大气物理学(复习版)

合集下载

大气物理

大气物理

第二章云雾降水形成的物理基础1云雾形成的一般宏微观机制1.1 云雾的组成云雾:三相水与空气的整体云是由水滴、冰晶、水汽和空气共同构成的统一体。

水汽(先决条件)—云雾滴(维持的保证)空气(存在环境)水的密度:1;冰的密度:9/10;空气密度:1/800下落—空气阻曳力-> 飘浮组成云体的单个云滴或冰晶通过凝结等过程产生,通过蒸发或降水等过程而消失,存在时间很短。

云体或云系的持续存在是由新的云粒子的不断生成维持的。

这一过程向着新粒子生成的区域传播,就是说新粒子生成的方向不一定沿着风向。

单个云滴、冰晶或降水粒子运动速度是由环境空气流速和其自身的下落速度相加而得到的速度和决定的。

1.2 未饱和湿空气达到饱和的主要途径—相对湿度变化方程1.2.1复习:Clausius-Clapeyron方程盛裴轩等编著,2003:《大气物理学》,北京大学出版社,p127周文贤、章澄昌译,1983:《云物理简明教程》,气象出版社,P14沈春康编著,1983:《大气热力学》,气象出版社,p111 相对湿度f >100%→凝结、凝华→水滴、冰晶。

1.2.2 相对湿度变化方程:/f e E=取对数微分:ln ln ln f e E=-df de dE feE=-平水面饱和水汽压与温度的关系,可以用Clausius-Clapeyron 方程表示(王李1.7式;Rogers&Y au 2.10式):2v v L E dE dTR T=或2v v L dT dE ER T=其中,E 为饱和水汽压,T 为绝对温度,L v 为水汽相变潜热(0℃:2.50×106 J/Kg ),R v 为水汽比气体常数,其值为461.5 J/Kg.K 。

可得:2v v L dT df de f e R T=-可见,增大相对温度有两个途径:增加水汽(de>0)和降温(dT<0)。

一般说来,大气中形成自然云雾,主要通过空气上升运动绝热膨胀降温,另外夜间辐射冷却也可形成局地云雾,当然局地增加水汽含量的作用也不能忽略,尤其是维持某地区上空的连续降水,必须有水汽汇流不断输入补充。

大学大气物理知识点总结

大学大气物理知识点总结

大学大气物理知识点总结一、大气的组成地球的大气由多种气体组成,包括氮气、氧气、水蒸气、二氧化碳、氩气等。

其中,氮气占据了大气的78%,氧气占据了21%,水蒸气占据了0-4%,二氧化碳、氩气等稀有气体的含量很低。

这些气体通过物理和化学过程相互作用,形成了大气层的稳定结构。

大气中的水蒸气是影响天气和气候的重要因素之一。

水蒸气的含量会随着温度、湿度等因素的变化而发生变化,从而影响大气的密度、压强等。

同时,水蒸气还会通过凝结和降水等过程,对大气运动和地球气候产生重要影响。

二、大气运动大气运动是指大气层内空气的运动和变化。

大气层内的运动主要是由于地球的自转和日照等自然因素的影响。

通过大气运动,大气能够输送热量、水汽等物质,在地球表面形成风、云、降水等现象,对地球气候和环境产生重要影响。

大气运动包括大尺度的环流和小尺度的局地风等。

大尺度的环流是指大气层内的大规模运动,包括赤道附近的热带风暴、北极附近的极地环流等。

而小尺度的局地风则是指在地表上的局部风速变化。

大气运动的规律是气象学和大气物理学研究的重要内容之一。

通过对大气运动规律的研究,可以更好地理解和预测天气、气候等现象,为人类生产和生活提供重要的依据。

三、大气层的特点大气层是地球表面以上的气体层,它具有一些独特的特点和结构。

大气层的结构可以分为对流层、平流层、中间层、热层和电离层等。

每个大气层都有不同的特点和功能,对地球的气候和环境产生着重要影响。

对流层是地球大气层的最底层,高度大约为8-18公里。

这一层的特点是温度随着高度的增加而减小,湿度变化较大,大气运动较为活跃。

对流层的地表风、云层、降水等现象都与地球的气候和环境密切相关。

平流层位于对流层之上,高度大约为18-50公里。

这一层的特点是温度随着高度的增加而增加,大气运动较为平稳,大气密度逐渐减小。

平流层对地球的外界辐射和宇宙射线等有一定的屏蔽作用,为地球的生物和人类活动提供了一定的保护。

中间层、热层和电离层则位于平流层之上,高度分别为50-80公里、80-550公里、550公里以上。

《天气学原理》复习重点(上)

