芳香亲电和亲核取代反应
芳环的取代反应

芳环上的取代反应:(1)亲电取代反应(2)亲核取代反应 一、芳环的亲电取代反应 A 、芳环上的亲电取代历程:芳香族与亲电试剂作用时,亲电试剂先与离域的π电子结合,生成π络合物,接着亲电试剂从苯环的π体系中得到两个π电子与苯环的一个碳原子形成σ键,生成σ络合物。
此时这个碳原子由sp2杂化变成sp3杂化,苯环中的六个碳原子形成的闭合共轭体系被破环,变成四个π电子离域在五个碳原子上。
根据共轭共振论的观点,σ络合物是三个碳正离子共振结构的共振杂化体,其能量比苯环高,不稳定。
它很容易从sp3杂化碳原子上失去一个质子,碳原子由sp3杂化变成sp2杂化,再形成六个π电子离域的闭合共轭体系——苯环,从而降低了苯环的能量,产物比较稳定,生成取代苯。
1、亲电试剂的产生HNO 3+2H 2SO4NO 2++H 3O ++2HSO 4-亲电试剂2、π-络合物的形成+NO 2π-络合物23、σ-络合物的形成NO 2+HNO2σ-络合物硝基所在碳为sp 3杂化 4、消去-H ++NO 2H NO 2快B 、苯环上亲电取代反应的定位规律:从反应速度和取代基进入的位置进行考虑1、 第一类定位基(邻,对位定位基):(除卤素外,卤素对芳环有致钝作用)具有+I 或是+C 效应,其作用是增大芳环的电子云密度。
致活基NH 2NHR2OHORNHCROPhR致钝基F Cl BrI2、 第二类定位基(间位定位基):具有-I 或-C 效应,使芳环上的电子云密度降低,均为致钝基NO 2NR 3COOHCOORSO 3HCNCHOCROCCl 3C 、影响亲电取代的因素:(1)芳环上取代基对于E +进入芳环位置的影响第一类定位基-邻对位定位基第二类定位基-间位定位基共振式越多, 正电荷分散程度越大,芳正离子越稳定。
(2) 动力学控制与热力学控制: α位取代-动力学控制产物; β位取代-热力学控制产物。
(3) 邻位和对位定向比:a 亲电试剂的活性越高,选择性越低。
有机化学中的芳香亲核取代与芳香亲电取代

有机化学中的芳香亲核取代与芳香亲电取代芳香亲核取代和芳香亲电取代是有机化学中的两个重要反应类型。
这两种反应是有机芳香化合物中的氢原子被置换为另一种原子或基团的过程。
本文将详细介绍芳香亲核取代和芳香亲电取代的原理、机理和应用。
一、芳香亲核取代芳香亲核取代反应是指芳香化合物中的氢原子被一个亲核试剂取代的过程。
亲核试剂可能是氢氧根离子、卤素离子、芳基负离子等。
这种反应一般需要在碱性条件下进行。
芳香亲核取代反应的机理是由共轭碳氢键的特殊性质决定的。
芳香环中的π电子可以共享给亲核试剂,而由于环上的π电子非常稳定,取代反应的活性较低,因此需要在碱性条件下进行。
常见的芳香亲核取代反应有苯酚的溴化反应、苯的硝化反应等。
苯酚的溴化反应以环境中的溴离子为亲核试剂,生成溴苯和溴化氢。
苯的硝化反应以硝酸为亲核试剂,生成硝基苯和水。
这些反应在有机合成中具有重要意义,可以用于合成药物、香料等化合物。
二、芳香亲电取代芳香亲电取代反应是指芳香化合物中的氢原子被一个亲电试剂取代的过程。
亲电试剂可能是正离子、电子不足的分子等。
这种反应一般需要在酸性条件下进行。
芳香亲电取代反应的原理是由共轭芳香体系的特殊稳定性决定的。
共轭芳香体系能够吸引亲电试剂的正电荷,使其参与反应。
芳香环上的π电子提供了稳定性和活性中心,使得亲电试剂能够与芳香化合物反应。
