减阻剂研究概述
页岩储层压裂减阻剂减阻机理研究

页岩储层压裂减阻剂减阻机理研究页岩气是指储存在页岩中天然气,而页岩储层压裂技术是目前开采页岩气的主要方式之一。
由于页岩储层矿物质组成复杂,存储天然气密度高等特点,导致压裂难度较大,需要在压裂过程中添加一定的减阻剂以便提高压裂液的渗透性和流动性,最终实现提高天然气产量和经济效益。
减阻剂是压裂液中的一种特殊添加剂,充分利用其高分子多糖的高黏度优势,增加液体粘度,防止压裂液在压力作用下提前流入有裂缝分支的岩层孔隙中,从而减少其流失到非压裂目标层并维持压裂效应。
但减阻剂的具体机理仍未得到完全的解释,研究其机理将对优化压裂技术和提高天然气产出率起到重要作用。
减阻剂能够在压裂液中起到的主要作用有:液体黏度的增加、分散压裂液颗粒物和抑制垂直井壁滑脱现象。
其中,黏度增加是最重要的机理之一。
减阻剂中的高分子多糖和压裂液中的其他添加剂经由化学反应将其产生的微泡聚合,使液相粘度增大,从而减少粘性降低所带来的阻力,塑性剪切不平滑效应也随之发生减小。
减小的阻力和胶结性提高了压裂液的渗透性和流动性,有利于压裂液在井壁缝隙中弥散、扩散和渗透,增大液相分布范围,形成更多、更稳定的裂缝结构,最终提高天然气产量。
分散压裂液颗粒物也是减阻剂起到的重要作用。
压裂液中的水和颗粒物成分会在压力作用下向裂缝发展方向流动,会导致压裂片断或断裂。
减阻剂能够通过防止压裂液在深度方向上流动而减少悬挂的颗粒物,从而避免不同层位上物质的界面引起的剪切应力,减轻液流速度对裂缝的破坏作用,从而减少因颗粒物悬浮而形成的流体阻力,最终提高压裂液在岩石中渗透的动态性,增加页岩储层的效率。
抑制井壁滑脱现象是减阻剂起到的另一个机理。
压裂液在井壁接触处的落差和方向变化会产生切割作用和摩擦作用,导致井壁和裂缝的摩擦系数较高,从而影响压裂液渗透的效果,造成压裂效果不佳。
减阻剂通过增加液体粘度,降低入井速率,减少井壁上的切割作用和摩擦作用,从而防止井壁滑落,减小井壁与岩石之间的相对速度,最终减少在井壁和没有被加压的天然气层中的切割、摩擦和其他机械应力的效应。
浅析减阻剂在输油管道运行中的减阻节能作用

浅析减阻剂在输油管道运行中的减阻节能作用在原油和成品油管道中添加减阻剂,是输油系统降低管道能力消耗,提升特定地段管道流通能力的重要措施之一。
文章介绍了减阻剂的减阻机理,并通过国外输油管道应用实例阐述了减阻剂在输油管道中减阻和增输的用途,分析了在输油管道上应用减阻剂的优势。
标签:减阻剂;输油管道;减阻;增输引言流体在管道中流动与管壁产生摩擦阻力,导致系统能量消耗,降低管道输送量。
通过在输送的流体中添加高分子聚合物,在紊流状态下减小流动阻力从而降低能量消耗的方法称之为高聚物减阻法。
用于降低流体流动阻力的高聚物化合物称为减阻剂(drag reducing agent),简称DRA。
减阻剂是油品管道输送系统中的重要组成,在提高管道输送能力和降低能量消耗方面发挥着重要作用。
1 减阻剂的减阻机理减阻剂通过改变管道中流体的流动状态,具体通过影响湍流场的宏观表现来实现减阻作用。
减阻作用只是单纯的物理作用,减阻剂不与油品物质发生化学反应,所以不影响油品的化学性质,只对其流动特性产生影响。
减阻剂进入流体中后,由于其具有粘弹性,分子链沿流体流向方向自然伸展,从而对流体分子的运动产生影响。
减阻剂分子受到流体分子径向作用力,发生扭曲变形的同时,因其分子间引力而对流体分子产生反作用力。
受到该反作用力的影响,流体分子作用力方向和大小发生改变,一部分径向作用力转变为顺流向的轴向作用力,无用功的消耗降低,宏观上起到减少摩阻损失的作用。