《天气学原理》复习重点(上)

天气学原理Char1大气运动的基本特征1、真实力:气压梯度力、地心引力、摩擦力(1)气压梯度力:作用于单位质量气块上的净压力,由于气压分布不均匀而产生(2)地心引力:地球对单位质量空气的万有引力(3)摩擦力:单位质量空气受到的净粘滞力2、视示力:惯性离心力、地转偏向力惯性离心力:地球受到了向心力的作用却不作加速运动,违背牛顿第二定律,为了解释这种现象引入惯性离心力,其大小与向心力相等而方向相反。

C=Ω2R地转偏向力:由于坐标系的旋转导致物体没有受力却出现加速度,违背牛顿第二定律,从而引入,以使牛顿运动定律在旋转参考系中成立。

地转偏向力的特点:A= -2Ω×V(1)地转偏向力A与Ω相垂直,在纬圈平面内(2)地转偏向力A与风速V垂直,只改变气块运动方向,不改变其速度大小(3)在北半球A在水平速度的右侧,在南半球A在水平速度的左侧(4)地转偏向力的大小与相对速度成正比,V=0时,A=0;只有在做相对运动时A才存在重力:地心引力与惯性离心力的合力。

重力垂直于水平面,赤道最小,极地最大。

3、地转偏向力与水平地转偏向力有何相同与不同?水平地转偏向力:大气中垂直运动一般比较小,气块的运动主要受x方向和y方向的影响。

通常情况下w很小,因而近似有Ax=2Ωv和Ay= -2Ωu。

对水平运动而言,北半球Ax、Ay使运动向左偏,南半球右偏。

地转偏向力:包括垂直运动。

4、控制大气运动的基本规律:能量守恒、质量守恒、动量守恒牛顿第二运动定律——运动方程质量守恒定律——连续方程能量守恒定律——热力学能量方程气体实验定律——气体状态方程5、温度平流变化-V·▽hT是气块在温度水平分布不均匀的区域内保持原有的温度作水平运动而对局地温度变化所提供的贡献,称为温度平流变化。

-▽T温度梯度由高温指向低温。

当-V·▽hT<0时,有冷平流,夹角为钝角,风从冷区吹向暖区,使局地温度降低。

当-V·▽hT>0时,有暖平流,夹角为锐角,风从暖区吹向冷区,使局地温度升高。

大气物理学复习资料

大气物理学复习资料

大气物理学复习资料第一部分名词解释第一章大气概述1、干洁大气:通常把除水汽以外的纯净大气称为干结大气,也称干空气。

2、气溶胶:大气中悬浮着的各种固体和液体粒子。

3、气团:水平方向上物理属性比较均匀的巨大空气块。

4、气团变性:当气团移到新的下垫面时,它的性质会逐渐发生变化,在新的物理过程中获得新的性质。

5、锋:冷暖性质不同的两种气团相对运动时,在其交界面处出现一个气象要素(温度、湿度、风向、风速等)发生剧烈改变的过渡带称为锋。

6、冷锋:锋面在移动过程中,冷气团起主导作用,推动锋面向暖气团一侧移动。

7、暖锋:锋面在移动过程中,暖气团起主导作用,推动锋面向冷气团一侧移动。

8、准静止锋:冷暖气团势力相当,锋面很少移动,有时冷气团占主导地位,有时暖气团占主导地位,使锋面处于来回摆动状态。

9、锢囚锋:当三种冷暖性质不同的气团(如暖气团、较冷气团、更冷气团)相遇时,可以产生两个锋面,前面是暖锋,后面是冷锋,如果冷锋移动速度快,追上前方的暖锋,或两条冷锋迎面相遇,并逐渐合并起来,使地面完全被冷气团所占据,原来的暖气团被迫抬离地面,锢囚到高空,这种由两条锋相遇合并所形成的锋称为锢囚锋。