常见的芳香亲电取代反应有苯的硝化反应、苯的磺化反应等。
苯的硝化反应以浓硝酸为亲电试剂,在酸性条件下发生取代反应,生成硝基苯和水。
苯的磺化反应以浓硫酸为亲电试剂,生成苯磺酸和水。
这些反应在有机合成中也具有重要意义,可以用于合成各种化合物。
三、芳香亲核取代与芳香亲电取代的比较芳香亲核取代和芳香亲电取代在机理和反应条件上有明显的区别。
芳香亲核取代需要在碱性条件下进行,而芳香亲电取代需要在酸性条件下进行。
此外,芳香亲核取代的亲核试剂通常是负离子,而芳香亲电取代的亲电试剂通常是正离子或电子不足的分子。
两种反应类型在有机合成中有着不同的应用。
【高中化学】有机化合物取代反应的三种类型

【高中化学】有机化合物取代反应的三种类型有机化合物分子中某一原子或基团被其他原子或原子团(直接连接碳原子的原子或原子团)所取代的反应称取代反应。
取代反应可分为亲核取代、亲电取代和均裂取代三类。
假如取代反应发生在分子内各基团之间,称为分子内取代。
有些取代反应中又同时发生分子重排(见重排反应)。
① 亲核取代反应。
缩写为Sn(英文中s表示“替换”,N表示“亲核”,均取第一个大写字母)。
饱和碳上有许多亲核取代反应。
例如,卤代烷烃可分别与氢氧化钠、乙醇钠或苯酚钠、硫脲、硫醇钠、羧酸盐和氨或胺进行亲核取代反应,生成醇、醚、硫醇、硫醚、羧酸酯和胺。
酒精可以与氢卤酸、磷卤化物或亚砜氯化物反应生成卤代烃。
卤代烃通过氢化铝锂还原为烷烃,氢化铝锂也是反应物中卤素被负氢离子取代的产物。
当试剂的亲核原子为碳时,取代会形成碳-碳键,从而获得碳链生长产物,例如卤代烷烃与氰化钠、炔钠或烯酸钠的反应。
由于反应物结构和反应条件的差异,sn有两种机理,即单分子亲核取代反应sn1和双分子亲核取代反应sn2。
sn1的过程分为两步:第一步,反应物发生键裂[1](电离),生成活性中间体正碳离子和离去基团;第二步,正碳离子迅速与试剂结合成为产物。
总的反应速率只与反应物浓度成正比,而与试剂浓度无关。
sn2为旧键断裂和新键形成同时发生的协同过程。
反应速率与反应物浓度和试剂浓度都成正比。
能生成相对稳定的正碳离子和离去基团的反应物轻易发生sn1,中心碳原子空间阻碍小的反应物轻易发生sn2。
假如亲核试剂呈碱性,则亲核取代反应常伴有消除反应,两者的比例取决于反应物结构、试剂性质和反应条件。
低暖和碱性弱对sn取代有利。
② 芳香取代反应。
可分为芳香亲电取代反应和芳香亲核取代反应snar(s代表取代,n代表亲核,AR代表芳香)。
Ar代表芳基。
芳烃通过硝化、卤化、磺化和烷基化或酰化反应,分别在芳环中引入硝基、卤素原子、磺酸基和烷基或酰基,属于密封。
对于芳香环上带有取代基的化合物,取代基可以确定试剂的攻击位置。
芳香族化合物的取代反应

(D)H (D)H NO2 H(D) HNO3/H2SO4 H(D) H(D) kH/kD = 1.05 (D)H (D)H NO2 H(D) NO2 H(D)
容易观察到较小的同位素效应 (kH/kD = 1-3,而非正常的6-7): 第一步具有可逆性及由此引起 的分配效应所产生的。
:
:
:
:OMe
+
H
E
H
E :
H
E : :OMe H E
H
E
:OMe
+
:
:OMe
+
H E
H E
+
化学
-I > +C ,钝化苯环:X
Cl
Cl E H H E
B间位定位基 的定位能力次序大致为(从强到弱) 2.