2 输油管道应用减阻剂后的减阻与增输2.1 减阻剂减阻与增输的含义在管道输油过程中加入减阻剂,产生的影响有两个方面:(1)降低能量损耗。
在原定输量一定的情况下,流体摩擦阻力降低,减少管道沿程压力损失,输送泵能耗降低,不仅节约了能量,还可以改换成扬程较低的泵输油。
(2)增加输送量。
在原定压力一定的情况下,流体摩擦阻力降低,从而使得管道输送量得以增加。
一般情况下,在管道中使用减阻剂的主要原因是为了增加管道的输送量。
高分子减阻剂减阻效果试验研究

高分子减阻剂减阻效果试验研究指导老师:毛根海实验成员:薛文洪一红班级: 土木工程0101结构班实验日期:2003年12月7日高分子减阻剂减阻效果试验研究流体流动存在阻力,产生流体能量损失。
在管流中有管道阻力,如长距离输水、石油、天然气等,都必须在流经一定距离之后设置升压泵,以补充损失的能量。
同样,在明渠输水、水面必须有水利坡降才能产生顺坡降方向的流动,在同坡降的情况,流动阻力越大,则流速越慢,过流能力越差。
若在水体中添加减阻剂,就能大大减少沿程阻力。
这是减小水流沿程阻力的另一种新途径。
减阻剂种类很多,不同减阻剂及添加量不同,其减阻效果也不一样。
由于客观条件的限制,我们此次通过“同一减阻剂在不同浓度下减阻效果”的比较,对减阻剂加入水体后的减阻效果进行定性、定量的了解。
本次实验采用的减阻剂是聚丙烯酰胺(又称PAM),初配浓度为0.1%,室温(10o C左右)。
采用沿程阻力试验装置进行测定(实验装置如图)。
实验地点,土木系水利实验室。
聚丙烯酰胺,别名PAM ,是一种有机高分子聚合物,为玻璃状固体,溶于水,也溶于醋酸、乙二酸、甘油和胺 等有机溶剂。
聚丙烯酰胺是重要的水溶性聚合物,而且兼具增稠性、絮凝性、耐剪切性、降阻性、分散性等宝贵性能。
一、试验数据及结果分析如下:清水实验时:加入100ml3加入700ml0.1%PAM溶液入水箱:各项常数:d=0.675cm L=85cm K=1.993从如上的数据可以看出,PAM要起到减阻效果是有一定浓度限制的。
浓度太小,减阻效果不明显;浓度太大,反而会增阻。
通过粘度计的测定,清水与各浓度溶液的粘度相差很小,(清水时平均粘度为0.012,加入375ml溶液时平均粘度为0.013)。
通过几组实验数据的对比可得,相同沿程损失的情况下,PAM减阻效果最大的浓度出现在向水箱中加入375ml 0.1%溶液左右,过流量增大,阻力粘制系数呈下降趋势。
(加入400ml该溶液时,过流量已开始减小)。
国内压裂用减阻剂的研究及应用进展

国内压裂用减阻剂的研究及应用进展I. 引言- 压裂技术的背景和意义- 减阻剂的作用和研究意义II. 国内压裂用减阻剂研究现状- 减阻剂分类及其特点- 国内压裂减阻剂研究现状概括III. 中国页岩气压裂用减阻剂研究进展- 页岩气压裂工艺特点及影响减阻剂选择的因素- 国内研究现状及进展情况IV. 减阻剂的应用案例- 减阻剂应用案例概括- 减阻剂在实际生产中的效果与问题V. 减阻剂未来发展方向- 未来减阻剂研究需求与趋势- 减阻剂在压裂工艺中的应用前景VI. 结论- 国内减阻剂研究与应用现状综述- 减阻剂在压裂工艺中的影响与前景展望第一章引言随着全球能源消费需求的不断增长,非常规天然气(包括页岩气、煤层气等)的开发越来越引起人们的重视,其中,页岩气是非常规气藏中开发最为活跃、储量最为丰富的一种。
页岩气勘探开发是一种复杂而多变的过程,在生产过程中需要使用许多技术手段来保障高效、经济的生产。
其中,压裂技术被广泛应用于页岩气的开发之中。
