《统计学》第四章课后作业题

合集下载

《统计学》第四章课后作业题

《统计学》第四章课后作业题

5 122.25%
= *
2.73 100% 第四章作业:
1 、 某工业企业某年资料如下:
要求计算:第一季度月平均劳动生产率。

答: 第一季度月平均劳动生产率=(180+160+200) ÷(600÷2+580+620+600÷2) =30%
2 、已知某工厂产值 2009 年比 2008 年增长 20% , 2010 年比 2009 年增长 50% , 2011 年比 2010 年增长 25% , 2012年比 2008年增长 110% , 2013年比 2012 年增长 30% 。

试根据以上资料编制 2008 — 2013年的环比增长速度数列和定基增长速度数列,并求平均发展速度。

答:2011年定基发展速度=1.73+1=2.73
平均发展速度 =
3 、某化肥厂 2005 年化肥产量为 2 万吨,“十一五”期间(2006年-2010年)每年平均增长 8% ,以后每年平均增长 15% ,问 2015 年化肥产量将达到多少万吨?如果规定 2015 年产量比 2005 年翻两番,问每年需要增长百分之多少才能达到预定产量?
答:
2×1.085×1.155=5.91万吨 设每年的增长百分比为X ,
(X+1)10=4 解出X=14.87%
答:2015年化肥产量将达到5.91万吨,每年需要增长14.87%。

统计学第四章课后习题答案

统计学第四章课后习题答案

第四章一.思考题1、一组数据的分布特征可以从哪几个方面进行测度?答:可以从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢或聚集的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布的偏态和峰态。

2、怎样理解平均数在统计学中的地位?答:平均数在统计学中具有重要的地位,它是进行统计分析和统计推断的基础。

从统计学思想上看,平均数是一组数据的重心所在,是数据误差相互抵消后的必然结果。

3、简述四分位数的计算方法。

答:四分位数是一组数据排序后处于25%和75%位子上的值。

四分位数是通过3个点将全部数据等分成4分,其中每部分包含25%的数据。

中间的四分位数就是中位数,因此通常所说的四分位数是指处在25%位置上的数值和处在75%位置上的数值。

它是根据为分组数据计算四分位数时,首先对数据进行排序,然后确定四分位数所在的位置,该位置上的数据就是四分位数。

4、对于比率数据的平均数为什么采用几何平均?答:几何平均数是适用于特殊数据的一种平均数,主要适用于计算平均比率。

当所掌握的变量值本身是比率的形式时,采用几何平均法计算平均比率更为合理。

5、简述众数、中位数、平均数的特点和应用场合。

答:众数是数据中出现次数次数最多的变量值。

主要应用于分类数据。

中位数是一组数据排序后处于中间位置的变量值,其适用于顺序数据。

平均数也称均值,它是一组数据相加后除以数据个数的结果,是集中去世的主要测量值,它适用于数值型数据。

6、简述异众比率、四分位差、方差、标准差的使用场合。

答:异众比率主要适合测度分类数据的离散程度,对于顺序数据以及数值型数据也可以计算异众比率。

四分位差主要用于测度顺序数据的离散程度。

方差和标准差适用于测度数值型数据的离散程度。

7、标准分数有哪些用途?答:首先是比较不同单位和不同质数据的位置。

其次是和正态分布结合起来,求得概率和标准分值之间的对应关系。

还有就是在假设检验和估计中应用。

统计学课后习题答案(第四版)贾俊平(第4、5、7、10章)

统计学课后习题答案(第四版)贾俊平(第4、5、7、10章)

《统计学》第四版 第四章练习题答案众数:M o =1O;中位数:中位数位置=n+1/2=5.5 , M e =10 ;平均数:(2) Q L 位置=n/4=2.5, Q L =4+7/2=5.5 ; Q u 位置=3n/4=7.5 , Q u =12(4) 4.2 和 M O =23。

将原始数据排序后,计算中位数的位置为:中位数位置=n+1/2=13,第13个位置上的数值为23,所以中位数为 M e =23(2)Q L 位置=n/4=6.25, Q L ==19 ; Q u 位置=3n/4=18.75,Q u =26.5茎 叶 频数 5 5 1 6 6 7 8 3 71 3 4 8 85(3)第一种排队方式: 离散程度大于第二种排队方式。

(4 )选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方 式。

_ Z X i4.4 ( 1)X8223/30=274.14.1 ( 1 ) 二X i X =n96.9,6 102' (X i-X ) _156.4 42n -1, 9由于平均数小于中位数和众数,所以汽车销售量为左偏分布。

(1)从表中数据可以看出,年龄出现频数最多的是 19和23,故有个众数,即 M O =19(3)⑶平均数-A =600/25=24,标准差—(XLX)\ n —1210626.6525-1n(4) 偏态系数SK=1.08,峰态系数K=0.77(5) 分析:从众数、中位数和平均数来看,网民年龄在 23-24岁的人数占多数。

