参考资料(桩身结构设计)

参考资料(桩身结构设计)
参考资料(桩身结构设计)

钢筋混凝土预制桩桩身结构设计

1. 打入式预制桩构造要求

(1)混凝土的强度等级不宜低于C30。

(2)桩身应配置一定数量的纵向钢筋和箍筋。最小配筋率一般不应小于0.8%。

(3) 截面边长为350-550mm 时,采用8根直径12-25mm 的纵向钢筋,边长

300mm 以下时,可用4根。主筋伸入承台内的锚固长度不宜小于钢筋(I 级)直径的30倍和钢筋(II 级)直径的35倍.

(4)箍筋直径6-8mm ,间距不大于200mm ,在桩顶和桩尖处应适当加密。

(5)主筋的混凝土保护层不应小于30mm 。

(6)工厂预制桩的分节长度一般不超过12m 。配筋受起吊运输等阶段的应力控

制。每根桩的接头数量不宜超过3个。

2.桩身受力分析

规范规定:长20m 以下的桩一般采用双吊点。在打桩架龙门吊立时,采用单

吊点。

吊点位置应按吊点间的正弯矩和吊点处的负弯矩相等的条件确定

相应的吊点位置和截面的最大弯矩的计算公式如下图。式中q 为

桩单位长度的重力。K 为考虑在吊运过程中桩可能受到的冲撞和

振动而取的动力系数,一般为1.5.

见黑板示意图

(1) 截面配筋

1)一侧主筋计算

(20,

,

1,12s s c s s y M f bh M A f h αγγ==+= 2)整个截面主筋(对称配筋)

,

2s A

验算配筋率。

3)箍筋

取值及最小配箍率的验算。

(2) 桩身强度验算

1)对于钢筋混凝土桩桩身材料强度验算按下式进行:

,,0()c c y s N f A f A γφψ≤+

式中:0γ为建筑桩基重要性系数,安全等级一级取1.1,二级取1.0,三级

取0.9。N 为桩的轴向力设计值,N ;c f 为混凝土的轴心抗压强度设计值,

N/mm 2;,

y f 为纵向钢筋的抗压强度设计值,N/mm 2;A 为桩身的横截面面

积,mm 2;,

S A 纵向钢筋的横截面面积,mm 2;φ为桩的稳定系数,对低桩

承台,考虑土的侧向约束取1.0,但穿过很厚软粘土和可液化土层的端层桩或高承台桩基,小于1.0;c ψ为桩基施工工艺系数,混凝土预制桩取1.0,非挤土灌注桩取0.9,挤土灌注桩取0.8。

2)桩轴心受压计算

P176 公式4-87

(完整版)12级复合材料结构设计参考资料

复合材料结构设计参考资料复合材料与工程 考试形式 笔试闭卷 考试时间和地点 时间:2015年6月25日14:00--15:40 地点:材料学院A107 题型与分数分布 一.名词解释 二.填空题 三.简答题 四.计算题

一、绪论 1.复合材料:由两种或两种以上具有不同的化学或物理性质的组分材料组成的一种与组分材料性质不同的新材料,且各组分材料之间具有明显的界面。 一相为连续相,称为基体;起连接增强体、传递载荷、分散载荷的作用。 一相为分散相,称为增强体(增强相)或功能体。是以独立的形态分布在整个连续相中的,两相之间存在着相界面。(分散相可以是增强纤维,也可以是颗粒状或弥散的填料) 主要起承受载荷的作用,赋予复合材料以一定的物理、化学功能。 2.复合材料分类: A按基体材料分:树脂基的复合材料、金属基复合材料、无机非金属复合材料 B按分散相形态分:连续纤维增强、纤维织物增强、片状材料增强、短纤维增强、颗粒增强C按增强体材料种类分类:玻璃纤维、碳纤维、有机纤维、金属纤维、陶瓷纤维。 D按用途分类:结构复合材料:利用复合材料的各种良好力学性能用于制造结构的材料。 功能复合材料:指具有除力学性能以外其他物理性能的复合材料 3.复合材料的结构层次: 三次结构:纤维缠绕压力容器,即平常所说的制品结构(a) 二次结构:从容器壁上切取的壳元即是由若干具有不同纤 维方向的单层材料按一定顺序叠合而成的层合 板(b) 一次结构:层合板的一个个铺层,是层合板的基本单元(c) 二、单层板的宏观力学分析 1.单层板的正轴刚度 正向:也就是说应力方向与坐标方向一致方向为正向,相反为负向。 正面:截面外法线方向与坐标轴方向一致的面,否则为负面。 σ1和σ2——表示正应力分量:拉伸为正,压缩为负,也就是使整 个单层板产生拉伸时的应力为正应力,而使单层板产生压缩时的应 力为负应力。 τ12——表示剪应力分量:其中正面正向为正;负面负向也为正。 A.力学实验 a.纵向单轴试验: 纵向泊松比v1是单层板由于纵向单轴应力σ1而引起的横向线应变ε2(1)与纵向线应变ε1(1)的比值。(ε2(1)表示的是这个应变是由纵向应力σ1引起的) b.横向单轴试验