-NR3, -NO2, -CF3, -CCl3, -CN, -SO3H, -CHO, -COR,-COOH, -CONH2。
反 应 进 程
化学
2. 同位素效应 当一个反应进行时,在决定反应速率的步骤中发生 了反应物分子的同位素键的断裂,将显示初级动力 学同位素效应。最常见的是,反应物分子中的氢被 氘取代后,反应时有速率上的不同,这种变化称为 氘同位素效应,用kH/kD表示。 例如下列反应有 动力学同位素效 应,说明质子是 在决速步的失去 的:
CH2CH3 H
CH3CH2 + [AlCl3Br]
CH2CH3
H+
+
HBr AlCl3
化学
特点: 1°常用的催化剂是无水AlCl3,此外 FeCl3、BF3、 无水HF、SnCl4、ZnCl2、H3PO4、H2SO4等都有催 化作用。
芳环的亲电取代、亲核取代反应及芳环取代基的反应

两个钝化基存在时,则弱钝化基决定定位) —— 活性作用大小接近时,获得混合物 —— 空阻大的位置难进入
多取代苯的定位效应:
多取代苯的定位效应:
位阻较大
多取代苯的定位效应:
二、取代基对芳环亲电取代反应的影响
总反应机理如下:
E
+E
H
Step 1: 亲电试剂进攻苯环的
键,形成碳正离子
Nu
E 取代产物具有芳香性
E
Nu
加成产物失去芳香性
Nu
Step 2: 脱去一个质子, 回复芳香稳定结构
一、芳环的亲电取代反应及机制
2. Reaction coordinate diagrams:
一、芳环的亲电取代反应及机制
HCl
Cu HBr
N2+ Cl - 1) Cu, Na2SO3 2) H+
Cu
Cl Br
SO3H
四、芳环取代基的反应
5、 芳香重氮盐的偶联反应(与胺或酚反应)
——芳香重氮盐作为亲电试剂与非常活泼的芳香化合酚类或胺 类发生反应,生成偶氮化合物。
HO HO
+
CH3 +
N2+ Cl-
Br N2+ Cl-
particu larly s ta bl e
CH3
pa ra -
EH
m e ta-
CH3
E H
particu larly s ta bl e CH3
EH CH3 E H
CH3
EH CH3 E H
OH, OR;NH2, NHR, NR2:强致活基,邻对位定位基。
芳香亲电和亲核取代反应

8.5 芳环上的亲核取代反应
一.SNAr2历程
例:
Cl
Cl Nu
Nu
Nu-
-Cl-
NO2
NO2
Cl
+ NaOH
360℃ 高压
NO2 OH
Cl NO2 + NaHCO3 130℃
OH NO2
8.5 芳环上的亲核取代反应
一.SNAr2历程
Cl NO2 + NaHCO3 100℃
常见取代基定位效应
类别 邻 对 位 取 代 基
间位取代基
性质 致 活
致钝 致 钝
取 最强 强 中 弱 弱
强
最强
代
NR2
O NHC R
CH3
F
NO2 CN
NHR O CR3 Cl SO3H
基 O NH2 OC R
OH OR
Br CHO
ቤተ መጻሕፍቲ ባይዱ
NR3
I COCH3
COON
COOCH3
CONH2
电子 +I 效应 +C
二.亲电取代反应历程 三.亲电取代反应活性和定位效应
8.1 芳香亲电取代反应
卤代
+
X2
FeX3 或 Fe
X + HX
卤苯
硝化 磺化
反应活性 CI2>Br2>I2
+HNO3 浓50H~62S0O。4C
NO2+ H2O
硝基苯
+
HO-SO3H
70-80。C 。 或发烟 H2SO4 25 C
SO3H + H2O
反应速度与重氮盐的浓度成正比,而与亲核试剂 的浓度无关,
大学有机化学反应方程式总结芳香醇的亲电取代反应与醛的亲核加成反应

大学有机化学反应方程式总结芳香醇的亲电取代反应与醛的亲核加成反应在有机化学中,芳香醇的亲电取代反应和醛的亲核加成反应是两类重要的反应类型。
本文将对这两类反应进行总结,并给出相应的反应方程式。