压裂技术是利用高压液体将岩石层破碎,从而增加天然气从岩石层中流出的渗透性。
在压裂过程中,需要将高压液体注入到岩石层中,大大增加了注入液体对管道、设备、井壁等系统的腐蚀和磨损。
为了解决这个问题,压裂技术中常常添加减阻剂来减少注入液体对系统的腐蚀和磨损。
本文将介绍国内减阻剂在压裂技术中的研究和应用进展。
本文将从国内压裂用减阻剂研究现状、中国页岩气压裂用减阻剂研究进展、减阻剂的应用案例、减阻剂未来发展方向等方面对其进行探讨。
在大规模应用中,减阻剂的使用既有利于生产效益,同时也提高了生产健康与安全。
因此,减阻剂研究及其应用具有重要的现实意义和广阔的应用前景。
希望本文能够对减阻剂领域感兴趣的专业人员或学者们提供一定的参考价值。
第二章国内压裂用减阻剂研究现状2.1 减阻剂分类及其特点减阻剂是指添加在压裂液中,用来降低液体与管道或岩石壁面摩擦阻力的化学添加剂。
根据其来源和化学特性,减阻剂可以分为有机和无机两类。
减阻、降粘、防蜡

油溶性减阻剂的研究与应用概述
此后几十年,世界上许多国家都进行了对减阻剂的 科研与应用实践,处于领先地位的有美国CONOCO
公司、Baker Hunghes公司,这些公司使得减阻剂
研发技术得到迅速发展,开发出了性能好、成本低 的减阻剂产品。
油溶性减阻剂的研究与应用概述
尤其是CONOCO公司,该公司的减阻剂产品从
油溶性减阻剂的特点
总之,油溶性高分子聚合物减阻剂在很小的用量 下就可以达到和好的效果,例如, CONOCO公司
的CDR102油相减阻剂在添加0.00005(wt)%时,
就可有9%的减阻率(平均流速2.5m/s,管内径 25mm,介质:0号柴油)。添加0.0001(wt)% 即能达到50%的减阻效率,因此在管道运输行业 中被普遍应用。
3、油溶性减阻剂的研究与应用概述
减阻剂的产生:降低摩阻,提高输量,快速缓 解产量与管线输油能力不足之间的矛盾,加速 原油的开发与利用 。 1972年诞生了第一个减阻剂的专利。1979年是 一个转折点,美国CONOCO公司生产的CDR减 阻剂在进行了大量的试验后,正式工业化生产 并应用于横贯阿拉斯加的原油管道上,揭开了 管道运输应用减阻剂的序幕。
称之为原油本体分散减阻,所用的活性剂称之
原油分散剂(dispersant)。
降粘
还有一类减阻剂称之为降摩阻剂(frictional reducer)。 降摩阻剂与降粘剂不同之处在于: 降摩阻剂一般不掺水或掺少量水(5%~10%), 它通过改变原油和介质表面的作用力,进而减 小原油的流动阻力。而乳化降粘一般掺水为 30%左右,通过改变原油乳状液的类型,使其 转变为以水为连续相,油为分散相的水包油的 乳状液,进而降低在原油在流动过程中的阻力。 如果条件允许,可以掺稀油(轻油)输送稠油。
减阻剂在输油管道中的应用

入管道流体中后,呈连续相分散在流体中,依靠本身特有的粘弹性,分子长链沿流体流动方向自然拉伸,从而对流体微元的运动产生影响。
减阻剂分子间的引力与流体微元产生的反作用力相互影响,减少了无用功的消耗,宏观上得到了减少摩擦阻力损失的效果[3]。
另一种解释是:在输油管道中,由于受摩擦阻力的影响,流体流动表现为紊流状态,造成管道输量降低或能耗增加。
在管道内注入减阻剂后,靠近管壁的层流底层和缓冲区面积增加,管道直径截面上流体的紊流区域面积减少,如图2所示,从而降低整个管线中流体的摩擦阻力[4]。
图2 流体在管道中的流动结构变化示意图2 减阻剂的减阻作用减阻剂注入油品后,能限制油品分子径向运动,使其沿减阻剂长链分子方向运动(即沿管道方向运动),有效减小油品的紊流程度。
