的点,顺次连接M、O、N,∠MON=90°,∠ONM=30°,则k=_____.11 . 如图,∠BAC=30°,P是∠BAC平分线上一点,PM∥AC交AB于M,PD⊥AC于D,若PD=8,则S△AMP=_____.12 . 已知抛物线的对称轴是x=m,若该抛物线与x轴交于(1,0),(3,0)两点,则m的值为______________13 . 温度3℃比﹣7℃高_____;温度﹣8℃比﹣2℃低_____.海拔﹣200m比300m高_____.14 . 已知点A(,)B(,)为函数y=-2(x-1)2+3图像上的两点,若>>1,则,的大小关系是____________.15 . 如图,等边三角形ABC中,AB=6,动点E从点B出发向点C运动,同时动点F从点C 出发向点A运动,点E、F运动的速度相同,当它们到达各自终点时停止运动,运动过程中线段AE、BF相交于点P,点H是线段BC上的中点,则线段PH的最小值为________.16 . 已知a是锐角,,则a=_____.17 . 如图,为了测量一栋楼的高度,小明在他脚下放了一面镜子,然后向后退,直到他刚好在镜子里看到楼的顶部,如果小明的眼睛距地面的高度为米,同时量得米,米,则这栋楼的高度是______ 米.18 . 如图所示的两个同心圆中,大圆半径为3,小圆半径为1,则阴影部分的面积为________.三、解答题19 . (1)解方程:4x2—81=0;(2)计算:+-()2;20 . 如图,要测量一幢楼CD的高度,在地面上A点测得楼CD的顶部C的仰角为30°,向楼前进50m到达B 点,又测得点C的仰角为60°. 求这幢楼CD的高度(结果保留根号).21 . 已知在以点为圆心的两个同心圆中,大圆的弦交小圆于点、.(1)求证:;(2)若大圆的半径,小圆的半径,且圆心到直线的距离为,求的长.22 . 计算:(1);(2)23 . 在矩形中,,,是射线上的一个动点,作,交射线于点,射线交射线于点,设,.(1)如图,当在边上时(点与点、都不重合),求关于的函数解析式,并写出它的定义域;(2)当时,求的长;(3)当时,求的长.24 . 某品牌空调原价4000元,因销售旺季,提价一定的百分率进行销售,一段时间后,因销售淡季又降价相同的百分率进行销售,若淡季空调售价为3960元,求相同的百分率.25 . 已知y是x的函数,该函数的图象经过A(1,6),B(3,2)两点.(1)请写出一个符合要求的函数表达式;(2)若该函数的图象还经过点C(4,3),自变量x的取值范围是.①如图,在给定的坐标系xOy中,画出一个符合条件的函数的图象;②根据①中画出的函数图象,写出对应的函数值y约为;(3)写出(2)中函数的一条性质(题目中已给出的除外).参考答案一、单选题1、2、3、4、5、6、二、填空题1、2、3、4、5、6、7、8、9、10、11、12、三、解答题1、2、3、4、5、6、7、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)求a、b的值.
(2)若甲级干果与乙级干果分别以元/千克和6元/千克的零 售价出售,则卖完这批干果获得的毛利润为多少元? (3)此人第几天起乙级干果每 天的销售量比甲级干果每天 的销售量至少多千克?(说明:毛利润=销售总金额-进货总金 额.这批干果进货至卖完的过程中的损耗忽略不计.)
对于平面直角坐标系中的任意两点P1 (x1,y1)、 x1 - x 2 y1 - y 2 P2 (x2,y2),我们把 叫 做Pl、P2两点间的直角距离,记作d (P1, P2). • (1)已知O为坐标原点,动点P (x,y) 满足d (O, P) =1,请写出x与y之间满足的关系式,并在所 给的直角坐标系中画出所有符合条件的点P所组 成的图形; • (2)设P0 (x0,y0) 是一定点,Q (x,y) 是直线 y=ax+b上的动点,我们把d (P0,Q) 的最小值 叫做P0到直线y=ax+b的直角距离.试求点M (2,1) 到直线y=x+2的直角距离.
• (2011江苏镇江,26,7分)某商店以6元/千克的价格购进 某干果1140千克,并对其起先筛选分成甲级干果与乙级 干果后同时开始销售,这批干果销售结束后,店主从销售 统计中发现:甲级干果与乙级干果在销售过程中每都有 销售量,且在同一天卖完;甲级干果从开始销售至销售的 第x天的总销售量(千克)与x的关系为;乙级干果从开始销 售至销售的第t天的总销售量(千克)与t的关系为,且乙级 干果的前三天的销售量的情况见下表:

y 1 O 1 x
5. 把棱长为4的正方体分割成29个棱长为整 数的正方体(且 没有剩余),其中棱长为1 的正方体的个数为 。
6.填在下面各正方形中的四个数之间都有相同的 规律,根据这种规律,m的值是 .
7. 一个矩形被直线分成面积为,的两部分,则与之间的 函数关系只可能是
8. 如图是一个正六棱柱的主视图和左视图,则图中的 a= A. 3 B. 2 3 C. 2 D. 1
新中考提高题 制作-zy
2011年南通市:设m n 0,m 2 n 2 4mn , m2 - n 2 求 的值。 mn x -3 2011年杭州市:已知分式 2 ,当x 2时,分式无意义, x - 5x a 求a的值;当a 6时,使分式无意义的值共有几个? 2x m 已知关于x的方程 3的解是正数,求m的取值范围。 x-2 已知a,b为有理数,m,n分别表示5 - 7的整数部分和 小数部分,且amn bn 2 1,求2a b的值。
9. 若a+b=-2,且a≥2b,则 A.b/a 有最小值 1/2 C. a/b有最大值2
B. b/a有最大值1 D. a/b有最小值-8/9
• (2012绍兴)如图,矩形OABC的两条边 在坐标轴上,OA=1,OC=2,现将此矩形 向右平移,每次平移1个单位,若第1次平 移得到的矩形的边与反比例函数图象有两 个交点,它们的纵坐标之差的绝对值为0.6, 则第n次(n>1)平移得到的矩形的边与该 反比例函数图象的两个交点的纵坐标之差 的绝对值为 • (用含n的代数式表示)
Байду номын сангаас
• (2011江苏镇江,24,7分)如图,在△ABO中,已知点 A(,3),B(-1,-1),O(0,0),正比例y=-x的图象是直线l, 直线AC∥x轴交直线l于点C. • (1)C点坐标为_____; • (2)以点O为旋转中心,将△ABO顺时针旋转角 a(0°<a<180°),使得点B落在直线l上的对应点为, 点A的对应点为,得到△ AOB . • ①∠a=_____; • ②画出△ AOB ; • (3)写出所有满足△DOC∽△AOB的点D的坐标.
相关文档
最新文档