由于标准差较大,说明网民年龄之间有较大差异。

从偏态系数来看,年龄分布为右偏,由于偏态系数 1,所以,偏斜程度很大。

由于峰态系数为正值,所以为尖峰分布。

(1)茎叶图如下: 大于 4.3 —2'(X 一 X ) 4.080.714nn -1■ 8由于两种排队方式的平均数不同,所以用离散系数进行比较。

(2) X 二一^ =63/9=7, S = ■■n中位数位置=n+1/2=15.5 , M e=272+273/2=272.5(2) Q L位置=n/4=7.5, Q L==(258+261)/2=259.5 ; Q u 位置=3n/4=22.5 , Q u=(284+291)/2=287.5' (^-X ^ /3002-7 = 21.17 I n —1 \ 30—12100 +3000 +15004.5 (1)甲企业的平均成本=总成本/总产量=-2100 3000---- + ----- 15 20乙企业的平均成本=总成本/总产量=3255150015006255=18.293255 1500 1500 342____ + _____ + _____152030原因:尽管两个企业的单位成本相同, 但单位成本较低的产品在乙企业的产量中所占比重较 大,因此拉低了总平均成本。

统计学课后习题答案第四章动态数列

统计学课后习题答案第四章动态数列

第四章动态数列、单项选择题1 .下列动态数列中属于时点数列的是A.历年在校学生数动态数列B.历年毕业生人数动态数列C.某厂各年工业总产值数列D.某厂各年劳动生产率数列2 .构成动态数列的两个基本要素是A.主词和宾词B.变量和次数C.分组和次数D.现象所属的时间及其指标值3 .动态数列中各项指标数值可以相加的是A.相对数动态数列B.平均数动态数列C.时期数列D.时点数列4.最基本的动态数列是A.指数数列B.相对数动态数列C.平均数动态数列D.绝对数动态数列5.动态数列中,指标数值的大小与其时间长短没有直接关系的A.时期数列B.时点数列C.相对数动态数列D.平均数动态数列6.动态数列中,指标数值是经过连续不断登记取得的数列是A.时期数列B.时点数列C.相对数动态数列D.平均数动态数列7 .下列动态数列中属于时期数列的是A.企业历年职工人数数列B.企业历年劳动生产率数列C.企业历年利税额数列D.企业历年单位产品成本数列8 .动态数列中,各项指标数值不可以相加的是A.相对数动态数列B.绝对数动态数列C.时期数列D.时点数列9.动态数列中,指标数值大小与其时间长短有关的是A.相对数动态数列B.绝对数动态数列C.时期数列D.时点数列10.动态数列中,指标数值是通过一次登记取得的数列是A.相对数动态数列B.绝对数动态数列C.时期数列D.时点数列11.编制动态数列的最基本原则是保证数列中各项指标必须具有A.可加性B.可比性C.连续性D.一致性12 .基期为某一固定时期水平的增长量是A.累计增长量B.逐期增长量C.平均增长量D.年距增长量13 .基期为前期水平的增长量是A.累计增长量B.逐期增长量C.平均增长量D.年距增长量14 .累计增长量与逐期增长量之间的关系是A, 累计增长量等于相应的各个逐期增长量之和B, 累计增长量等于相应的各个逐期增长量之差C, 累计增长量等于相应的各个逐期增长量之商D, 累计增长量等于相应的各个逐期增长量之积15 .平均增长量等于A.累计增长量B.逐期增长量C.逐期增长量之和除以逐期增长量的项D.以上均不对16 .动态数列中的发展水平是指A.总量指标B.相对指标C.平均指标D.以上指标均可17 .进行动态分析的基础指标是A.发展水平B.平均发展水平C.增长量D.平均增长量18 .动态数列的分析指标主要包括两个类别,即A.发展水平和发展速度B.水平指标和速度指标C.平均发展水平和平均发展速度D.增长量和增长速度19 .序时平均数和一般平均数的共同点在于两者A.都是根据动态数列计算B.都是根据变量数列计算C.都是反映现象的一般水平D.均可以消除现象波动的影响20 .根据时期数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法21 .根据间隔相等连续时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法22.根据间隔不相等连续时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法23 .根据间隔相等间断时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法24 .根据间隔不相等间断时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法25 .