根据流体力学原理,层流趋势越高,摩阻系数越小,减阻剂便是通过这种方式实现减阻、增输的目的。
管道流体流动阻力的降低,实际上是摩阻系数的降低,因此减阻率可以表示为式(1):100%RRλλλ−=× (1)式中:λ0为未加减阻剂工况下的摩擦系数;λR为注入减阻剂后管道内油品流动的摩阻系数。
根据式(1),通过计算注入减阻剂前后管道油品摩阻系数0 引言液体在管道中流动时有两种流动状态,一种是层流,另一种是紊流,通常采用雷诺数(Re)来确定流动状态。
流体在管道中流动时受管道沿程阻力和局部阻力的影响,导致系统能量消耗,降低管道输送能力和输送效率。
减阻剂是一种长链、高分子量聚合物,可降低摩擦压力损失,提高烃类产品在管道中的流量,是油品管道输送系统中的重要组成部分,可降低输油管道运行的总能耗费用,提高管道输送效率。
1 减阻剂的组成及减阻机理减阻剂是高分子碳氧化合物聚合物,呈粘稠状,属于非牛顿流体。
其中,油溶性减阻剂的分子结构呈线性长链,具有较强的柔弹性,常将油溶性减阻剂用于油品管道。
减阻剂按类型可分为水溶性和油溶性两大类。
水溶性减阻剂包括聚氧化乙烯、皂角籽、聚丙烯酰胺等,而油溶性减阻剂包括聚异丁烯、甲基丙烯酸酯、聚长链α-烯烃等。
减阻剂研究概述

人工智能、大数据等智能化技术有望在减阻剂性 能预测、优化设计等方面发挥重要作用,提高研 究效率和应用水平。
06
结论与建议
研究成果总结
01
减阻剂能有效降低流体在管道中的摩擦阻力,提高流体的输送效率。
02
不同类型的减阻剂在不同流体和管道条件下具有不同的减阻效果,需 要根据实际情况进行选择。
复合型减阻剂
将不同类型减阻剂进行复合,发挥各自优势,提高综 合减阻效果。
03
减阻机理与方法
边界层控制理论
边界层概念
在流体与固体壁面之间形成的薄层,其中流体速度从零逐渐增加 到主流速度。
边界层分离
当边界层内的流体受到逆压梯度作用时,流体会从壁面分离,形成 涡旋和阻力。
减阻方法
通过改变边界层内的流动状态,如增加壁面粗糙度、引入吹气或吸 气等方式,可以延缓边界层分离,从而降低阻力。
数值模拟精度有待提高
数值模拟方法虽然具有成本低、周期短等优点,但目前数值模拟精度仍有待提高,特别 是对于复杂流动和新型减阻剂的模拟预测。
未来发展趋势预测
1 2 3
新型减阻剂研发
随着材料科学和纳米技术的发展,未来有望研发 出性能更优、环境友好的新型减阻剂。
多学科交叉融合
减阻剂研究涉及流体力学、化学、材料科学等多 个学科领域,未来多学科交叉融合将成为推动减 阻剂研究发展的重要趋势。
表面活性剂减阻剂
界面活性
01
表面活性剂能降低流体与固体壁面间的界面张力,减少流动阻
力,提高流体的流动性。
吸附作用
02
表面活性剂在固体壁面上形成吸附层,改变壁面润湿性,降低
摩擦阻力。
泡沫与乳状液
03
部分表面活性剂可形成泡沫或乳状液,进一步降低流动阻力。
水溶性减阻剂性能研究与现场应用

水溶性减阻剂性能研究与现场应用1. 引言1.1 研究背景在过去的研究中,水溶性减阻剂的性能测试方法和影响因素已经得到了一定程度的探讨,但是针对其与降阻效果的关系以及现场应用技术还存在一定的研究空白。
本文旨在全面系统地研究水溶性减阻剂的性能特点和影响因素,探讨其与降阻效果的关系,并总结现场应用技术和性能改进方向,旨在为今后的水溶性减阻剂研究和应用提供有益的参考和借鉴。
1.2 研究目的本研究的目的是通过对水溶性减阻剂性能进行深入研究,探索其在实际应用中的潜在价值和未来发展方向。
具体而言,我们旨在分析水溶性减阻剂的性能测试方法、影响因素以及与降阻效果的关系,进而总结出水溶性减阻剂在减少摩擦阻力和提高流体传输效率方面的作用机制,为相关领域的研究和应用提供科学依据和技术支持。