工程桩基础设计计算书

基 础 工 程 课 程 设 计 计 算 书 系别:土木工程系 姓名:盛懋 目录 1 .设计资料 (3) 1.1 建筑物场地资料 (3) 2 .选择桩型、桩端持力层、承台埋深 (3)

2.1 选择桩型 (3) 2.2 选择桩的几何尺寸以及承台埋深 (3) 3 .确定单桩极限承载力标准值 (4) 3.1 确定单桩极限承载力标准值 (4) 4 .确定桩数和承台底面尺寸 (4) 5 .确定复合基桩竖向承载力设计值及群桩承载力和 (5) 5.1 四桩承台承载力计算 (5) 6 .桩顶作用验算 (6) 6.1 四桩承台验算 (6) 7 .桩基础沉降验算 (6) 7.1 桩基沉降验算 (6) 8 .桩身结构设计计算 (9) 8.1 桩身结构设计计算 (9) 9 .承台设计 (10) 9.1 承台弯矩计算及配筋计算 (10) 9.2 承台冲切计算 (11) 9.3承台抗剪验算 (12) 9.4 承台局部受压验算 (12) 1. 工程地质资料及设计资料 1) 地质资料 某建筑物的地质剖面及土性指标表1-1所示。场地地层条件:粉质粘土土层取q sk=60kpa,q ck=430kpa;饱和软粘土层q sk=26kpa;硬塑粘土层q sk=80kpa,q pk=2500kpa;设上部结构传至桩基顶面的最大荷载设计值为:V=2050kn,M=300kn?m,H=60kn。选择钢筋混凝土打入桩基础。柱的截面尺寸为400mm?600mm。已确定基础顶面高程为地表以下0.8m,承

台底面埋深1.8m 。桩长8.0m 。 土层的主要物理力学指标 表1-1 编号 名称 H m W % ? kn/m 3 ? ° S r e I p I L G s E s mpa f ak kpa a 1-2 mpa -1 1 杂填土 1.8 16.0 2 粉质粘土 2.0 26.5 19.0 20 0.9 0.8 12 0.6 2.7 8.5 190 3 饱和软粘土 4.4 42 18.3 16.5 1.0 1.1 18.5 0.98 2.71 110 0.96 4 硬塑粘土 >10 17.6 21.8 28 0.98 0.51 20.1 0.25 2.78 13 257 2)设计内容及要求 需提交的报告:计算说明书和桩基础施工图: (1)单桩竖向承载力计算 (2)确定桩数和桩的平面布置 (3)群桩中基桩受力验算 (4)群桩承载力和 (5)基础中心点沉降验算(桩基沉降计算经验系数为1.5) (6)承台结构设计及验算 2 .选择桩型、桩端持力层 、承台埋深 1)、根据地质勘察资料,确定第4层硬塑粘土为桩端持力层。采用钢筋混凝土预制桩,桩截面为方桩,为400mm ×400mm ,桩长为8米。桩顶嵌入承台50cm ,则桩端进持力层1.55米。承台底面埋深1.8m ,承台厚1m 。 2)、构造尺寸:桩长L =8m ,截面尺寸:400×400mm 3)、桩身:混凝土强度 C30、 c f =14.3MPa 4φ16 y f =210MPa 4)、承台材料:混凝土强度C20、 c f =9.6MPa 、 t f =1.1MPa 3.确定单桩竖向承载力标准值 (1)单桩竖向承载力标准值Quk

【结构设计】各种桩基验算荷载取值全归纳

各种桩基验算荷载取值全归纳 问题一: 工程桩桩身强度验算,需满足: 1.35*Ra<ψc*fc*Aps+0.9fy*As(式一) 试桩桩身强度验算,需满足: 2*(Ra+空孔摩擦力)<ψc*fc*Aps+0.9fy*As(式二) 其中试桩时可否取fck? 问题二: 抗拔桩后期工程桩验收的静载做不做,如何做?按2倍Ra拉桩身就拉裂了,怎么办? 1、问题的疑惑主要是由总安全度法与多系数设计法的混杂所致,抗力的设计值或特征值是多系数体系的内容,是标准值乘以分项系数的结果,总安全度法只有极限承载力,规范公式给出的是既不能叫总安全度法又不是真正意义上的多系数法,严格来讲不伦不类,然而,设计中在规范的框架下,需要做顺从规范的事情。 2、式一是多系数体系的概念,1.35是特征值与设计值的换算系数,揭示内容是桩身受压承载力的安全系数>2(由土支撑阻力确定的单桩承载力特征值的安全系数),即土体支撑阻力先于桩身破坏;式二应为总安全度设计体系的概念,但却写为伪多系数概念,公式左边对应的是桩的极限承载力(标准值),公式右边对应的是桩身受压承载力设计值,两侧不合拍,如改用总安全度表达式应为F<(ψ