序时平均数计算中,“首未折半法”运用于A.时期数列的资料B.间隔相等的时点数列资料C.间隔不等的时点数列资料D.由两个时点数列构成的相对数动态数列26 .将研究对象在不同时间上的数量差异抽象化,从动态上说明现象在某一时期内发展的一般水平的方法是A.一般平均数B.序时平均数C.平均发展速度D.平均增长速度27 .间隔不相等的间断时点数列计算平均发展水平,应采取A. 以每次变动持续的时间长度对各时点水平加权平均B. 用各间隔长度对各间隔的平均水平加权平均C.对各时点水平简单算术平均 D.以数列的总速度按几何平均法计算 28 .根据采用的对比基期不同发展速度有 A.环比发展速度与定基发展速度 B.环比发展速度与环比增长速度 C.定基发展速度与定基增长速度 D.环比增长速度与定基增长速度 29 .发展速度的计算方法可以表述为 A.报告期水平与基期水平之差B. C.报告期水平与基期水平之比D. 30 .基期为前一期水平的发展速度是 A.定基发展速度B. C.年距发展速度D.31 .基期为某一固定期水平的发展速度是 A.定基发展速度B. C.年距发展速度D.32 .定基发展速度和环比发展速度的关系是两个相邻时期的定基发展速度A.之商等于相应的环比发展速度B.之差等于相应的环比发展速度C.之和等于相应的环比发展速度D.之积等于相应的环比发展速度 33 .增长速度是A.动态数列水平之差B.动态数列水平之比C.增长量同发展速度之比D.增长量同作为比较基准的数列水平之比 34 .定基增长速度与环比增长速度的关系表现为 A.定基增长速度等于各环比增长速度的连乘积B.定基增长速度等于各环比增长速度的连乘积的n 次方根C.各环比增长速度连乘积加一等于定基增长速度加一D.定基增长速度等于各环比增长速度加一后的连乘积减一35 .既然总速度是环比发展速度的连乘积,那么平均发展速度就应按 A.简单算术平均数计算B.加权算术平均数计算 C.几何平均数计算D.调和平均数计算 36 .发展速度与增长速度的关系是 A.定基发展速度等于环比增长速度加一 B.环比增长速度等于环比发展速度减一 C.定基增长速度的连乘积等于定基发展速度 D.环比增长速度的连乘积等于环比发展速度 37 .动态数列中的平均增长速度是 A.各个时期环比增长速度的算术平均数 B.各个时期环比增长速度的调和平均数 C.各个时期环比增长速度的几何平均数增长量与基期水平之差 增长量与基期水平之比环比发展速度 平均发展速度 环比发展速度 平均发展速度D.各个时期环比增长速度的序时平均数38 .采用几何平均法计算平均发展速度的理由是A.各期环比发展速度之积等于总速度B.各期环比发展速度之和等于总速度C.各期环比增长速度之积等于总速度D.各期环比增长速度之和等于总速度39 .已知各期定基发展速度和时期数,而不知道各期水平要计算平均发展速度A.只能用水平法计算B.只能用累计法计算C.两种方法皆能计算D.两种方法都无法计算40.已知各时期发展水平之和与最初水平及时期数,要计算平均发展速度A.只能用水平法计算B.只能用累计法计算C.两种方法皆能计算D.两种方法都无法计算41.当动态数列分析目的是侧重于考察期未发展水平,则平均发展速度A.应采用算术平均法计算B.应采用调和平均法计算C.应采用几何平均法计算D.应采用方程式法计算42.当动态数列分析目的是侧重于考察整个时期中各年发展水平的总和,则平均发展速度A.应采用算术平均法计算B.应采用调和平均法计算C.应采用几何平均法计算D.应采用方程式法计算43.动态数列中的平均发展速度等于A.各时期定基发展速度的序时平均数B.各时期环比发展速度的序时平均数C.各时期环比发展速度的算术平均数D.各时期定基发展速度的算术平均数44.几何平均数所计算的平均发展速度的数值大小A.不受最初水平和最未水平的影响B. 只受中间各期发展水平的影响C. 只受最初水平和最未水平的影响D. 既受最初水平和最未水平的影响,又受中间各期发展水平的影响45.累计法计算平均发展速度的实质是从最初水平出发A.按平均增长量增长,经过n期,正好达到最未水平8. 按平均发展速度发展,经过n期,正好达到第n期实际水平C.按平均发展速度计算得到的各期理论水平之和正好等于各期的实际水平总和D.按平均发展速度发展得到的各期理论水平之和正好等于最未期的实际水平46.直线趋势方程Y c=a+bx中a和b的意义是A.a是截距,b表示X=0的趋势值B.a表示最初发展水平的趋势值,b表示平均发展水平C.a表示最初发展水平的趋势值,b表示平均发展速度D.a是直线的截距,表示最初发展水平的趋势值;b是直线的斜率,表示按最小平方法计算的平均增长量47.