我们也希望通过本研究揭示水溶性减阻剂在实际工程领域中的应用技术和性能改进方向,为解决管道运输中的摩擦问题和提高能源利用效率做出贡献。
通过这些努力,我们期望能够为水溶性减阻剂的研究和应用开拓新的道路,促进相关领域的发展和进步。
1.3 研究意义水溶性减阻剂是一种在水处理和管道输送中常用的添加剂,能有效减少流体在管道内的摩擦阻力,提高输送效率。
通过对水溶性减阻剂性能的研究,可以更好地理解其在实际应用中的效果,为工程实践提供技术支撑和指导。
研究水溶性减阻剂的性能不仅可以为水处理行业提供更加有效的管道输送方案,还可以为减少能源消耗、降低生产成本等方面做出贡献。
深入研究水溶性减阻剂的性能具有重要的理论意义和实践价值。
水溶性减阻剂的研究也可以为相关领域的学术研究提供新的思路和方法,推动相关技术的发展和应用。
水溶性减阻剂性能研究的意义在于可以探索其在管道输送中的作用机制,为实际应用提供科学依据,推动相关技术的发展,提高工程效率,减少资源浪费,具有广泛的应用前景和重要的社会价值。
2. 正文2.1 水溶性减阻剂性能测试方法水溶性减阻剂性能测试方法是衡量水溶性减阻剂有效性的关键步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1980年,浙江大学开始研制油溶性减阻 剂,并于1984年合成了乙烯-丙烯共聚而 成的高分子聚合物,在实验条件下这种 减阻剂在煤油中的减阻效果大30%。
减阻剂研究概述
讲述提纲
减阻剂定义及分类
减阻现象的发现和减阻剂的发展
现象Βιβλιοθήκη 减阻剂的减阻机理基础
减阻剂结构与性能间的关系
指导
减阻剂的研制
几点建议
在流体中加入极少量高分子聚合物后,可 降低流体的摩擦系数,减小流体的阻力,这种 效应称之为汤姆斯(Toms)现象。添加的高 分子聚合物既为减阻剂。
减阻剂作为流体流动该进剂,可提高输量, 增加流速,减低能耗,已在石油运输工业、军 事和其它领域中广泛应用。减阻剂有水溶性的 如聚丙烯酰氨、聚氧乙烯等,油溶性的如聚ɑ烯烃、聚不饱和酸长酯等。只要在湍流流体中 添加几ppm到几十ppm的聚合物,就能使阻力大 大降低,甚至达70%以上。
在减阻剂的研制过程中,为了使减阻剂中 具有一定结构和分子量的聚合物分子能够 在输送介质中迅速展开,起到减阻作用, 研究人员对聚合物进行了处理制成了不同 外观形态的减阻剂。目前从世界上工业化 生产的减阻剂来看主要分三种类型:高粘 度胶状物,低粘度胶状物,胶乳。
1981年conoco公司又推出了CDR102减阻剂, 减阻效率比CDR-101增加了近10倍,它也 是长链聚ɑ-烯烃
1983年,美国arco公司推出了flotm原油 减阻剂,它是ɑ-烯烃的共聚物,效率与 CDR102相当。现在conoco公司的产品基 本上代表了目前世界上减阻剂的最高水 品和发展方向。
粘性流体沿一固定边界流过时,不论其是 属内流(管流、明流)还是外流(帆翼、船舶 或其它在粘性流场中运动的物体),由于在 边界面上的流速为零,边界面上存在法向 流速梯度,因此存在流体对边界的剪切力。 这种剪切力做功的结果是消耗掉流体中的 一部分能量,并最终以热量形式向周围发 散。为了抵消这部分散失的能量,以维持 流体的运动,就需要外加能源。
一.减阻现象的发现和减阻剂的发展
早在1883年,人们就发现含有泥沙的 河水留恋增大的情况。在19世纪末,美 国海军在实验中发现湍流时船体表面的 阻力发生变化,进水质分析表明与纯水 有显著的差别,这是水中藻类产生的痕 量聚合液所致。