c*fck*Aps+0.9fyk*As)/K(式三),其中K为试桩桩身未坏的安全系数。从这里可以发现,当安全系数是材料分项系数的加权值时,式二与式三是一样的。假如忽略钢筋贡献,那么式二给出的安全度为1.4,当为抗拔桩时,安全度为1.1,因此如果运用式二来进行工程试桩的桩身强度验算,对于抗压工程试桩,材料强度如取标准值,需考虑安全系数(可取1.05~1.1)用式三计算,对于抗拔工程试桩,材料强度可取设计值。类似的抗拔桩数量确定时如果按照规范公式进行设计,总安全系数是个变值,大致位于1~2之间,特殊情况会非常接近1,造成储备不足,而采用总安全度法 [【F<(G+n*Ru)/K】,安全系数会为恒定值。 3.抗拔桩静载试验按规范还是要做的。抗拔桩一般有三类:锚桩、抗浮工程桩、抗浮工程试桩。抗拔桩设计重点在于配筋设计,其配筋设计又往往与裂缝控制有关。配筋计算针对的是承载力极限状态,裂缝验算针对的是正常使用极限状态,抗浮工程桩处于正常使用极限状态,而锚桩和抗浮试桩所处的是承载力极限状态(兼做工程桩时,才变为抗压桩和抗浮工程桩)。 配筋验算取用拔力分别为: 锚桩→承担的拉力极限值Nu 抗浮工程桩→承载力特征值1.35*Ra 抗浮工程试桩→承载力极限值Ru; 裂缝验算取用的拔力分别为: 锚桩→承担的拉力极限值Nu

塔里木非常规井身结构及套管程序设计方案与可行性分析完整版

塔里木非常规井身结构及套管程序设计方案与 可行性分析 集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]

塔里木油田非常规井身结构及套管程序 二〇〇六年十月

1.塔里木现行井身结构及其缺陷 1.1.塔里木现行井身结构 塔里木油田目前主要采用的井眼套管程序为: 20"×13 3/8"×9 5/8"×7"×5" 这套井身结构在塔里木油田应用17年,能够满足台盆区的钻井生产需要。这套结构具有套管规格标准、供货渠道通畅、工具及井口配备成熟、使用方便等优点。 1.2.塔里木现行井身结构存在的缺陷 总体来说,塔里木现行井身结构存在以下一些缺陷: (1)不利于应对复杂地层深井、超深井地质变化引发的复杂钻井工 程问题; (1)8 1/2"(井眼)×7"(套管)、6"(5 7/8")(井眼)×5" (套管)环空间隙窄,固井质量差; (1)套管强度偏低。 1.2.1.两层、三层井身结构存在的缺陷 目前哈得地区普遍采用两层井身结构,这里以任选的哈得19井为例,图给出了该井的井身结构设计图。 三层井身结构主要在塔中地区采用,这里以任选的塔中82井为例,图给出了该井的井身结构设计图。

图哈得19井设计井身结构

图塔中82井井身结构设计图

上面给出的这种两层和三层的井身结构存在的一个突出问题是:8 1/2"裸眼井段长,一般4000米左右,最长达5200米,经常发生电测、阻卡、下套管井漏、开泵不通、开泵不返、固井质量差等问题, 2004年到现在此类事故复杂25起,损失时间166天,具体统计情况见表。 表 2004年到现在塔里木探井φ8 1/2"井眼钻井复杂问题统计

基坑桩锚设计计算过程(手算)

FGH段地层信息:基坑深 , 桩锚支护,第一排锚杆, 第二排在处,角度30°。 土体与锚固体粘结强地层天然重度粘聚力内摩擦角 度标准值填土121230 粉质粘土301860 全风化砾岩4522100 土压力系数 地层Ka Kp 1填土 2粉质粘土 3全风化砾岩 一、)基坑示意图: 1)基坑外侧主动土压力计算如下: (1)填土: 填土顶部主动土压力强度:=q - 2=填土底部的主动土压力强度:

=(+q)-2= (2)=粉质粘土: 粉质粘土顶部的主动土压力强度: = (*+q) -2= =粉质粘土底部的主动土压力强度: =(* +*+q)-2= = (3)临界深度: =2/– q/=2x12/ 2)第一层锚杆计算: 基坑开挖到,设置第一排锚杆的水平分力为T1。 1)此时基坑开挖深度为, 基坑外侧底部的主动土压力强度: =(*+q)-2=基坑内侧的被动土压力强度: = 2==. =(-)+2= 知: < , <

知铰点位于坑底与填土层间:设铰点为o, 距离坑底y m. = = y+2 = [q+(h+y)]-2= [20++y)]解得: y= 2)设置第一排锚杆的水平分力为T1,铰点以上土层及锚杆力对铰点起矩平衡。 土压力作用位置确定: 三角形分布: = 梯形分布: = 即: 基坑内侧被动土压力作用点位置:(梯形分布) = =y+2= 2==. =[+/3x+]= 基坑外侧主动土压力作用点位置:(三角形分布) =(h+ y-) 已知, h=, y=,= 即:=(+)= 第一排锚杆作用点离起矩点位置:L=h+ y- d=+为锚杆离地面距离) 基坑内侧被动土压力合力: = x 即,=y x (+ )/2= +/2=

