锅炉控制方案

合集下载

电锅炉控制方案范文

电锅炉控制方案范文

电锅炉控制方案范文电锅炉作为一种常用的取暖设备,具有节能、环保和安全等优点,因此在市场上得到了广泛的应用。

为了更好地控制电锅炉的工作状态,提高取暖的效果和舒适度,可以采用多种控制方案。

本文将介绍几种常用的电锅炉控制方案。

1.温度控制方案:温度控制是电锅炉的主要工作参数之一,合理控制温度可以提高取暖效果。

温度控制方案可以采用PID控制器,通过对温度的实时监测和反馈控制,控制锅炉的工作状态。

PID控制器可根据温度的变化情况,动态调整加热功率,使温度保持在设定范围内。

此外,还可以设置温度传感器以检测室内温度,并根据设定值自动调整电锅炉的工作状态。

2.时间控制方案:时间控制是电锅炉的另一种常用控制方式,通过设置定时开关,可以预先设定电锅炉的工作时间,提前几个小时开启锅炉供暖,提供热水。

在定时开关的基础上,还可以结合温度传感器和温度控制方案,根据温度的变化情况动态调整锅炉的工作状态。

例如,在室内温度较低时,定时开关可以提前几个小时开启锅炉供暖,而在室内温度较高时,可以自动关闭锅炉,以节约能源。

3.调速控制方案:电锅炉的运行状态和供暖效果与水泵的转速密切相关。

因此,调速控制方案可以通过控制水泵的转速来调整锅炉的供暖效果。

可以使用变频器控制水泵的转速,根据室内温度的变化情况自动调整水泵的转速,以提供舒适的供暖效果。

另外,还可以使用压力传感器来实时监测供水压力,并根据设定值自动调整水泵的转速,保证供暖水的稳定供应。

4.多区域控制方案:多区域控制方案适用于大型建筑物或多户家庭,可以通过划分不同的供暖区域来提高供暖效果,并可单独控制每个区域的温度。

可以在每个供暖区域设置温度传感器,并根据设定值和实际温度的差异,控制电锅炉的工作状态。

此外,还可以设置各个区域的开关阀门,以实现不同区域的独立控制,节约能源和提高舒适度。

综上所述,电锅炉的控制方案可以从温度控制、时间控制、调速控制和多区域控制等方面进行优化。

通过合理选择和组合这些方案,可以实现电锅炉的精确控制和高效运行,提高取暖效果和舒适度,同时也节约能源,减少对环境的影响。

锅炉汽机DCS控制方案

锅炉汽机DCS控制方案

25MW机组锅炉、汽机DCS控制方案目录一. 系统概述 (4)二. 锅炉、汽机DCS联锁保护及控制 (4)1、锅炉燃油控制 (4)1.1点火启动允许条件 (4)1.2程序启动步骤 (4)1.3程序停止步骤 (5)1.4保护动作 (5)1.5雾化阀联锁保护 (5)1.6吹扫阀联锁保护 (5)1.7油阀联锁保护 (6)1.8点火枪联锁保护 (6)1.9油枪联锁保护 (6)1.10打火装置联锁保护 (6)2、给煤机控制 (7)2.1给煤机启动允许条件 (7)2.2给煤机跳闸条件......................................................................... 错误!未定义书签。