用最小平方法配合趋势直线方程%=a+bx在什么条件下,a=Y;b=NXY/NX2A.SX=0B.2(Y-Y)=0C.2Y=0D.2(Y-Y)2=最小值二、多项选择题1 .构成动态数列的两个基本要素是A.变量B.次数C.现象所属的时间D.现象所属的范围E.反映现象的统计指标数值2 .动态数列按研究任务不同可以分为A.绝对数动态数列B.平均数动态数列C.相对数动态数列D.时期数列E.时点数列3 .动态数列的作用表现在A.描述现象变化的过程B.说明现象发展的速度和趋势C.探索现象发展变化的规律性D.对现象的发展进行预测E.反映现象总体的分布特征4 .时期数列的特点A.数列中各个指标数值可以相加B.数列中指标数值大小与其时期长短无直接关系C.数列中各个指标数值不能相加D.数列中指标数值大小与其时期长短有直接关系E.数列中指标数值通常是通过连续不断登记而取得的5 .时点数列的特点A.数列中各个指标数值可以相加B.数列中指标数值大小与其间隔长短无直接关系C.数列中各个指标数值不能相加D.数列中指标数值大小与其间隔长短有直接关系E.数列中指标数值通常是通过间断登记而取得的6.下列动态数列中,各项指标数值不能相加的有A.绝对数动态数列B.相对数动态数列B.平均数动态数列D.时期数列E.时点数列7.下列数列中,属于两个时期对比构成的相对数动态数列有A.全员劳动生产率动态数列B.C.职工人数动态数列D.E.出勤率动态数列8.下列数列中属于时期数列的有A.历年年未人口总数B.B.历年工业增加值D.E.各月未银行存款余额9.下列数列中属于时点数列的有A.高校每年毕业生人数B.C.银行每月未银行存款余额D.百元产值利润率动态数列计划完成程度动态数列历年出生人数各月商品库存量高校每年在校学生数商店各月商品库存额E.我国历年外汇储备量10.编制动态数列应遵循的原则有A.时期长短应该相等B.C.总体范围应该一致D.指标的计算方法应该一致E.指标的计算价格和计量单位应该一致11 .动态数列中的水平分析指标有A.发展水平B.平均发展水平D.平均增长量E.平均发展速度12 .动态数列中的速度分析指标有A.平均发展水平B.增长速度D.平均增长速度E.发展速度13 .下列指标中属于序时平均数的有A.平均发展水平B.平均增长量D.平均增长速度E.平均指标14 .动态数列中的发展水平包括A.期初水平B.期未水平D.报告期水平E.基期水平C.增长量C.平均发展速度C.平均发展速度C.中间水平15.将不同时期的发展水平加以平均所得到的平均数称为A.一般平均数B.算术平均数C.序时平均数D.动态平均数E.平均发展水平16.平均增长量的计算公式是A.逐期增长量之和/逐期增长量项数B.逐期增长量的序时平均数C.累计增长量/动态数列项数-1D.累计增长量/动态数列项数E.累计增长量/动态数列项数+117.定基发展速度与环比发展速度之间的关系表现为A.两个相邻时期的定基发展速度之商等于相应的环比发展速B.定基发展速度等于相应的各个环比发展速度的连乘积C.定基发展速度等于环比发展速度加一D.定基发展速度等于环比增长速度加一后的连乘积E.环比发展速度乘积等于总速度18.增长速度和发展速度的关系为A.仅差一个基数B.发展速度=增长速度+1C.定基增长速度=各环比增长速度的连乘积C.定基发展速度=定基增长速度+1E.定基增长速度=各环比发展速度的连乘积-119.定基增长速度等于A.累计增长量除以基期发展水平C.总速度减去 D.B.定基发展速度减去一'环比增长速度的连乘积E.逐期增长量除以前期发展水平20.环比增长速度等于A累计增长量除以基期发展水平 B.环比发展速度减去指标的经济内容应该相同C.定基发展速度减去一D.环比增长速度的连乘积E.逐期增长量除以前期发展水平21 .动态数列中的发展水平可以是A.总量指标B.相对指标C.平均指标D.变异指标E.样本指标22 .增长1%勺绝对值等于A.累计增长量除以定基发展速度B.逐期增长量除以环比发展速度C.逐期增长量除以环比增长速度X100D.累计增长量除以定基增长速度X100E.固定期水平除以10023 .计算平均发展速度的方法有A.几何平均法B.水平法C.方程式法D. 累计法E.序时平均法24 .平均发展速度从广义上讲属于A.静态平均数B.动态平均数C.序时平均数D.几何平均数E.调和平均数25 .计算平均发展速度的几何平均法和方程式法的区别是A.数理依据不同B.侧重点不同C.适用条件不同D.适用范围不同E.对资料要求不同26 .常用的长期趋势测定的方法有A.时距扩大法B.移动平均法C.分段平均法D.最小平方法E.季节比率法27 .直线趋势方程Y c=a+bx的参数b是表示A.趋势值B.趋势线的截距C.趋势线的斜率D.当X=0时的Y C的数值E. 当X每变动一个单位时Y C平均增减的数值三、填空题1 .动态数列一般由两个基本要素构成,即和。