一、芳香醇的亲电取代反应芳香醇的亲电取代反应是指芳香醇通过亲电试剂的攻击,发生取代反应,取代掉醇基团。
这类反应常用于有机合成中,能够合成具有重要生物学活性的化合物。
1. 酸催化的芳香醇醚化反应芳香醇与酸催化剂反应生成相应的芳香醚。
反应方程式如下:Ar-OH + R-OH → Ar-O-R + H2O2. 酸催化的芳香醇酯化反应芳香醇与酸催化剂反应生成相应的芳香酯。
反应方程式如下:Ar-OH + RCOOH → Ar-OCOR + H2O3. 脱水缩合反应芳香醇通过酸催化剂与醛或酮缩合生成相应的芳香醚。
反应方程式如下:Ar-OH + RCHO → Ar-OR + H2O4. 酸催化的烷基化反应芳香醇与卤代烷反应生成烷基取代的芳香醚。
反应方程式如下:Ar-OH + R-X → Ar-OR + HX二、醛的亲核加成反应亲核加成是指亲核试剂通过攻击醛的羰基碳,与醛反应生成加成产物。
醛的亲核加成反应广泛应用于制备醇、醚、胺等有机化合物。
1. 羟胺与醛的加成反应醛与羟胺反应生成相应的胺类化合物。
反应方程式如下:RCHO + NH2OH → RCH=NHOH + H2O2. 羟胺与醛的缩合反应醛与羟胺反应生成相应的肟类化合物。
反应方程式如下:RCHO + NH2OH → R-C(=NOH)-R + H2O3. 亚胺与醛的加成反应醛与亚胺反应生成相应的缩酮类化合物。
反应方程式如下:RCHO + R'NR'' → R-C(=NR'')R'' + H2O4. 脱氧反应醛与次硫酸氢钠反应生成相应的烯醇化合物。
反应方程式如下:RCHO + NaHSO3 → R-CH=O + NaHSO4以上是大学有机化学中芳香醇的亲电取代反应和醛的亲核加成反应的一些常见例子和反应方程式。
有机化学基础知识点整理芳香亲电取代和芳香亲核取代反应

有机化学基础知识点整理芳香亲电取代和芳香亲核取代反应有机化学基础知识点整理芳香亲电取代和芳香亲核取代反应在有机化学中,芳香亲电取代和芳香亲核取代反应是两种重要的反应类型。
它们涉及到芳香化合物的化学反应,对于理解和应用有机化学知识具有重要意义。
本文将对芳香亲电取代和芳香亲核取代反应进行整理和讲解。
一、芳香亲电取代反应芳香亲电取代反应是指在芳香环上发生的亲电取代反应。
亲电取代反应是指一个亲电试剂(通常是正离子或部分正离子)与芳香化合物发生反应,取代一个芳基上的原子或基团。
这种反应的机理通常经历亲电试剂的攻击,形成的中间体再经历解离、重排等步骤最终生成产物。
常见的芳香亲电取代反应有取代基的烷基化、酰基化、酰基氨基化、酰基氧代化等。
其中,取代基的烷基化反应是最为基础和典型的芳香亲电取代反应。
以氯代甲烷为例,氯离子是一个强亲电试剂,它可以与苯发生取代反应,生成氯代苯。
芳香亲电取代反应的速率受到电子密度、位阻效应和取代基效应等因素的影响。
电子密度越大,反应速率越快;位阻效应越大,反应速率越慢;取代基的性质也会影响反应速率。
二、芳香亲核取代反应芳香亲核取代反应是指在芳香环上发生的亲核取代反应。
亲核取代反应是指一个亲核试剂与芳香化合物发生反应,取代一个芳基上的离去基。
亲核试剂通常是以亲核离子形式存在,如氢氧根离子、氨根离子等。
芳香亲核取代反应的机理通常经历亲核试剂的进攻、解离、重排等步骤最终生成产物。
常见的芳香亲核取代反应有碱水解、碱醇解、碱胺解等,以氢氧根离子为例,它可以与苯发生取代反应,生成苯酚。
与芳香亲电取代反应相比,芳香亲核取代反应的速率受到反应性的影响更大。
反应性越高,反应速率越快;另外,电子密度、位阻效应和取代基效应等因素也会影响反应速率。
三、芳香亲电取代和芳香亲核取代反应的应用芳香亲电取代和芳香亲核取代反应在有机合成中有着广泛的应用。
根据有机化学的原理和方法,可以利用这两种反应来合成不同的有机化合物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.1.1反应机理