3、锅炉安全保护(MFT) (7)3.1锅炉主燃料切除(MFT)保护逻辑 (8)3.2保护系统说明 (9)3.3 MFT后执行动作 (9)3.4炉膛的吹扫条件 (10)4、引风机联锁保护 (10)4.1引风机启动允许条件: (10)4.2引风机跳闸条件 (11)4.3引风机跳闸后的联锁保护 (11)5、一次风机联锁保护 (11)5.1一次风机启动允许条件 (11)5.2一次风机跳闸条件 (11)5.3一次风机跳闸后联锁保护 (11)6、二次风机联锁保护条件 (12)6.1二次风机启动允许条件: (12)6.2二次风机跳闸条件 (12)7、点火增压风机联锁保护 (12)7.1点火增压风机启动允许条件: (12)7.2点火增压风机跳闸条件: (13)8、播煤增压风机联锁保护 (13)8.1两台播煤增压风机启动允许条件: (13)8.2播煤增压风机跳闸条件: (13)8.3播煤增压风机旁路门联锁 (13)8.4播煤增压风机出口电动门联锁条件 (13)9、高压流化风机联锁保护 (14)9.1三台高压流化风机启动允许条件 (14)9.2高压流化风机联锁启动条件 (14)10、锅炉胶带机联锁 (14)10.1 1#胶带机启动允许条件: (14)10.2 1#胶带机强制跳闸条件: (14)10.3 2#胶带机启动允许条件: (14)11、冷渣机联锁 (14)11.1 1#冷渣机联锁停条件: (14)11.2 2#冷渣机联锁停条件: .............................................................. 错误!未定义书签。