统计学课后习题集答案解析第四章动态数列

统计学课后习题集答案解析第四章动态数列

第四章动态数列一﹑单项选择题1.下列动态数列中属于时点数列的是A.历年在校学生数动态数列B.历年毕业生人数动态数列C.某厂各年工业总产值数列D.某厂各年劳动生产率数列2.构成动态数列的两个基本要素是A.主词和宾词B.变量和次数C.分组和次数D.现象所属的时间及其指标值3.动态数列中各项指标数值可以相加的是A.相对数动态数列B.平均数动态数列C.时期数列D.时点数列4.最基本的动态数列是A.指数数列B.相对数动态数列C.平均数动态数列D.绝对数动态数列5.动态数列中,指标数值的大小与其时间长短没有直接关系的是A.时期数列B.时点数列C.相对数动态数列D.平均数动态数列6.动态数列中,指标数值是经过连续不断登记取得的数列是A.时期数列B.时点数列C.相对数动态数列D.平均数动态数列7.下列动态数列中属于时期数列的是A.企业历年职工人数数列B.企业历年劳动生产率数列C.企业历年利税额数列D.企业历年单位产品成本数列8.动态数列中,各项指标数值不可以相加的是A.相对数动态数列B.绝对数动态数列C.时期数列D.时点数列9.动态数列中,指标数值大小与其时间长短有关的是A.相对数动态数列B.绝对数动态数列C.时期数列D.时点数列10.动态数列中,指标数值是通过一次登记取得的数列是A.相对数动态数列B.绝对数动态数列C.时期数列D.时点数列11.编制动态数列的最基本原则是保证数列中各项指标必须具有A.可加性B.可比性C.连续性D.一致性12.基期为某一固定时期水平的增长量是A.累计增长量B.逐期增长量C.平均增长量D.年距增长量13.基期为前期水平的增长量是A.累计增长量B.逐期增长量C.平均增长量D.年距增长量14.累计增长量与逐期增长量之间的关系是A.累计增长量等于相应的各个逐期增长量之和B.累计增长量等于相应的各个逐期增长量之差C.累计增长量等于相应的各个逐期增长量之商D.累计增长量等于相应的各个逐期增长量之积15.平均增长量等于A.累计增长量B.逐期增长量C.逐期增长量之和除以逐期增长量的项D.以上均不对16.动态数列中的发展水平是指A.总量指标B.相对指标C.平均指标D.以上指标均可17.进行动态分析的基础指标是A.发展水平B.平均发展水平C.增长量D.平均增长量18.动态数列的分析指标主要包括两个类别,即A.发展水平和发展速度B.水平指标和速度指标C.平均发展水平和平均发展速度D.增长量和增长速度19.序时平均数和一般平均数的共同点在于两者A.都是根据动态数列计算B.都是根据变量数列计算C.都是反映现象的一般水平D.均可以消除现象波动的影响20.根据时期数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法21.根据间隔相等连续时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法22.根据间隔不相等连续时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法23.根据间隔相等间断时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法24.根据间隔不相等间断时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法25.序时平均数计算中,“首未折半法”运用于A.时期数列的资料B.间隔相等的时点数列资料C.间隔不等的时点数列资料D.由两个时点数列构成的相对数动态数列26.将研究对象在不同时间上的数量差异抽象化,从动态上说明现象在某一时期内发展的一般水平的方法是A.一般平均数B.序时平均数C.平均发展速度D.平均增长速度27.间隔不相等的间断时点数列计算平均发展水平,应采取A.以每次变动持续的时间长度对各时点水平加权平均B.用各间隔长度对各间隔的平均水平加权平均C.对各时点水平简单算术平均D.以数列的总速度按几何平均法计算28.根据采用的对比基期不同发展速度有A.环比发展速度与定基发展速度B.环比发展速度与环比增长速度C.定基发展速度与定基增长速度D.环比增长速度与定基增长速度29.发展速度的计算方法可以表述为A.报告期水平与基期水平之差B.增长量与基期水平之差C.报告期水平与基期水平之比D.增长量与基期水平之比30.基期为前一期水平的发展速度是A.定基发展速度B.环比发展速度C.年距发展速度D.平均发展速度31.基期为某一固定期水平的发展速度是A.定基发展速度B.环比发展速度C.年距发展速度D.平均发展速度32.定基发展速度和环比发展速度的关系是两个相邻时期的定基发展速度A.之商等于相应的环比发展速度B.之差等于相应的环比发展速度C.之和等于相应的环比发展速度D.之积等于相应的环比发展速度33.增长速度是A.动态数列水平之差B.动态数列水平之比C.增长量同发展速度之比D.增长量同作为比较基准的数列水平之比34.定基增长速度与环比增长速度的关系表现为A.定基增长速度等于各环比增长速度的连乘积B.定基增长速度等于各环比增长速度的连乘积的n次方根C.各环比增长速度连乘积加一等于定基增长速度加一D.定基增长速度等于各环比增长速度加一后的连乘积减一35.既然总速度是环比发展速度的连乘积,那么平均发展速度就应按A.简单算术平均数计算B.加权算术平均数计算C.几何平均数计算D.调和平均数计算36.发展速度与增长速度的关系是A.定基发展速度等于环比增长速度加一B.环比增长速度等于环比发展速度减一C.定基增长速度的连乘积等于定基发展速度D.环比增长速度的连乘积等于环比发展速度37.动态数列中的平均增长速度是A.各个时期环比增长速度的算术平均数B.各个时期环比增长速度的调和平均数C.各个时期环比增长速度的几何平均数D.各个时期环比增长速度的序时平均数38.采用几何平均法计算平均发展速度的理由是A.各期环比发展速度之积等于总速度B.各期环比发展速度之和等于总速度C.各期环比增长速度之积等于总速度D.各期环比增长速度之和等于总速度39.已知各期定基发展速度和时期数,而不知道各期水平要计算平均发展速度A.只能用水平法计算B.只能用累计法计算C.两种方法皆能计算D.两种方法都无法计算40.已知各时期发展水平之和与最初水平及时期数,要计算平均发展速度A.只能用水平法计算B.