桩基础设计计算书

基础工程桩基础设计资料 ⑴上部结构资料某教学实验楼,上部结构为十层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30,上部结构传至柱底的相应于荷载效应标准组合的荷载如下︰ 竖向力:4800 kN , 弯距:70 kN·m, 水平力:40 kN 拟采用预制桩基础,预制桩截面尺寸为 350mm * 350mm。 ⑵建筑物场地资料拟建建筑物场地位于市区内,地势平坦,建筑物场地位于非地震地区,不考虑地震影响.场地地下水类型为潜水,地下水位离地表 2.1 米,根据已有资料,该场地地下水对混凝土没有腐蚀性。建筑地基的土层分布情况及各土层物理,力学指标见下表: 表1 地基各土层物理、力学指标

基础工程桩基础设计计算 1. 选择桩端持力层 、承台埋深 ⑴.选择桩型 由资料给出,拟采用预制桩基础。 还根据资料知,建筑物拟建场地位于市区内,为避免对周围产生噪声污染和扰动地层,宜采用静压法沉桩,这样不仅可以不影响周围环境,还能较好地保证桩身质量和沉桩精度。 ⑵.确定桩的长度、埋深以及承台埋深 依据地基土的分布,第3层是粘土,压缩性较高,承载力中等,且比较厚,而第4层是粉土夹粉质粘土,不仅压缩性低,承载力也高,所以第4层是比较适合的桩端持力层。桩端全断面进入持力层1.0m (>2d ),工程桩入土深度为h ,h=1.5+8.3+12+1=22.8m 。 由于第1层厚1.5m ,地下水位离地表2.1m ,为使地下水对承台没有影响,所以选择承台底进入第2层土0.3m ,即承台埋深为1.8m 。 桩基的有效桩长即为22.8-1.8=21m 。 桩截面尺寸由资料已给出,取350mm ×350mm ,预制桩在工厂制作,桩分两节,每节长11m ,(不包括桩尖长度在内),实际桩长比有效桩长长1m ,是考虑持力层可能有一定起伏及桩需要嵌入承台一定长度而留有的余地。 桩基以及土层分布示意图如图1。 2.确定单桩竖向承载力标准值 按经验参数法确定单桩竖向极限承载力特征值公式为: uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ 按照土层物理指标,查桩基规范JGJ94-2008表5.3.5-1和表5.3.5-2估算的极限桩侧,桩端阻力特征值列于下表:

桩基设计要点

桩基础设计的主要流程 一、 基础选型 桩基设计资料(参考“岩土勘察报告”——岩土物理力学参数及原位测试参数、地下水位情况、抗震设防区按设防烈度提供的液化土层资料;)、确定基础设计等级:丙级;PHC 管桩(可以参考“岩土勘察报告”) 二、桩基设计 [1]、初定桩尺寸。 初估截面尺寸(可以参考PHC 管桩图集)、桩长(承台底致桩端长度)以便计算单桩承载力: 初步确定承台底面标高,(承台埋深d ≥ 600mm ,承台高可以参考桩基承台图集); 选择持力层和确定桩端进入持力层深度 (桩端全断面进入持力层的深度,对于黏性土、粉土不宜小于 2d ,砂土不宜小于 1.5d ,碎石类土,不宜小于 1d 。当存在软弱下卧层时,桩端以下硬持力层厚度不宜小于 3d 。) [2]、确定单桩竖向承载力。 Quk=Qsk+Qpk=u ∑q sik *l i +q pk *Ap Ra=Quk/2 [3]、确定桩的数量、间距和布置方式。 初步估算桩根数时,先不考虑群桩效应,按桩数小于等于3情况初定。 )4.1~2.1(?+≥a k k R G F n (考虑偏压) Fk :柱根/桩顶的竖向力;Gk :底层墙、基础梁自重、覆盖土重、承台自重 布桩:桩的最小中心距应满足规范要求: 大等于3.5d 。独立柱下桩基承台的最小宽度不应小于 500mm ,边桩中心至承台边缘的距离不应小于 桩的直径或边长,且桩的外边缘至承台边缘的距离不应小于 150mm 。 [4]、验算桩基的承载力: [5]、桩身结构设计: N ≤ ψc*f c*A N ——相应于荷载效应基本组合时的单桩竖向力设计值 ψc*f c*A (可直接查管桩图集) [6]、承台设计: 可以查图集 A 、承台在柱荷载作用下桩周边的抗冲切验算; B 、承台板在单桩最大净反力作用处的抗冲切验算; C 、承台板在桩净反力作用下的抗剪强度验算; D 、把在各桩净反力作用下的承台板,作为受弯构件的抗弯强度验算,并配筋; E 、当承台的混凝土强度等级低于柱或桩的混凝土强度等级时,验算柱下或桩上承台的局部受压承载力。 [7]、绘制桩基施工图