电锅炉控制方案范文

电锅炉控制方案范文

电锅炉控制方案范文一、控制原理:二、主要控制参数:1.温度控制参数:包括设定温度和控制温度范围。

设定温度:根据实际需要设定的锅炉工作温度。

控制温度范围:控制器设定的工作温度上下限,超过该范围就会触发相应的保护措施。

2.压力控制参数:主要包括设定压力和控制压力范围。

设定压力:根据实际需要设定的锅炉工作压力。

控制压力范围:控制器设定的工作压力上下限,超过该范围就会触发相应的保护措施。

3.水位控制参数:主要包括设定水位和控制水位范围。

设定水位:根据实际需要设定的锅炉工作水位。

控制水位范围:控制器设定的工作水位上下限,超过该范围就会触发相应的保护措施。

三、控制策略:1.温度控制策略:电锅炉的温度控制可以采用比例控制或PID控制。

比例控制可以根据设定温度和实际温度之间的偏差,通过调整电锅炉的加热功率来实现温度的稳定控制。

PID控制则可以根据设定温度、实际温度和温度变化速度的综合信息,通过调整比例、积分和微分参数来实现更加精准的温度控制。

2.压力控制策略:电锅炉的压力控制可以采用比例控制或PID控制。

比例控制可以根据设定压力和实际压力之间的偏差,通过调整燃烧器的燃烧强度来实现压力的稳定控制。

PID控制则可以根据设定压力、实际压力和压力变化速度的综合信息,通过调整比例、积分和微分参数来实现更加精准的压力控制。

3.水位控制策略:电锅炉的水位控制可以采用开关控制或PID控制。

开关控制可以根据设定水位和实际水位之间的偏差,通过控制给水泵的运行状态来实现水位的稳定控制。

PID控制则可以根据设定水位、实际水位和水位变化速度的综合信息,通过调整比例、积分和微分参数来实现更加精准的水位控制。

四、安全保护措施:1.缺水保护:当电锅炉水位低于一定水位时,自动停炉,同时报警。

2.过温保护:当电锅炉温度超过设定温度上限时,自动停炉,同时报警。

3.过压保护:当电锅炉压力超过设定压力上限时,自动停炉,同时报警。

4.燃烧器故障保护:当燃烧器发生故障或运行异常时,自动停炉,同时报警。

基于plc的锅炉控制系统的设计方案

基于plc的锅炉控制系统的设计方案

设计基于PLC 的锅炉控制系统需要考虑到控制逻辑、传感器选择、执行器配置、人机界面以及安全性等多个方面。

以下是一个基本的PLC 锅炉控制系统设计方案:1. 控制逻辑设计:-设定温度和压力设定值,根据实际情况设定控制策略。

-设计启动、停止、调节锅炉火焰和水位控制等具体操作逻辑。

2. 传感器选择:-温度传感器:用于监测锅炉管道和水箱的温度。

-压力传感器:监测锅炉的压力情况。

-液位传感器:监测水箱水位,确保水位在安全范围内。

-其他传感器:根据需要选择氧含量传感器、烟气排放传感器等。

3. 执行器配置:-配置控制阀门、泵等执行器,用于控制水流、燃料供应、风扇转速等。

-确保执行器与PLC 的通讯稳定可靠,实现远程控制和监控。

4. 人机界面设计:-设计人机界面,包括触摸屏或按钮控制板,显示关键参数和状态信息。

-提供操作界面,方便操作员设定参数、监控运行状态和进行故障诊断。

5. 安全性设计:-设计安全保护系统,包括过压保护、过温保护、水位保护等,确保锅炉运行安全。

-设置报警系统,当参数超出设定范围时及时警示操作员。

6. 通讯接口:-考虑与其他系统的通讯接口,如SCADA 系统、远程监控系统等,实现数据传输和远程控制。

7. 程序设计:-使用PLC 编程软件编写程序,包括控制逻辑、报警逻辑、自诊断等功能。

-测试程序逻辑,确保系统稳定可靠,符合设计要求。

以上是基于PLC 的锅炉控制系统设计方案的基本步骤,具体设计还需根据实际情况和需求进行调整和优化。

在设计过程中,还需遵循相关标准和规范,确保系统安全可靠、运行稳定。

热水锅炉自动化控制方案

热水锅炉自动化控制方案

热水锅炉自动化控制方案1. 引言热水锅炉自动化控制方案是为了提高锅炉效率、降低能源消耗而制定的。

通过引入自动化控制技术,可以实现对热水锅炉系统中各个环节的智能监控、精确控制和自动调节,从而使热水锅炉运行更加稳定、可靠,并能根据实际需要提供适当的热水供应。

2. 控制原理热水锅炉的自动化控制方案主要由传感器、执行器和控制器三部分组成。

传感器用于监测热水锅炉系统的参数,如水位、压力、温度等;执行器用于执行控制指令,控制燃烧器、水泵等设备的运行;控制器负责采集传感器数据、分析处理,并生成相应的控制信号。

3. 控制策略热水锅炉自动化控制方案应根据实际情况选择合适的控制策略,下面介绍几种常见的控制策略:3.1 水位控制水位控制是热水锅炉自动化控制中的重要环节。

通过监测锅炉水位传感器的信号,控制器可以判断当前锅炉水位是否达到设定值,并相应地控制水泵的启停状态,以实现水位自动控制。

3.2 压力控制热水锅炉的压力控制是保证锅炉运行安全的重要环节。

通过监测锅炉压力传感器的信号,控制器可以判断当前锅炉压力是否超过设定值,并根据实际情况调整燃烧器的供气量,以保持合适的压力。

3.3 温度控制热水锅炉的温度控制是确保供应热水温度稳定的关键环节。

通过监测锅炉温度传感器的信号,控制器可以判断当前锅炉温度是否达到设定值,并调整燃烧器的工作状态,以保持稳定的温度输出。

4. 控制系统热水锅炉自动化控制系统一般由传感器、执行器和控制器组成。

传感器负责采集锅炉系统的各项参数,执行器负责执行控制指令,而控制器则负责监测传感器数据、分析处理,并生成相应的控制信号。

通过这三者协同工作,实现对锅炉系统的智能控制。

5. 总结热水锅炉自动化控制方案通过引入传感器、执行器和控制器,实现对热水锅炉系统的全方位监控和精确控制。

合理选择控制策略,并优化控制系统的结构,能够提高锅炉运行效率,降低能源消耗,提供稳定可靠的热水供应。

在实际应用中,还需要根据具体要求进行系统优化和定制化设计,以满足特定需求。

蒸汽锅炉控制系统改造方案

蒸汽锅炉控制系统改造方案

蒸汽锅炉控制系统改造方案
蒸汽锅炉控制系统改造方案可以从以下几个方面进行考虑:
1. 安全性改造:蒸汽锅炉控制系统是保证锅炉正常运行和安全的重要环节,改造方案应考虑提高系统的安全性。