在芳烃的亲电取代反应中,反应是以芳烃阳离子 机理进行的。 苯与亲电试剂E+ 作用时,亲电试剂先与离域的π 电子结合,生成π络合物, π 络合物仍然保持着苯环 的结构。
亲电试剂从苯环的π体系中得到两个π电子,与 苯环上一个碳原子形成键,生成络合物。此时, 该碳原子由sp2杂化转变为sp3杂化,苯环中六个碳原 子形成的闭合共轭体系被破坏,形成四个π电子离域 在五个碳原子上。
Z
Z
Z
H E
H E
H E
H E
• 有-I,+T,且|-I|<|+T|: 如-F,-Cl,-Br,-I等 (1)总效果使苯环电子云密度降低; (2)使取代基邻、对位电子云密度低于间位; (3)邻、对位定位基。
Cl
+0.0041 +4.46 +0.0202 -0.02
NH2
-0.003 0
O=N→ O
8.1.4反应类型
第一类:以下亲电试剂是强亲电体,即可取代含致活定位基的 芳环也可取代含致钝基团的芳环。 MXn为Lewis酸型卤化物,如AlCl3,BF3等
第二类:只能取代含致活取代基团的芳环
第三类:只能取代含有高致活取代基团的芳环
第四类:分子内亲电取代反应
Haworth反应:芳环和丁二酸酐发生傅-克酰基化反应,接
Z H Z H E + E + Z + H E
邻位取代
Z
Z + + + H
Z + H E + H E +
Z
对位取代
H
Z
E
E
Z
H
E
间位取代
H E
分类: 1、使络合物变得稳定的给电子取代基使亲电取代反 应主要在邻、对位发生,这类取代基称为致活基团。 2、使络合物稳定性降低的吸电子基团使亲电取代反 应在间为发生,这类取代基称为致钝基团。 注:卤素是一类特殊的取代基,它们是致钝的,但却 是邻、对位定位基。
• 有-I,+T,且|-I|<|+T|:
如-OH,-OCH3,-NH2,-N(CH3)2, -NHCOCH3等 (1)诱导效应与共轭效应作用 不一致,共轭效应作用大于诱 导效应,使苯环活化; (2)使邻、对位取代产物更稳 定; (3)邻、对位定位基。
Z H E Z H E Z H E Z H E
Z
• 特点
(1)生成了新的σ键;
(2)芳烃的π电子体系被破坏,形成了不稳
定的非芳香性化合物。
也可以通过中间的分离和捕获等方法,证明芳香 亲电取代反应中络合物的存在。
例如:在低温下用硝酰氟和氟化硼硝化三氟甲苯的反应, 其中间体络合物已被分离出来,结构也为核磁共振所证实。
络合物系一种活性中间体,在某种情况下,可由亲核试 剂捕获,再根据捕获生成物推论络合物的存在,以证明 芳烃正离子机理。
芳烃生成络合物后,马上解离一个质子,sp3 杂化的碳又变成sp2杂化的碳,重新恢复成苯环 的稳定结构,最后形成取代产物。
芳烃的亲电取代反应历程可表示如下:
sp2 + E
+
sp3 H
sp2 -H
+
E
快
E
+
慢
+
E
亲电试剂
络合物
络合物
产物
8.1.2证明络合物的存在
π-络合物
• 形成
R K1 R
+ H-Cl
液 气
HCl
π-络合物
• 存在的依据 (1)HCl可以定量地溶解在芳烃中。 (2)芳环上电子云密度增加,溶解度增加。
表 氯化氢在不同芳烃中溶解平衡常数
CH3
CH3
CH3 Cl
ArR
H3C CH3
CH3
K1
1.59
1.00
0.92
0.62
0.28
• 结构的证明
实验1:溶液在-78.5℃迅速达到平衡 实验2:光谱分析表明无电子跃迁 实验3:溶液不导电 实验4:HCl中的H用D代替,未发现苯环上 的H与DCl中的D交换 • 特点 (1)芳环的芳香性未被破坏; (2)没有与芳环形成新的化学键。
第8章 芳香亲电和亲核取代反应
8.1 亲电取代反应 8.2 结构与反应活性
8.1 亲电取代
芳香烃与脂肪烃和脂环烃相比,具有高度的不饱和性, 稳定性很强。 芳香性: 1、C/H的比例高 2、具有平面和接近平面的环状结构 3、键长接近平均化 4、在核磁共振谱中,环外氢的化学位移明显移向低 场, 环内氢的化学位移明显移向高场 5、化学性质稳定,易发生亲电取代而不易发生加成 和氧化