桥梁桩基础设计计算部分

一方案比选优化 公路桥涵结构设计应当考虑到结构上可能出现的多种作用,例如桥涵结构构件上除构件永久作用(如自重等)外,可能同时出现汽车荷载、人群荷载等可变作用。《公路桥规》要求这时应该按承载力极限状态和正常使用极限状态,结合相应的设计状况进行作用效应组合,并取其最不利组合进行计算。 1、按承载能力极限状态设计时,可采用以下两种作用效应组合。 (1)基本作用效应组合。基本组合是承载能力极限状态设计时,永久作用标准值效应与可变作用标准值效应的组合,基本组合表达式为 (1-1) 或(1-2) γ0-桥梁结构的重要性系数,按结构设计安全等级采用,对于公路桥梁,安全等级一级、二级、三级,分别为1.1、1.0和0.9; γGi-第i个永久荷载作用效应的分项系数。分项系数是指为保证所设计的结构具有结构的可靠度而在设计表达式中采用的系数,分为作用分项系数和抗力分项系数两类。当永久作用效应(结构重力和预应力作用)对结构承载力不利时,γGi=1.2; 对结构的承载能力有利时,γGi=10;其他永久作用效应的分项系数详见《公路桥规》; γQ1-汽车荷载效应(含汽车冲击力、离心力)的分项系数,取γQ1=1.4;当某个可变作用在效用组合中,其值超过汽车荷载效用时,则该作用取代汽车荷载,其分项系数应采用汽车荷载的分项系数;对专门为承受某种作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载时,其分项系数也与汽车荷载取同值。 γQj-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载以外的其他第j个可变作用效应的分项系数,取γQ1=1.4,但风荷载的分项系数取γQ1= 1.1;

地锚桩设计

石老人海水浴场改造—地下更衣室抗浮锚杆施工组织设计 青岛地矿岩土工程有限公司 二○○五年六月

目录 一、工程概况 (2) 二、场地工程地质条件 (2) 三、抗浮锚杆桩施工工艺和技术要求 (3) 四、施工组织规划与部署 (5) 五、施工准备工作 (5) 六、工期目标及保证措施 (7) 七、质量目标及保证措施 (8) 八、安全文明施工目标及保证措施 (9)

一、工程概况 石老人海水浴场改造工程位于青岛市崂山区海口路南侧,建设单位为青岛市崂山区人民政府,由山东省教育建筑设计院设计。地下更衣室为框架结构,肋梁式筏板基础,室内坪-0.4米(绝对标高)。为解决抗浮问题,设计了抗浮锚杆,锚杆直径φ130,M30高强水泥砂浆内配1根Ⅲ级φ32螺纹钢筋,并增加适量膨胀剂和阻锈剂,总数约1000根,设计单根长度A区11.5米,B区11.0米,入强风化岩不小于2.0米,设计抗拔力109kN。 二、场地工程地质条件 根据青岛市勘察测绘研究院提供的《石老人海水浴场改造勘察中间资料》,场地内各岩土层的分布情况为: (1)第四系全新统人工填土 第①层:素填土 (2)第四系全新统海相沉积层 第②-1层:中粗砂 第②-2层:卵石 第②-3层:中细砂 第④层:淤泥质粉细砂 (3)第四系上更新统冲洪积层 第⑩层:粉质粘土 第○11层:粉质粘土

第○12层:砾砂 (4)燕山晚期花岗岩 第○16层:花岗岩强风化岩 场区地下水较丰富,为孔隙潜水,对砼无腐蚀性,对砼中钢筋具强腐蚀性,抗浮设计水位3.50米(绝对标高)。 三、地锚桩施工工艺和技术要求 (一)成孔工艺 1、设备安装及就位 由于在基坑底部施工,根据本工程的特点,采用XY—1型工程钻机进行施工。施工中钻机就位要求符合规范规程要求,保持机器水平、周正、稳固、安全、可靠,避免发生偏移、移动等。 2、成孔 由于该场地工程地层条件较复杂,存在砂、卵石和淤泥质层,为避免坍孔现象,采用泥浆护壁施工工艺。 3、清孔 钻孔终孔后,清除孔底沉渣,确保孔内沉渣厚度小于50mm,保证施工质量。 4、成孔质量检查 根据成孔工艺流程要求,成孔结束后,由质检员和甲方监理对成孔质量进行检查验收,检查的主要内容有:孔深、孔径、沉渣厚度等是否达到设计或规范要求,检查合格后,方可灌注水泥砂浆。 (二)抗浮锚杆钢筋制作与安装工艺

(整理)典型设计参考资料.

本次初步设计正文用宋体四号,1.5倍行距。编码按照:第六章 6.1 6.1.1类推。以下典型设计仅供参考,周五下午排好版审定初稿。 一、涝池设计 1、设计原则 涝池布设在沟头、路旁和田间地头等地段,以拦水保护道路和农田设施为主要作用,一般要距沟头、沟边10米以上或选择在村庄、道路等宜形成径流的低洼地,修筑涝池5处,以集蓄径流、防止道路冲刷或沟头前进,同时解决畜禽饮水及小片园地灌溉用水。 2、池场工程 涝池一般以圆形为主,也可根据地形设施为方形和多边形,由于其主要起拦水护冲作用,一般不用防渗处理。 3、设计容积 涝池设计容积在100——200立方米,顶宽大于1米,安全超高大于0.5米,内坡比1:1.5,外坡比1:1。 4、涝池断面设计(见附图) ①设计为土质涝池; ②形状与大小依据具体地形设计,深度一般为 m,容积100~200m3; ③岸埂顶宽1~2m,迎水坡1:1~1:1.5,外坡1:1。 蓄水计算公式V=3/5πR2H