10、气温垂直递减率:在垂直方向上每变化100米,气温的变化值,并以温度随高度的升高而降低为正值。

11、气温T:表示空气冷热程度的物理量。

12、混合比r:一定体积空气中,所含水汽质量和干空气质量之比。

r=m v/m d13、比湿q:一定体积空气中,所含水汽质量与湿空气质量之比。

q=m v/(m v+m d)14、水汽压e:大气中水汽的分压强称为水气压。

15、饱和水汽压e s:某一温度下,空气中的水汽达到饱和时所具有的水汽压。

16、水汽密度(即绝对湿度)ρv:单位体积湿空气中含有的水汽质量。

17、相对湿度U w:在一定的温度和压强下,水汽和饱和水汽的摩尔分数之比称为水面的相对湿度。

18、露点t d:湿空气中水汽含量和气压不变的条件下,气温降到对水面而言达到饱和时的温度。

大气物理学第十二章

大气物理学第十二章

一、水滴均质核化和开尔文方程
水汽转化成水滴,水分子和原子排列变得 有序,在核化发生时,必须克服能量障碍, 表现为潜热和感热的转化。 水汽分子的热运动不断产生分子碰撞,其中 小部分碰撞为非弹性碰撞,形成分子数多少不一 的胚团,其生命期很短,只有当最大的水汽分子胚团 达到可以生存的尺度时,才完成核化。 按此方式产生的胚滴不仅使分子结构和分子运动特征 改变,而且必须为它提供表面能。随着水汽过饱和度的 增加,当提供的潜热等于或大于表面能时,胚滴才能 稳定存在。
D
24 / Re
FD 6 rv
对于不同尺度段的水滴,根据试验结果可以 总结出对应的阻力系数与雷诺系数的关系, 从而得出水滴下落速度的经验公式:(r取代m)
(1)m 50 m; (3)m 500 m;
vw Ar 2 vw Br vw C r
12.2 云粒子的异质核化
实际上,悬浮在大气中的气溶胶粒子是无处 不在的。另外,由于大气中存在电离过程,产生 大量离子。
气溶胶粒子提供了汽—粒转化的基底,大气 离子则提供了有利于水汽凝聚的中心。
自然云、雾的产生主要通过凝结核、冰核的异质核化
作用,正因为大气气溶胶中一部分粒子可充作云核,才 使大气中的饱和比一般处于s=1.01-1.001之间。 (比s=4.7大大减少了!)
◇碰撞破碎
降水粒子发生碰撞时也可能破碎成若干小滴,这种 破碎称为碰撞破碎。
12.4.2 水滴的下降末速度 一、下降末速度定义
在重力作用下,水滴的下降速度不断提高,与此 同时,阻力也随之增加,当水滴受力达到平衡时, 水滴匀速下降,此时的下降速度称为下降末速度。 在静止介质中,重力、浮力和阻力平衡
dv m mg 1 FD dt w FD为水滴运动时受到的阻力 FD为水滴运动时受到的阻力

《大气物理学》学习资料:大气热力学基础

《大气物理学》学习资料:大气热力学基础

修斯看来,在一个系统中,如果听任它自然发展,那么,能量差总是倾向
于消除的。让一个热物体同一个冷物体相接触,热就会以下面所说的方式
流动:热物体将冷却,冷物体将变热,直到两个物体达到相同的温度为止
。克劳修斯在研究卡诺热机时,根据卡诺定理得出了对任意循环过程都都
适用的一个公式 :dS=(dQ/T)。
对于绝热过程Q=0,故S≥0,即系统的熵在可逆绝热过程中不变,在
17
克劳修斯主要科学贡献
在《论热的运动力……》一文中,克劳修斯首次提出了热 力学第二定律的定义:“热量不能自动地从低温物体传向 高温物体。”
推导了克劳修斯方程—关于气体的压强、体积、温度 和 气体普适常数之间的关系,修正了原来的范德瓦尔斯方程 。
1854年,最先提出了熵的概念,进一步发展了热力学理论 提出了气体分子绕本身转动的假说 推导出了气体分子平均自由程公式,找出了分子平均自由