1931年Forest等观察到含木浆的纤维流 动时某些聚合物有减阻现象。
1963年savins首次引用减阻这个术语,并 指出了它应用的深渊意义。
此后,对减阻的研究大幅度的展开,在 1974年和1977举行了第一届和第二届国际 减阻会议
至今,减阻现象的研究已成为一门涉及到 流体力学、流变学、高分子化学、高分子 物理和高分子溶液的新的边缘学科,减阻 现象在工程中的应用也形成一门独特的综 合性工程科学。
70年代中期,美国shell公司采用氢化聚异戊二 烯,加拿大shell股份有限公司采用乙烯—丙烯 嵌段共聚物对原油作了减阻实验都取得了交好的 结果。
1979年,美国阿拉斯加输油管线的8号泵 站失火,输油能力骤减,后来启用了 conoco公司研制的CDR-101,取得了巨大 的成功。这种减阻剂是长链聚ɑ-烯烃,是 1975年研制成功的。
同年,成都科技大学研制出主要成分为 聚甲基丙烯酸高级酯的减阻剂,减阻效 果达31%。
1985年,浙江大学又研制出ɑ-烯烃与乙 烯共聚的另一类减阻剂,减阻效果又有 所提高。
但以上成果都是实验室合成的结果, 目前我国工业用减阻剂大都依赖进口, 所以大力扩展减阻剂研究工作并实现 减阻剂国产化有着巨大的经济效益和 社会效益。
1947年toms发现聚甲基丙烯酸甲酯氯苯 溶液在湍流时,当流量相等时,比纯溶 剂的压力梯度低。
在1948年第一届国际流变学会议上,报 道了在氯笨中加0.25%的聚异丁烯酸甲酯, 可使湍流摩阻减低50%的实验结果。
在此阶段,美国化学家B.A托马斯在研究 湍流时,也发祥了减阻现象。
1961年savins发现某些天然橡胶、直链高 聚物、有机藻类等都能不同程度的减少湍 流摩阻。
同志们快行动啊!
一点体会
对减阻现象及减阻剂的发展历史我进行 了详细的查证,其中的启发是我们在平 时要注意观察和记录,对于奇异的现象 要试图去解释。如果解释不了,要善于 创新寻找新的理论去解释。对观察到的 现象要联想到它的实用性。
二.减阻剂的减阻机理
减阻剂的减阻剂机理比较复杂,它涉及 到流变学、流体动力学、聚合物的物理化 学等学科。到目前为止,还没有一个有说 服力的理论对减阻现象作出合理的解释, 许多学者和研究人员对这一现象的认识也 不尽相同。从目前来看,减阻剂的减阻机 理主要有粘弹说、湍硫抑制说等等,尚没 有完全定论,以下对几种学说分别作一简 单介绍。
根据雷诺数(Re)的大小可以出现两种不 同类型的流动,即湍流和层流。
在层流中,流体阻力仅由流体中相邻各 流层之间的动量交换所决定。
图:
在湍流中,速度分布趋于平均化,流体阻力主 要取决于湍流旋涡和管壁之间的动量传递与不 同尺寸的旋涡之间的动量传递。在湍流中,流 体质点的运动速度随机变化着,形成大大小小 的旋涡,大尺度旋涡从流体中吸收能量发生变 形、破碎,向小尺度旋涡转化。小尺度旋涡又 称耗散性旋涡,在粘滞力作用下被减弱、平息。 它所携带的部分能量转化为热能而耗散。在近 管壁边界层内,由于管壁剪切应力和粘滞力的 作用,这种转化更为严重。
60年代末,美国conoco公司合成了T83减 阻剂,为美国军方进行军用油品的输送减 阻实验,减阻率达37.4%,相当于泵送功 率减少29.4%。
1971年,Brood进行了高腊原油的输送实验,当 加入减阻剂时,使输量增加了,同时对原油质量 无影响。
1974年,Marlin等用乳液聚合聚合法合成了聚对 烷基苯乙烯、聚甲基丙烯酸异癸酯、聚甲基丙烯 酸异辛酯等,是较有效的减阻剂,他们在原油中 的溶解性好,抗剪切好,尤其以聚甲基丙烯酸异 癸酯更好。