可以引入高精度的传感器和仪表,对锅炉的压力、温度、水位等参数进行实时监测和控制,并配备相应的报警和自动保护装置,确保在异常情况下能及时发出警报和采取自动控制措施。

2. 节能环保改造:蒸汽锅炉在运行过程中会产生废气、废水等污染物,改造方案应关注对排放物的控制和处理。

可以采用先进的燃烧技术和脱硫、脱氮、脱尘等净化设备,降低排放物浓度和排放量,达到节能环保的目的。

3. 自动化改造:蒸汽锅炉控制系统的自动化程度越高,可以提高锅炉的运行效率和稳定性。

改造方案应考虑引入PLC或
DCS系统,实现对锅炉的自动控制和监测。

通过远程监控和
数据分析,可以实时了解锅炉的运行状态,优化控制策略,提高燃烧效率和能源利用率。

4. 数据管理改造:蒸汽锅炉控制系统需要对大量的运行数据进行记录和管理,以便后续分析和调整。

改造方案应考虑引入数据采集和管理系统,实现对锅炉运行数据的实时采集、存储和分析,提供决策支持和故障诊断的依据,减少维护和故障排除的时间和成本。

蒸汽锅炉控制系统改造方案应从提高系统的安全性、节能环保、
自动化控制和数据管理等方面进行综合考虑,以实现对锅炉运行效率和稳定性的提升。

同时,改造方案还应根据具体的锅炉类型和运行需求进行定制化设计。

锅炉压力控制方案

锅炉压力控制方案

锅炉压力控制方案引言锅炉是许多工业生产过程中常用的设备之一,为了确保锅炉的正常运行,保证生产的安全性和稳定性,需要对锅炉的压力进行控制。

本文将介绍一种锅炉压力控制方案,以确保锅炉压力在安全范围内稳定运行。

压力控制原理在锅炉运行过程中,随着供水温度和负荷的变化,锅炉内部的压力也会发生相应的变化。

压力控制的基本原理是通过控制锅炉内水的流入和流出,以维持锅炉内的压力在设定范围内。

压力控制方法常用的锅炉压力控制方法有三种:手动控制、间接控制和自动控制。

手动控制手动控制是最简单的一种控制方法,操作人员通过手动调节进水量、放水量等参数来控制锅炉的压力。

这种方法的缺点是控制精度较低,容易出现过冲或不足的情况。

间接控制间接控制是通过感应锅炉压力变化来进行调整,常见的方法是使用压力传感器监测锅炉内压力,当压力超过设定范围时,自动调整进水量或放水量。

间接控制的好处是可以减少人工干预,但控制精度相对较低。

自动控制自动控制是目前常用的一种压力控制方法,它基于先进的控制算法和自动化设备,可以实时监测锅炉内压力,并根据设定的控制策略自动调整进水量和放水量,以维持锅炉的压力稳定在设定范围内。