只能用累计法计算C.两种方法皆能计算D.两种方法都无法计算41.当动态数列分析目的是侧重于考察期未发展水平,则平均发展速度A.应采用算术平均法计算B.应采用调和平均法计算C.应采用几何平均法计算D.应采用方程式法计算42.当动态数列分析目的是侧重于考察整个时期中各年发展水平的总和,则平均发展速度A.应采用算术平均法计算B.应采用调和平均法计算C.应采用几何平均法计算D.应采用方程式法计算43.动态数列中的平均发展速度等于A.各时期定基发展速度的序时平均数B.各时期环比发展速度的序时平均数C.各时期环比发展速度的算术平均数D.各时期定基发展速度的算术平均数44.几何平均数所计算的平均发展速度的数值大小A.不受最初水平和最未水平的影响B.只受中间各期发展水平的影响C.只受最初水平和最未水平的影响D.既受最初水平和最未水平的影响,又受中间各期发展水平的影响45.累计法计算平均发展速度的实质是从最初水平出发A.按平均增长量增长,经过n期,正好达到最未水平B.按平均发展速度发展,经过n期,正好达到第n期实际水平C.按平均发展速度计算得到的各期理论水平之和正好等于各期的实际水平总和D.按平均发展速度发展得到的各期理论水平之和正好等于最未期的实际水平46.直线趋势方程Y C=a+bx中a和b的意义是A.a是截距,b表示X=0的趋势值B.a表示最初发展水平的趋势值,b表示平均发展水平C.a表示最初发展水平的趋势值,b表示平均发展速度D.a是直线的截距,表示最初发展水平的趋势值;b是直线的斜率,表示按最小平方法计算的平均增长量47.用最小平方法配合趋势直线方程Y C=a+bx在什么条件下,a=Y;b=ΣXY/ΣX2A.ΣX=0B.Σ(Y-Y)=0C.ΣY=0D.Σ(Y-Y)2=最小值二﹑多项选择题1.构成动态数列的两个基本要素是A.变量B.次数C.现象所属的时间D.现象所属的范围E.反映现象的统计指标数值2.动态数列按研究任务不同可以分为A.绝对数动态数列B.平均数动态数列C.相对数动态数列D.时期数列E.时点数列3.动态数列的作用表现在A.描述现象变化的过程B.说明现象发展的速度和趋势C.探索现象发展变化的规律性D.对现象的发展进行预测E.反映现象总体的分布特征4.时期数列的特点A.数列中各个指标数值可以相加B.数列中指标数值大小与其时期长短无直接关系C.数列中各个指标数值不能相加D.数列中指标数值大小与其时期长短有直接关系E.数列中指标数值通常是通过连续不断登记而取得的5.时点数列的特点A.数列中各个指标数值可以相加B.数列中指标数值大小与其间隔长短无直接关系C.数列中各个指标数值不能相加D.数列中指标数值大小与其间隔长短有直接关系E.数列中指标数值通常是通过间断登记而取得的6.下列动态数列中,各项指标数值不能相加的有A.绝对数动态数列B.相对数动态数列B.平均数动态数列D.时期数列E.时点数列7.下列数列中,属于两个时期对比构成的相对数动态数列有A.全员劳动生产率动态数列B.百元产值利润率动态数列C.职工人数动态数列D.计划完成程度动态数列E.出勤率动态数列8.下列数列中属于时期数列的有A.历年年未人口总数B.历年出生人数B.历年工业增加值D.各月商品库存量E.各月未银行存款余额9.下列数列中属于时点数列的有A.高校每年毕业生人数B.高校每年在校学生数C.银行每月未银行存款余额D.商店各月商品库存额E.我国历年外汇储备量10.编制动态数列应遵循的原则有A.时期长短应该相等B.指标的经济内容应该相同C.总体范围应该一致D.指标的计算方法应该一致E.指标的计算价格和计量单位应该一致11.动态数列中的水平分析指标有A.发展水平B.平均发展水平C.增长量D.平均增长量E.平均发展速度12.动态数列中的速度分析指标有A.平均发展水平B.增长速度C.平均发展速度D.平均增长速度E.发展速度13.下列指标中属于序时平均数的有A.平均发展水平B.平均增长量C.平均发展速度D.平均增长速度E.平均指标14.动态数列中的发展水平包括A.期初水平B.期未水平C.中间水平D.报告期水平E.基期水平15.将不同时期的发展水平加以平均所得到的平均数称为A.一般平均数B.算术平均数C.序时平均数D.动态平均数E.平均发展水平16.平均增长量的计算公式是A.逐期增长量之和/逐期增长量项数B.逐期增长量的序时平均数C.累计增长量/动态数列项数-1D.累计增长量/动态数列项数E.累计增长量/动态数列项数+117.定基发展速度与环比发展速度之间的关系表现为A.两个相邻时期的定基发展速度之商等于相应的环比发展速度B.定基发展速度等于相应的各个环比发展速度的连乘积C.定基发展速度等于环比发展速度加一D.定基发展速度等于环比增长速度加一后的连乘积E.环比发展速度乘积等于总速度18.增长速度和发展速度的关系为A.仅差一个基数B.发展速度=增长速度+1C.定基增长速度=各环比增长速度的连乘积C.定基发展速度=定基增长速度+1E.定基增长速度=各环比发展速度的连乘积-119.定基增长速度等于A.累计增长量除以基期发展水平B.定基发展速度减去一C.总速度减去一D.环比增长速度的连乘积E.逐期增长量除以前期发展水平20.环比增长速度等于A累计增长量除以基期发展水平B.环比发展速度减去一C.定基发展速度减去一D.环比增长速度的连乘积E.逐期增长量除以前期发展水平21.动态数列中的发展水平可以是A.总量指标B.相对指标C.平均指标D.变异指标E.样本指标22.增长1%的绝对值等于A.累计增长量除以定基发展速度B.逐期增长量除以环比发展速度C.逐期增长量除以环比增长速度×100D.累计增长量除以定基增长速度×100E.固定期水平除以10023.计算平均发展速度的方法有A.几何平均法B.水平法C.方程式法D.累计法E.序时平均法24.平均发展速度从广义上讲属于A.静态平均数B.动态平均数C.序时平均数D.几何平均数E.调和平均数25.计算平均发展速度的几何平均法和方程式法的区别是A.数理依据不同B.侧重点不同C.适用条件不同D.适用范围不同E.对资料要求不同26.常用的长期趋势测定的方法有A.时距扩大法B.移动平均法C.分段平均法D.最小平方法E.季节比率法27.直线趋势方程Y c=a+bx的参数b是表示A.趋势值B.趋势线的截距C.趋势线的斜率D.当X=0时的Yc的数值E.当X每变动一个单位时Y c平均增减的数值三﹑填空题1.动态数列一般由两个基本要素构成,即和。