式中V——蓄水容积(m3),根据当地涝池建设情况取200m3; H——有效水深(m),为了安全期间,设计涝池水深为2m,超过0.5m。 R——圆的半径(m),按照蓄水量推算的半径为7.5m。 5、放线与施工 ①依据来水量及地形条件,确定涝池形状、规格及进出口,在实定放样作为施工参考; ②施工采用挖掘机开挖,挖出的土料堆放在池周,每层堆放厚度不超过30cm,然后用推土机碾压夯实,人工配合整修边埂及池底; ③铺垫粘土,人工夯实,池底用10~15cm粘土做防渗层。(详见附图)进行防渗处理。 6、涝池的管理 ①每年暴雨期制定专人巡视,发现问题及时处理,防止渗漏垮塌或直接冲毁; ②每年清淤一次,确保有足够的容积。 7、设置位置及工程量 根据实地勘察,项目区确定涝池数量为座,布设在项目区的1 条流域中,依据上述公式计算的工程量见表1—1,设计图见各流域设计报告。 表1—1项目区涝池建设规模及工程量统计表

桩基础设计

一、工程概况 某工业厂房,为单层单跨排架结构,跨度18米,柱距6米,纵向总长度72m ,室内外地面高差0.30米。柱截面5001000mm mm ?。建筑场地地质条件见表1。 表1 建筑场地地质条件 注:地下水位在天然地面下2.5米处,本场地下水无腐蚀性。 桩身参考资料:混凝土为35C ,轴心抗压强度设计值16.7c a f MP =,弯曲强度设计值为16.5y a f MP =,主筋采用:416Φ,强度设计值:210y a f MP = 承台设计参考资料:混凝土为C30,轴心抗压强度设计值为14.3c a f MP =,弯曲抗压强度设计值为 1.5m f MPa =。 桩静载荷试验曲线

1、设计桩基础(包括桩、承台设计及验算、群桩中基桩的受力验算,群桩基础计算等); 2、绘制施工图,包括基础平面布置图、桩身弯矩、剪力图;和及必要的施工说明(配筋、施工)等;(A1图纸594mm×841mm)。 3、计算书内容应详尽,数据准确,排版规范(按附件的排版规范执行)。图纸应符合制图规范相关要求,表达完整、准确。 参考设计步骤: 1)、确定桩的类型、长度(包括确定桩端持力层)、截面尺寸,初步选择承台底面标高(要考虑预制桩的要求); 2)、确定单桩承载力; 3)、确定桩数及布置; 4)、群桩基础计算; 5)、桩身设计; 6)、承台设计; 7)、绘制施工图和桩身内力图。 4、需要提交的报告:计算说明书和图示。

由上结构传至桩基的最大荷载设计值为:3368N kN =,123 M kN m = , 72V kN = 表1 建筑场地地质条件 注:地下水位在天然地面下2.5米处 二、设计内容 1、选择桩端持力层、承台埋深 根据表1地质条件,以粉质粘土层为桩尖持力层,采用预制混凝土方桩,桩长20L m =,截面尺寸为450450mm mm ?,桩尖进入粉质粘土层为2m 。桩身材料:混凝土,35C 级,216.7/c f N mm =;钢筋,二级钢筋,2'210/y y f f N mm ==。承台用30C 混凝土,214.3/c f N mm =;21.43/t f N mm =,承台底面埋深 2.0d m =。 2、确定单桩极限承载力标准值 根据地基基础规范经验公式 uk sk pk p sik i pk P Q Q Q u q l q A =+=+∑ 桩侧土的极限侧阻力标准值kPa ()查表得: 淤泥质粘土层:12230s k Pa q k =-,取121.34s k q kPa =。 灰色粘土层: 1.00L I =时,24055s k Pa q k =-,取255s k q kPa =。 亚粘土层:60.0=L I 时,35570s k Pa q k =-,取357.14s k q kPa =。 粉质粘土层:60.0=L I 时,45570s k Pa q k =-,取457.14s k q kPa =。 桩的极限端阻力标准值,可按查表取值:

基坑桩锚设计计算过程(手算)

FGH段地层信息:基坑深7.3m , 桩锚支护,第一排锚杆2.2m, 第二排在4.7m处,角度30°。 一、)基坑示意图: 1)基坑外侧主动土压力计算如下: (1)填土: =q k a1- 2c1ka1=20x0.6558-2x12x0.8098=-6.32Kpa 填土顶部主动土压力强度:p上 a1 =(r1?1+q)k a1-2c1ka1= 填土底部的主动土压力强度:p下 a1 =(18.3x10.5+20)x0.6558-2x12x0.8098=119.69kpa (2)粉质粘土: 粉质粘土顶部的主动土压力强度:p a2上= (r1*?1+q)k a2-2c2ka2=