自动控制可以提高控制精度和效率,减少人工干预。

自动控制方案传感器监测:使用压力传感器或压力变送器实时监测锅炉内的压力变化,并将数据传输给控制系统。

控制系统:控制系统是自动控制的核心,它接收传感器传来的压力数据,并根据事先设定的控制策略进行计算,得出相应的控制命令。

执行机构:执行机构负责根据控制系统的指令调节进水量和放水量。

常见的执行机构包括调节阀、排污阀等。

反馈闭环:为了保证控制的精度,通常会加入反馈闭环,即将执行机构的输出再次通过传感器反馈给控制系统进行校正。

控制策略锅炉压力控制的控制策略有多种,常见的有比例积分控制、模糊控制、模型预测控制等。

比例积分控制比例积分控制是常用的控制策略之一,它通过调节进水量和放水量的比例系数和积分时间来控制锅炉压力的波动。

锅炉控制方案

锅炉控制方案

锅炉控制方案为了确保锅炉运行的安全稳定以及提高能源利用效率,设计一个有效的锅炉控制方案是至关重要的。

本文将详细介绍一个可行的锅炉控制方案,从控制策略、传感器配置到控制系统的搭建,旨在实现锅炉的智能化控制。

1.控制策略在锅炉控制方案中,选择合适的控制策略是基础。

一种常用的控制策略是PID控制,其中P代表比例控制、I代表积分控制、D代表微分控制。

PID控制通过对锅炉的输出进行调整,使得温度、压力等参数能够稳定在设定值附近。

除了PID控制,还可以应用先进的模型预测控制(MPC)策略。

MPC利用数学模型预测未来的系统行为,并通过对控制输入进行优化,使得系统能够更准确地达到设定要求。

MPC相比于传统的PID控制,更加灵活且具有更好的响应速度和控制精度。

2.传感器配置为了实现对锅炉进行精确控制,适当配置传感器是必不可少的。

常用的锅炉传感器包括温度传感器、压力传感器和流量传感器。

温度传感器主要用于监测锅炉内的温度变化,确保锅炉工作在安全温度范围内。

压力传感器用于监测锅炉的压力变化,避免压力过高或过低对设备造成的损坏。

流量传感器则用于监测介质流量,调节锅炉的供给量。

此外,还可以增加其他特殊传感器,如氧气含量传感器、烟气成分传感器等,以全面了解和控制锅炉的工作状态。

3.控制系统搭建构建一个高效的锅炉控制系统需要结合控制算法和可靠的硬件实施。

控制器的选择应根据具体的需求和控制策略来决定,可以使用单片机、PLC(可编程逻辑控制器)或者DCS(分布式控制系统)。

在选择硬件时,要考虑控制系统的稳定性和可靠性。

控制系统应具备良好的抗干扰能力和实时性,以应对各种工况变化。

同时,还需要采用可靠的通信网络和数据存储设备,确保控制系统的数据传输和存储的安全性和稳定性。

4.远程监控与管理随着互联网技术的发展,远程监控和管理系统在锅炉控制中扮演着越来越重要的角色。

通过互联网连接,可以实现对锅炉的实时监控和远程操作。

远程监控和管理系统能够提供更加便捷和高效的运维方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

锅炉控制方案
一、工艺过程介绍
本控制对象是流程工业领域常见的自然循环锅炉,锅炉是用于生产蒸汽的装置,生产的蒸汽用于发电和提供热能,其工艺流程下图所示:
自然循环锅炉工艺流程图
锅炉上水流量为F1101,锅炉上水管线上设有上水泵出口阀XV1101,上水管线调节阀V1101,以及旁路阀HV1101。