1948年,香农在Bell System Technical Journal上发表了《通信的数
学原理》(A Mathematical Theory of Communication)一文,将21熵的 概念引入信息论中。
熵在热力学中是表征物质状态的参量之一,通常用符号 S表示。在经典热力学中,可用增量定义为dS=(dQ/T) ,式中T为物质的热力学温度;dQ为熵增过程中加入物 质的热量。下标“可逆”表示加热过程所引起的变化过 程是可逆的。若过程是不可逆的,则dS>(dQ/T)不可 逆。从微观上说,熵是组成系统的大量微观粒子无序度 的量度,系统越无序、越混乱,熵就越大。热力学过程 不可逆性的微观本质和统计意义就是系统从有序趋于无 序,从概率较小的状态趋于概率较大的状态。
Q
cpdT

南京信息工程大学大气物理学期末复习题库

南京信息工程大学大气物理学期末复习题库

1.大气气溶胶:含有分散、悬浮的固态和液态粒子的大气称为大气气溶胶。

2.大气窗:大气中主要吸收气体对长波辐射的吸收有明显的选择性,在某些波段有强的或较强的吸收带,二者这些吸收带之间有些很弱的准透明区,称为“大气窗”,为8-12微米波段。

地面发生的长波辐射可以透过大气射向太空。

3.位温:位于任意温压状态(P ,T )下的空气,干绝热移动到P=1000hpa 处具有的温度称为位温。

4.梯度风:在水平面上沿曲线运动的空气,在水平气压梯度力、科里奥利力和离心力的平衡下的风称为梯度风。

5.以表示大气上界在日地平均距离d0时,与日光垂直平面上的太阳分光辐照度,此时的太阳积分辐照度称为太阳常数。

6.辐射通量密度:单位时间内通过单位面积的辐射能,单位为W.m -2。

7.由于云和气溶胶(特别是火山灰)对太阳辐射的强散射作用,导致到达地面的太阳辐射能减少,称为阳伞效应或反射效应。

8.焚风效应:潮湿的气流经过山脉时被强迫抬升,达到凝结高度后水汽就凝结而形成云。

气流继续上升后其温度将按假绝热减温率变化,凝结出的水分部分或甚至全部降落。

气流越过山顶以后,由于水分已全部降落或部分降落,将干绝热下沉或先湿绝热下沉待剩余水分蒸发完后再干绝热下沉。

因此,在山前山后的同一高度上,气流的温度、湿度都不同,背风面出现了温度高、湿度小的干热风。

9.假相当位温:空气由原来的状态沿干绝热过程上升,到达抬升凝结高度LCL 后再沿假绝热过程上升到水汽全部凝结脱离,再按干绝热过程下降到1000hPa 处所具有的温度。

10.大气透明窗:在地气辐射中的8~12um 波段,大气的吸收作用很弱,地面长波辐射可以透过此窗口发送到宇宙空间。

11.光学厚度:沿辐射传输路径,单位截面上所有吸收和散射物质产生的总削弱。

是无因次量。

'00llex ex k dl k dl δρ==⎰⎰12.抬升凝结高度:未饱和湿空气块被外力强迫抬升时,因为上升速度快,可以认为是绝热的。

大气物理学试题及答案高中

大气物理学试题及答案高中

大气物理学试题及答案高中一、选择题(每题2分,共20分)1. 大气层中温度随高度升高而降低的层是:A. 对流层B. 平流层C. 中间层D. 热层答案:A2. 以下哪项不是大气中的主要成分?A. 氮气B. 氧气C. 二氧化碳D. 氦气答案:D3. 大气中水蒸气含量最高的层是:A. 对流层B. 平流层C. 中间层D. 热层答案:A4. 以下哪种现象不属于大气物理学研究的范畴?A. 云的形成B. 风的产生C. 雷电的产生D. 潮汐现象答案:D5. 大气中的臭氧层主要位于:A. 对流层B. 平流层C. 中间层D. 热层答案:B二、填空题(每空1分,共10分)6. 大气中的主要温室气体包括二氧化碳、______、甲烷等。