着还原和再一次分子内的傅-克酰基化反应得四氢芳酮,进 一步还原提多环芳烃。
付-克酰基化反应
芳烃在无水三氯化铝等路易斯酸的催化下与酰氯或酸 酐反应,生成酰基苯(芳酮)的反应叫付-克酰基化反应。
酰卤、酸酐称作酰基化试剂,酰基化反应制备芳基烷基酮 的重要方法。
8.2 结构与反应活性
芳环上的取代基对芳烃的亲电取代反应有重要影响
上述亲电试剂进攻,系发生在芳环上已有取代基的位置上, 这种亲电进攻称为ipso进攻。
亲电体E+在不同的反应中可以进攻X的邻位、对位、间位 和X所在之位。反应既可在分子间发生也可在分子内发生。
不同的芳香亲电取代反应区别在于亲电体的不同及进攻芳环位 置的不同; 不同的亲电体是由不同的试剂和催化剂产生的。 进攻芳环的位置不同是由芳环上已有取代基团的定位效应引起 的。
取代基效应与化学活性之间存在一定的定量关系
从定量关系上考虑邻、对、间位取代难易程度
分速度因数 (f) =
(6×k取代×z产物的百分比)
y×k苯
式中,f为分速度因数;K取代为取代苯的反应 总速率;Z为所取代位置的产物百分数;y为z位 的数目;K苯为苯的反应速率
例如: 在硝酸与乙酸酐的体系中 甲苯的硝化速度是苯进行硝化反应的23倍, 取代产物的百分比为: 邻 63% 对 34% 间 3%
(1)使σ-配合物均不稳定,使苯环钝化;
(2)使邻、对位取代产物更不稳定;
(3)为间位定位基。
• 有+I,+T:
如-O-,-CH3 (1)共轭效应与诱导效应作用一致; (2)则使苯环活化; (3)邻、对位定位基。
• 有-I,-T: 如-NO2,-CN,-COOH,-CHO等 (1)诱导效应与共轭效应作用一致; (2)则使苯环钝化; (3)间位定位基。
取代基效应
诱导效应(I):由电负性大小决定。 -I:吸电子 +I:供电子 共轭效应(T):包括π-π共轭和p-π共轭。 -I:吸电子 +I:供电子
• 有+I,无T: 如-C2H5 (1)使σ-配合物稳定,活化苯环;
(2)使邻、对位取代产物更稳定;
(3)为邻、对位定位基。
• 有-I,无T: 如-N+(CH3)3,-CF3,-CCl3等
1) 分速度因数与选择性
为了定量表示基团的定位效应,引入分速度因子(或因 数)的概念,它以苯的六个位置之一为标准(规定其值为1), 衡量取代苯中某个取代位置的反应活性的数值。其值大于1的, 说明该位置的反应活性大于苯,小于1者则反应活性小于苯。
分速度因数取决于取代基和进攻基团的性质以及所用的 反应条件(如温度、溶剂)
+0.260 +0.191 +0.270
两类定位基: • 邻、对位定位基(第一类定位基):
-O-,-N(CH3)2,-NH2,-OH,-OCH3,-NHCOCH3,OCOCH3,
-F,-Cl,-Br,-I,-CH3,-CH2Cl,-CH2COOH,-CH2F等。 • 间位定位基(第二类定位基): -N+(CH3)3,-CF3,-NO2,-CN,-SO3H,-COOH,-CHO, -COOCH3,-COCH3,-CONH2,-N+H3,-CCl3等。
σ-络合物
• 形成 HCl(气)+AlCl3(固)
R
H-Cl·AlCl3(溶液)
(溶液) H-Cl·AlCl3(溶液) +
[
..+.. ..
H H
R
] AlCl 构的证明 实验1:固体AlCl3在甲苯中-78.5℃不溶解; 通入HCl转变成绿色透明溶液; 溶液吸收光谱发生变化,电子跃迁 实验2:生成和分解速度比π-络合物慢得多 实验3:溶液导电 实验4:DCl中的D与苯环上的H发生交换
fo
fm
(6) (23) × (1) × (0.63) 43.5 (2) (6) (23) × (1) × (0.03) 2.1 (2)
fp
(6) (23) × (1) × (0.34) (1)
46.9