=(18.3x10.5+20)x0.5278-2x12x0.7265=94.54kpa 粉质粘土底部的主动土压力强度:p a 2下 =(r 1*?1 +r 2*?2+q )k a 2-2c 2 ka 2= =(18.3x10.5+19.8x1.8+20)x0.5278-2x12x0.7265=113.35kpa (3) 临界深度: Z o =2c 1/r 1 ka 1– q/r 1=2x12/18.3x0.8098-20/18.3=0.53m 2)第一层锚杆计算: 基坑开挖到5.2m ,设置第一排锚杆的水平分力为T1。 1) 此时基坑开挖深度为h =5.2m , 基坑外侧底部的主动土压力强度: p a 1坑底 =(r 1*?+q )k a 1-2c 1 ka 1=(18.3x5.2+20)x0.6558-2x12x0.8098=56.09kpa 基坑内侧的被动土压力强度: p p 1坑底 = 2c 1 kp 1=2x12x1.2350=29.64kpa. p p 1下 =r 1(?1- ?)k p 1+2c 1 kp 1= 18.3x(10.5-5.2)x1.5252+2x12x1.2350=177.57kpa. 知: p a 1下

混凝土结构设计原理第三章作业及参考资料

第三章 受弯构件正截面承载力计算习题及作业 一、思考题 1、 试述少筋梁、适筋梁和超筋梁的破坏特征,在设计中如何控制梁的破坏形态。 2、 什么是有效截面高度、相对受压区高度、界限相对受压区高度、最小配筋率和最大配筋 率? 3、 梁的截面高度、截面宽度与哪些因素有关,设计中通常如何选取? 4、 梁中共有几种钢筋,其作用分别是什么? 5、 受弯构件计算中采用了几个基本假定,这些基本假定是什么?如何理解? 6、 单筋矩形截面梁的计算方法是什么?对矩形截面受弯构件而言,为提高其受弯承载力, 可采取的措施有多少种?其中最有效的是哪种? 7、 何时采用双筋截面梁?双筋截面梁的计算方法是什么?双筋截面梁有少筋或超筋问题 吗?如何在设计中进行控制? 8、 T 形截面形成的原因?如何计算T 形截面最小配筋率,为什么? 9、 T 形截面的计算方法是什么?工程中何时采用T 形截面进行计算? 10、翼缘在受拉区的T 形截面对承载力有无影响?工程中还有无应用价值?若有价值何时采用? 二、作业题 1、某办公楼一钢筋混凝土简支梁,梁的计算跨度m l 2.50 ,承受均布线荷载,其中可变荷载标准值为8m kN /,永久荷载标准值为9.5m kN /(不包括梁的自重),拟采用C30混凝土和HRB335级钢筋,结构安全等级为二级,环境类别为一类。钢筋混凝土容重为25m kN /3。试设计该构件所需的纵向钢筋面积,并选配钢筋。 2、某办公楼一矩形截面简支梁,截面尺寸为200X450mm 2 ,计算跨度4.5m ,承受均布荷载设计值为79kN/m (含自重)。结构安全等级为二级,环境类别为一类。混凝土强度等级C30,钢筋采用HRB500级。A 、试设计该梁?B 、若该梁已经配有HRB500级受压钢筋3 20,受拉钢 筋需要多少? 3、已知梁截面尺寸为b ×h =250×500mm ,混凝土强度等级C30,纵向钢筋级别为HRB335,受压区配有216钢筋,受拉区配有625钢筋,试求该梁能够承受的极限弯矩是多少? 4、一T 形截面梁,截面尺寸如图,混凝土强度等级C30,钢筋级别为HRB400,结构安全等级为二级,环境类别为一类。试按以下三种弯矩设计值M ,分别设计纵向受拉钢筋面积。 (1)M=300kNm(a s =40mm) (2)M=500kNm(a s =65mm) (1)M=600kNm(a s =65mm)

灌注桩结构设计

4.2.7 灌注桩结构设计 灌注桩直径φ800mm ,砼强度C25,受力刚劲采用Ⅱ级刚劲,综合安全系 数为1.4,桩中—中间距1000mm 。 根据陈忠汉和程丽萍编著的《深基坑工程》中的理论,将直径为800mm 的 圆柱桩转化为宽为1000mm 墙厚为h : mm h h D h 7.70064 80014.31264124 444=??=?=? 取mm h 700= 4.2.8 桩身最大弯矩的计算 由表4-1已算出的ai E ,pi E 及T=249.61KN 可以知道剪力为零的点在基坑 底上部的主动土压力层中,且在第三层土中。 所以设剪力为零的点在4.5m 以下 χ米 令χχ+=5.4m m χ为基坑顶到 剪力为零的点的距离.则有: 剪力为零的土压力: []x x k k e a c a x r q axm a 17.1128.27767.0232588.0)199.0186.35.1920323)5.4(3 +=??-?+?+?+=-++=( 此层的土压力 : 2585.528.272 )17.1128.2728.27(x x x x axm +=++=E 因为距基坑顶为m x 处的剪力为零,则有: 120a axm T E Ea E ---= 整理得: 59.7528.27585.52=+x x 解得 : m x 974.1=