答案:水蒸气7. 地球表面温度的日变化主要受________的影响。

答案:太阳辐射8. 大气中的水循环包括蒸发、凝结、降水等过程,其中降水主要形式有雨、______、雪等。

答案:冰雹9. 大气中的气溶胶颗粒物可以影响大气的透明度,同时也会影响______的形成。

答案:云10. 大气中的风向和风速的变化可以形成不同的天气系统,如________、气旋等。

答案:反气旋三、简答题(每题10分,共30分)11. 简述大气层的结构及其特点。

答案:大气层从地球表面向外可分为对流层、平流层、中间层、热层和外层。

对流层是大气最底层,温度随高度升高而降低,云和天气现象主要发生在此层。

平流层温度随高度升高而升高,臭氧层位于此层。

中间层温度随高度升高而降低,大气密度较小。

热层温度极高,大气密度极低,存在极光现象。

外层是大气层的外缘,温度极高,密度极低。

12. 解释什么是温室效应,并简述其对全球气候变化的影响。

答案:温室效应是指大气中的某些气体(如二氧化碳、甲烷等)吸收地面辐射的热量,阻止热量向外层空间散发,导致地球表面温度升高的现象。

温室效应加剧了全球气候变暖,导致极地冰川融化、海平面上升、气候模式改变等环境问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大气物理学(大三)第六章 大气热力学基础一、热力学基本规律1、空气状态的变化和大气中所进行的各种热力过程都遵循热力学的一般规律,所以热力学方法及结果被广泛地用来研究大气,称为大气热力学。

2、开放系和封闭系(1) 开放系:一个与外界交换质量的系统(2) 封闭系:和外界互不交换质量的系统(3) 独立系:与外界隔绝的系统,即不交换质量也不交换能量的系统。

3、准静态过程和准静力条件(1)准静态过程: 系统在变态过程中的每一步都处于平衡状态(2) 准静力条件:P ≡Pe 系统内部压强p 全等于外界压强Pe4、气块(微团)模型气块(微团)模型是指宏观上足够小而微观上含有大量分子的空气团,其内部可包含水汽、液态水或固态水。

气块(微团)模型就是从大气中取一体微小的空气块,作为对实际空气块的近似。

5、气象上常用的热力学第一定律形式 【比定压热容cp 和比定容热容cv 的关系cp= cv+R ,(R 比气体常数)】6、热力学第二定律讨论的是过程的自然方向和热力平衡的简明判据,它是通过态函数来完成的。

7、理解熵、焓(从平衡态x0开始而终止于另一个平衡态x 的过程,将朝着使系统与外界的总熵增加的方向进行;等焓过程: 绝热和等压;物理意义:在等压过程中,系统焓的增加值等于它所吸收的热量)8、大气能量的基本形式:(1)内能;(2)势能;(3)动能;(4)潜热能9、大气能量的组合形式(1)显热能:单位质量空气的显热能就是比焓。

(2)温湿能:单位质量空气的温湿能是显热能和潜热能之和。

(3)静力能: 对单位质量的干(湿)空气,干(湿)静力能:(4)全势能: 势能和内能之和称全势能10、大气总能量干空气的总能量:湿空气的总能量:二、大气中的干绝热过程1、系统(如一气块)与外界无热量交换(δQ=0)的过程,称为绝热过程。

(对未饱和湿空气κ= κd=R/Cp=0.286计算大气的干绝热过程)286.0000)()(p p p p T T d ==κ例:如干空气的初态为p=1000hpa ,T0=300K ,当它绝热膨胀,气压分别降到900hpa 和800hpa 时温度分别为多少?2、干绝热减温率定义:未饱和湿空气块温度随高度的变化率的负值为干绝热减温率γv ,单位°/100m dp ρ1-dT c =αdp -dT c =δQ p p 2p k d V 21+gz +T c =E +Φ+U =E Lq +V 21+gz +T c =Lq +E +Φ+U =E 2p k m m C m k km K c g o pdd 100/1100/98.0/8.9≈===γ3、位温θ定义: 把空气块干绝热膨胀或压缩到标准气压(常取1000hpa )时应有的温度称位温。

未饱和湿空气大小: 286.01000()1000()1000(pT p T p T pd C Rd d ===κθ【位温在干绝热过程中保持不变,称为在干绝热过程中具有保守性。

】4、抬升凝结高度Zc(LCL): 湿空气块因绝热抬升而水汽达到饱和并开始凝结的高度。

抬升凝结的估算公式 (分别为地面的气温和露点)do T T 和0三、可逆的饱和绝热过程和假绝热过程1、假如空气块在上升过程中是绝热的,全部凝结水都保留在气块内,气块在下沉时凝结的水分又会蒸发,仍然沿绝热过程回到原来状态,这个过程湿绝热过程。