统计学第四章课后题及答案解析

统计学第四章课后题及答案解析

第四章一、单项选择题1.由反映总体单位某一数量特征的标志值汇总得到的指标是()A.总体单位总量B.质量指标C.总体标志总量D.相对指标2.各部分所占比重之和等于1或100%的相对数()A.比例相对数B.比较相对数C.结构相对数D.动态相对数3.某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为()A.104.76%B.95.45%C.200%D.4.76%4.某企业计划规定产品成本比上年度降低10%实际产品成本比上年降低了14.5%,则产品成本计划完成程度()A.14.5%B.95%C.5%D.114.5%5.在一个特定总体内,下列说法正确的是( )A.只存在一个单位总量,但可以同时存在多个标志总量B.可以存在多个单位总量,但必须只有一个标志总量C.只能存在一个单位总量和一个标志总量D.可以存在多个单位总量和多个标志总量6.计算平均指标的基本要求是所要计算的平均指标的总体单位应是()A.大量的B.同质的C.有差异的D.不同总体的7.几何平均数的计算适用于求()A.平均速度和平均比率B.平均增长水平C.平均发展水平D.序时平均数8.一组样本数据为3、3、1、5、13、12、11、9、7这组数据的中位数是()A.3B.13C.7.1D.79.某班学生的统计学平均成绩是70分,最高分是96分,最低分是62分,根据这些信息,可以计算的测度离散程度的统计量是()A.方差B.极差C.标准差D.变异系数10.用标准差比较分析两个同类总体平均指标的代表性大小时,其基本的前提条件是( )A.两个总体的标准差应相等B.两个总体的平均数应相等C.两个总体的单位数应相等D.两个总体的离差之和应相等11.已知4个水果商店苹果的单价和销售额,要求计算4个商店苹果的平均单价,应采用()A.简单算术平均数B.加权算术平均数C.加权调和平均数D.几何平均数12.算术平均数、众数和中位数之间的数量关系决定于总体次数的分布状况。