锅炉上水被分为两路。

一路进入减温器E1101预热,预热后与另外一路混合进入省煤器E1102。

两路锅炉上水管道上分别设有调节阀V1102和V1103。

正常工况时,大部分锅炉上水直接流向省煤器,少部分锅炉上水流向减温器,其流量为F1102。

汽包V1102顶部设放空阀XV1104,汽包压力为P1103。

汽包中部设水位检测点L1102。

在汽包中通过汽水分离得到的饱和蒸汽温度为T1102,经过炉膛汽相升温得到的过热蒸汽温度为T1103。

过热蒸汽进入减温器E1101,进行温度的微调。

最终过热蒸汽压力为P1104,温度为T1104,流量为F1105。

过热蒸汽出口管道上设调节阀V1105。

燃料经由燃料泵P1102泵入炉膛F1101的燃烧器,燃料流量为F1103,燃料压力为P1101,燃料流量管线设调节阀V1104,燃料泵出口阀XV1102。

空气经由变频风机K1101送入燃烧器,变频器频率为S1101(被归一化到0—100%之间),空气量为F1104。

省煤器烟气出口处的烟气流量为F1107,温度为T1105。

烟气含氧量A1101设有在线分析检测仪表。

烟道内设有挡板DO1101。

炉膛压力为P1102,炉膛中心火焰温度为T1101,为红外非接触式测量,仅提供大致温度的参考。

二、锅炉汽包水位控制
1. 控制汽包水位的目的及作用
汽包水位是锅炉运行的重要指标,保证水位在一定范围内是保证锅炉安全运行的首要条件。

水位的过高或过低都会给锅炉及蒸汽用户的安全操作带来不利的影响。

首先水位过高会影响汽包内的汽水分离,饱和水蒸气将会带水过多,导致过热器管壁结垢并损坏,是过热蒸汽的温度严重下降。

如以此过热蒸汽被用户用来带动汽轮机,即将因蒸汽带液损坏汽轮机的叶片,造成运行的安全事故。

然而,水位过低,则因汽包内的水量较少,而负荷很大,加快谁的汽化速度,是汽包内的水量变化速度很快,若不及时加以控制,有可能汽包内的水将全部汽化,尤其对大型锅炉,水在汽包内的停留时间极短,从而导致水冷壁烧坏,甚至引起爆炸。

所以,必须对汽包水位进行严格的控制。

2. 影响汽包水位的变量
蒸汽流量和给水流量是影响汽包水位的重要因素。

(1)蒸汽流量对汽包水位的影响
当蒸汽量加大时,虽然锅炉的给水流量小于蒸发量,但在一开始,水位不仅不下降反而迅速上升,然后再下降;反之,蒸汽流量突然减少时,则水位线下降,然后上升,这种现象称之为“虚假水位”。

(2)给水流量对汽包水位的影响
汽包水位在给水流量作用下的动态特性,下图是给水流量作用下的水位变化的阶跃响应曲线。

由于给水流量要比汽包水位内饱和水的温度低,所以给水流量增加后,需从原有饱和水中吸取热量,使水位下气泡容积减少。

当水位下气泡容积的变化过程逐渐平稳时,水位将因汽包中储水量的增加而上升。

最后水位下气泡容积不再变化时,水位变化就完全反映了因储水量的增加而直线上升。

3. 汽包水位的控制系统设计
为了能够同时控制给水干扰和蒸汽流量干扰,我们设计三冲量控制系统。

(1)控制变量与被控变量的选择
被控变量:汽包水位
被控变量:给水流量和蒸汽流量
(2)控制阀的选择
考虑到当给水信号消失时,可能会使锅炉因给水不足而造成的安
全事故,上水调节阀FV1101选择气闭式。

根据调节阀流量特性,选择等百分比调节阀。

(3)控制方案设计
双冲量控制系统对于单冲量控制系统存在的打三个问题——对给水干扰不能及时克服,同样不能解决。

此外,由于控制阀的工作特性不一定完全是线性,做到静态补偿也比较困难,为此,把给水流量信号引入,构成三冲量控制系统。

下图所示的三冲量控制系统,实质上是前馈(蒸汽流量)-串级控制系统。

三冲量控制系统
三冲量控制方块图
(4)控制器正反作用的确定
汽包水位三冲量串级控制回路中,根据主、副控制器的正反作用的确定顺序为先副后主原则,首先确定其副回路给水流量控制器正反作用:
副回路:汽包液位控制回路中,管道上水流量调节阀为气闭式,为负作用,所以符号为负;当阀门开大时,汽包上水流量增大,所以被控对象为正作用,符号为正;测量变送器的符号为正;为使控制系统稳定,必须保证系统构成负反馈,所以汽包给水流量控制器为正作用。

主回路:将副回路看作正环节;测量变送器的符号为正;上水流量增大时,汽包的液位升高,所以被控对象为正作用,符号为正;为使控制系统稳定,必须保证系统构成负反馈,所以主控制器为负作用。







姓名:傅丽
学号:110240292
班级:自控1110。

相关文档
最新文档