又称可逆的饱和绝热过程、可逆的湿绝热过程。

2、空气块在上升过程中是绝热的,当饱和气块在上升过程中,水汽凝结释放潜热。

凝结物一旦形成,随即全部脱离原上升气块,气块做湿绝热上升;当气块转为下降运动时,因无水汽凝结物供蒸发,气块呈未饱和状态,做干绝热下降。

这种过程假绝热过程。

又称不可逆的湿绝热过程。

自然界的焚风是最常见的假绝热过程例子。

3、焚风:气流过山后在背风坡形成的干热风,称为焚风。

试计算在山麓处温度为25oC 气流,翻越一座4000米的高山,到达山脚时的温度变为多少?(设凝结高度为1000米,γs =0.6oC/100米)有一气流,温度为15℃,越过高度为2000米的山脉。

设凝结高度为800米,凝结物全部降落,若湿绝热减温率为γs=0.5℃/100米,问气流翻越高山后温度变为多少?4、湿绝热方程(饱和湿空气的热力学第一定律)5、湿绝热减温率γs 为饱和湿空气随高度的变化率的负值:dzdT r s -=湿绝热减温率与干绝热减温率及饱和比湿垂直分布的关系: 因饱和比湿通常随高度减少, 所以可知dz dr c L r dz dT r s pd V d s +=-=0≤dzdr s d s r r ≤6、假相当位温θse :θse 就是湿空气通过假绝热过程把它包含的水汽全部凝结降落完后,降落到1000hpa 的温度称为假相当位温。

假湿球位温θsw : θsw 就是湿空气通过可逆的饱和绝热过程降落到1000hpa的温度,称为假湿球位温。

同样可以证明, θse 和θsw 无论是干绝热过程还是湿绝热0000200()0.9810()123()()0.1710()c d d z T z z z T T z T z z --⎫=-⨯-⎪→≈-⎬=-⨯-⎪⎭ln 0pd d d v sc dT R Td p L dr -+=过程,其值保持不变,具有保守性。

各温湿参量关系:se sw se e w sw T T T T T θθθ<<<<<<和四、大气热力学图解(见附加资料)五、绝热混合过程1、绝热等压混合(水平混合):两个温度和湿度各不相同的空气块绝热等压混合的情况。

混合结果:混合后的 T 、q 、e 、θ都可由初值的质量加权平均得到。

实例:湿度较大的未饱和空气块混合后,有可能发生凝结。

(见p145图6.9)【冬季水面上的蒸汽雾; 飞机云迹 ; 开水壶口喷出的雾】六、大气的静力稳定度1、判别大气稳定度的基本方法一气块法 在气层中任意选取一空气块,使其上下移动。

根据该气层对空气块的垂直运动的影响情况来判断气层的稳定度。

这种方法称为气块法。

大气层结稳定度判据:(1)当Γ>γ时,为不稳定大气层结(2)当Γ=γ时,为中性大气层结(3)当Γ<γ时,为稳定大气层结特别地, 对于未饱和气块, γ= γd ; 对于饱和气块, γ= γs大气层结稳定度总判据⏹当Γ>γd 时,绝对不稳定⏹当γd >Γ>γs 时,条件性不稳定⏹当Γ<γs 时,绝对稳定如大气层结分布与烟云扩散形态的关系:扇型; 熏烟型; 环链型 ; 锥型 ; 屋脊型2、判别条件性不稳定大气稳定度的基本方法二 不稳定能量法净浮力将单位质量气块从z0移到z 所作的功:可见,大气层结的能量由状态曲线、层结曲线、等压线p0和p 所包围的面积确定:◆当 Tv > Tve ,即状态曲线在层结曲线的右边面积A 为正;(图见p156)◆当 Tv < Tve ,即状态曲线在层结曲线的左边面积A 为负。

3、条件性不稳定的类型 (图见P157)⏹层结曲线和状态曲线的第一个交点F 为自由对流高度(LFC)⏹第二个交点D 为平衡高度(此处速度最大,加速度为零)⏹对流有效势能(CAPE )为F 和D 之间的正面积区⏹对流抑制能量(CIN )为LFC 以下的负面积区(大气底部的气块要达到LFC 至少需从其他途径获得的能量下限)⏹温度层结曲线与低层等饱和比湿线的交点为对流凝结高度(CCL)⏹状态曲线的第一个折点为抬升凝结高度(LCL)4、大气三种基本类型:(1)潜在不稳定型;(2)绝对稳定型;(3)绝对不稳定型。