《统计学原理》第四章习题及答案

《统计学原理》第四章习题及答案
高11%,执 行结果提高13%,,则总产值计划完成提高 程度为(C ) 113% 113% 111% A、13%-11% B、 C、 D 1、 1
111%
111%
113%
17:权数对算术平均数的影响作用,实质上取 决于( A)。 A、作为权数的各组单位数占总体单位数比重的 大小 B、各组标志值占总体标志总量比重的大小 C、标志值本身的大小 D、标志值数量的多少
《统计学原理》第四章习题
一.判断题部分 1:同一个总体,时期指标值的大小与时期 长短成正比,时点指标值的大小与时点间 隔成反比。( × ) 2:全国粮食总产量与全国人口对比计算的 人均粮食产量是平均指标。( × )
3:根据分组资料计算算术平均数,当各组 单位数出现的次数均相等时,按加权算数 平均数计算的结果与按简单算数平均数计 算的结果相同。( √ ) 4:同一总体的一部分数值与另一部分数值 对比得到的相对指标是比较相对指标。 (×)
26、第一批产品废品率1%,第二批产品 废品率1.5%,第三批产品废品率2%, 第一批产品数量占总数的25%,第二批 产品数量占总数的30%,则平均废品率 为(C)。
A、1.5% C、1.6% B、4% D、4.5%
27、某企业工人劳动生产率,计划提高5 %,实际提高了10%,则提高劳动生产 率的计划完成程度为(A)。 A、104.76% B、95.45% C、200% D、76%
A . 500 700 600 500 700 600 110 % 115 % 105 %
110 % 500 115 % 700 105 % 600 B . 500 700 600
110 % 115 % 105 % C . 3 10 % 15 % 5 % D . 3

《统计学概论》第四章课后练习题答案

《统计学概论》第四章课后练习题答案

《统计学概论》第四章课后练习题答案一、思考题1.相对指标有什么作用?P90-912.平均指标有什么作用?P963.为什么说算术平均是最基本平均指标计算方法?P974.强度相对数和平均指标有什么区别?强度相对指标与平均指标的区别主要表现在以下两点:(1)指标的含义不同。

强度相对指标说明的是某一现象在另一现象中发展的强度、密度或普遍程度;而平均指标说明的是现象发展的一般水平,计算方法不同。

(2)强度相对指标与平均指标,虽然都是两个有联系的总量指标之比,但是,强度相对指标分子与分母的联系,只表现为一种经济关系,而平均指标分子与分母的联系是一种内在的联系,即分子是分母(总体单位)所具有的标志,对比结果是对总体各单位某一标志值的平均。

5.时期指标和时点指标有什么区别?P876.为什么说总量指标是基础指标?P877.简述平均指标及其作用。

(2009.10)P96二、单项选择题1.某企业2006年产值比上年增加了150万元,这个指标是()。

A.时期指标B.时点指标C.相对指标D.平均指标2.2006年中国新增就业人数575万人,这个指标是()。

A.时期指标B.时点指标C.相对指标D.平均指标3.某地区2006年底常住人口为100万人,医疗机构500个,平均每个医疗结构可以服务2000人,这个指标是()。

A.平均指标B.强度相对指标C.比较相对指标D.比例相对指标4.研究2006年中国31省区直辖市经济发展情况,江苏省GDP为21645.8亿元,浙江省GDP为15742.51亿元,江苏省GDP与浙江省GDP相比为1:0.73,这个指标是()。

A.比较相对数B.强度相对数C.比例相对数D.结构相对数5.2006年浙江省人均GDP 为31874元/人,全国总的人均GDP 为16084元/人,浙江省是全国的1.98倍,这个指标是( )。

P 94A .比较相对数B .强度相对数C .比例相对数D .结构相对数【解析】全国人均GDP 和浙江省人均GDP 是不同空间下的同类指标数值,不是总体全部数值和总体部分数值的关系,因而“浙江省GDP/全国GDP”是一个比较相对数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

%
10
第四章作业:
1 、 某工业企业某年资料如下:
要求计算:第一季度月平均劳动生产率。

答: 第一季度月平均劳动生产率=(180+160+200) ÷(600÷2+580+620+600÷2) =30%
2 、已知某工厂产值 2009 年比 2008 年增长 20% , 2010 年比 2009 年增长 50% , 2011 年比 2010 年增长 25% , 2012年比 2008年增长 110% , 2013年比 2012 年增长 30% 。

试根据以上资料编制 2008 — 2013年的环比增长速度数列和定基增长速度数列,并求平均发展速度。

答:2011年定基发展速度=+1=
平均发展速度 =
3 、某化肥厂 2005 年化肥产量为 2 万吨,“十一五”期间(2006年-2010年)每年平均增长 8% ,以后每年平均增长 15% ,问 2015 年化肥产量将达到多少万吨如果规定 2015 年产量比 2005 年翻两番,问每年需要增长百分之多少才能达到预定产量
答:
2××=万吨
设每年的增长百分比为X,
(X+1)10=4 解出X=%
答:2015年化肥产量将达到万吨,每年需要增长%。

相关文档
最新文档