其中(1)真潜在不稳定型:正面积大于负面积;(2)假潜在不稳定型:正面积小于负面112211221122m T m T T m m e m e e m m m mθθθ+≈+≈+≈112211*********211221112221220()(10.86)()()(10.86)()0.86()(10.86)p pd p pd H m h m h h c T T c q T T h c T T c q T T m T m T m q T m q T T m q m q m q q m ∆=∆+∆=∆=-=+-∆=-=+-+++=++=由上两式可得:112211221122m T m T T m m e m e e m m m m θθθ+≈+≈+≈112211221122m T m T T m m e m e e m m m m θθθ+≈+≈+≈000220001122()(ln )()(ln )z v ve k z ve pp k d v ve d v ve p p T T w w E g dz T p E R T T d p R T T d p --=∆=∆=--=-⎰⎰⎰利用静力学方程可得:积因此,在相同的温度层结下,湿度愈大,愈有利于垂直运动的发展。

5、热雷雨是指气团内因下垫面(森林、沙地、湖泊)受热不均,由热力抬升作用形成的雷雨。

qCCL即为温度层结曲线和低层等饱和比湿线的交点。

要预测当天可能发生热雷雨的可能性,需从对流凝结高度沿干绝热线下延至地面,以确定当天可能发生热对流的下限温度TtT,一般认为,如果几天来天气条件没有太大变化,且前几天地面最高气温接近或接近,tT那么当天气温就可能达到或超过,产生热雷雨的可能性就比较大。

t七、整层气层升降时稳定度的变化1、整层气层升降会导致大气温度递减率和湿度垂直分布的变化,从而使气层的稳定度发生变化,导致强烈对流或者使气层更稳定。

稳定度讨论【Γv2将如何变化,取决于(1-p2A2/P1A1)】(1)当Γv1<γd,⏹如果气层下沉且伴随有横向扩散,有p2A2> P1A1 则Γv2 <Γv1 ,气层稳定度将趋向更稳定,甚至出现逆温。

⏹如果气层被抬升且伴随有水平辐合时,有p2A2< P1A1 则Γv2 >Γv1 ,导致气层的稳定性减少。

如果P2/P1和A2/A1两者的变化趋势相反(即上升辐散,下降辐合),(2)当Γv1=γd, 则Γv2=Γv1=γd, 原气层在升降过程中保持干绝热减温率不变。

(3)当Γv1>γd, 所得结论与(1)相反。

但这种处于绝对不稳定状态的气层在实际大气中是极少见的。

2、对流性不稳定:上干下湿气层:整层气层上升并先后凝结后,饱和气层的垂直减温率将变得大于γs,成了不稳定层结,称对流性不稳定。

上湿下干气层:气层的垂直减温率将变小甚至为零或逆温,成了稳定层结,称对流性稳定。

第十一章云雾形成的宏观条件及一般特征一、云和降水的分类和生成条件1、云2、云雾生成的宏观条件水汽由未饱和达到饱和而生成云雾有两途径:(1)增加空气中的水汽(2)降温(*绝热上升冷却凝结、等压冷却凝结、绝热混合凝结)【上升气流和充足的水汽是云生成的必要条件】上升运动的形式不同,形成不同的云型:1)大范围辐合抬升:锋面云系(图12.1),低压、冷涡、切变线产生辐合抬升2)局地不稳定层结的对流运动:局地不稳定3)地形抬升: 暖湿气流被山地抬升4)波动: 高空稳定层下的风速切变5)湍流: 大气边界层的湍流使热量、动量和水汽的重新分布3、对流云一般分为形成 (上升气流为主、提供丰富的水汽,10-15min ) 成熟(出现降水,10-30min )消散(云下出现下沉气流,几min ) 单个气团雷暴的生命期约为1-2小时二、局地强风暴天气系统1、飑线定义:集合成带状排列的雷雨云,宽数公里,长可达一二百公里。

相关文档
最新文档