由于最大弯矩点就是剪力为零的点,即m x ,所以474.6974.15.4=+=m x 最大弯矩可表示为:11223max t a a axm M T y E y E y E y =?-?-?-? 将数据代入解得:m KN M .67.373max = 4.2.9 桩身的配筋计算 则此桩的配筋可转化为截面为mm mm h b 7001000?=?的矩形截面梁进行配 筋。所以有:环境类别为二级,砼强度C25,钢筋采用HRB335的Ⅱ级钢筋。 由环境类别为二级,砼强度C25此梁的最小保护层厚度为50mm 则有: mm h 650507000=-= 有砼及钢筋的等级查表可得,211.9/c f N mm = 2300/y f N mm = 21.27/t f N mm = 1 1.0α= 10.8β= 0.55b ξ= c f --混凝土轴心抗压强度设计值 y f --钢筋强度设计值 t f --混凝土轴心抗拉强度设计值 1α--受压区混凝土矩形应力图的应力值与混凝土轴心抗压强度设计值的比值 1β--矩形应力图受压区高度与中和轴高度的比值 11αβ--统称为等效矩形应力图系数 b ξ--相对界限受压区高度 求计算系数: 074.065010009.111067.37326 201=???==bh f c M s αα 55.0077.0074.0211211=<=?--=--=b s ξαξ 可以 962.02211==-+s s αγ

(完整版)土木工程毕业设计参考资料 基础设计

第九章基础设计 9.1概述 基础是高层建筑结构的重要组成部分[F11,P164]。在整个工程中,基础部分的工程量大、造价高、工期长,同时,由于基础承托着上部结构的全部重量和外部作用力,又属于地下隐蔽工程,其设计和施工质量直接关系着建筑物的安危,一旦出事补救并非容易[F13,P2]。因此,应当充分认识到基础设计的重要性。 基础设计应满足以下要求:[F11,P187][F27,P511] ⒈基础的型式、构造和尺寸应能适应上部结构的需要,符合使用要求; ⒉基底压力不超过地基承载力或桩基承载力,基础总沉降量和差异沉降量应控制在允许值范围内; ⒊要有足够的强度、刚度和耐久性。 9.1.1基础选型 基础结构的型式很多[F13,P1],选择哪一种基础型式,应根据建筑物的性质、上部结构的特点及荷载大小、工程地质、水文地质、施工条件、场地和环境等因素综合考虑、认真比较,不可机器套用。概括地说,要在保证安全和使用的前提下尽量选择施工周期较短及经济的方案。[F14,P326]地基-基础-上部结构是一个相互作用的整体,因此基础设计一定要考虑它们三者共同工作和相互制约的内在关系。当上部结构的刚度和整体性较差、地基软弱、不均匀时,基础刚度应适当加强;而上部结构刚度和整体性较好,地基较均匀,也不特别软弱时,基础的刚度要求可适当放宽。[F14,P326] 目前我国高层建筑常用的基础型式主要有筏板基础、箱形基础和桩基础。

筏板基础适用于上部结构荷载较大、地基较好、无地下室或地下室使用空间要求灵活的房屋。箱形基础刚度大,整体性好,适用于软弱地基上的荷载大、对不均匀沉降或防水要求较高的情况。当基底以下持力层有足够的承载力[F13,P210],并且地基沉降计算范围内土层的压缩性较低[F13,P76],易满足沉降计算要求时,宜优先选用浅基础。当地基土质较差,采用上述各类基础仍不能满足设计要求或不经济时,宜采用桩基础。表9-1[F21,P265]列出了我国部分高层建筑的基础型式。 我国部分高层建筑基础现状表表9-1

桩锚计算

北京理正软件设计研究院有限公司: 我公司是贵公司开发的《理正深基坑支护结构设计软件》(F-SPW4.0)的正版用户。我公司设计人员在使用此软件的过程中,对软件中的部分参数的取值有疑问,恐影响到对软件的正确使用,甚至影响到工程的安全,特此提出,请贵公司予以书面解答: 问题1:在单元计算中,“支锚刚度”的计算公式,是否与《建筑基坑支护技术规程》(JGJ120-99)附录C公式C.1.1锚杆水平刚度系数(或者C.2.2支撑水平刚度系数)中kT 的计算公式相同?对于C.1.1的锚杆水平刚度系数,是否有必要再除以锚杆水平间距?即是否是支锚刚度=kT/锚杆水平间距 答:这个问题要分锚杆和内撑两部分说对于锚杆,《规程》54页公式没有涉及间距。而且有一个更简单的方法,软件可以自动计算,方法是:您先凭经验输入一个刚度值,计算时,计算到锚杆一项时,软件会计算出一个“锚杆刚度”,这时您点击上部的“应用刚度计算结果”按键,然后终止计算。然后用这一刚度重新计算到锚杆一项,重复上述操作,大约如此迭代2-4次,刚度值基本不变了,这时的刚度取值就基本合理了。对于内撑,软件不能自动计算,您可以参考《规程》55页公式C.2.2,但要注意,由于软件会用这个交互的刚度先除以前面交互的水平间距,所以您输入刚度时,只要用公式C.2.2的前半部分计算所得即可,即2αEA/L。 问题2:在单元计算中,计算结构弯矩的“弯矩折减系数”,究竟是考虑什么因素而设定的,这个系数的设定在《建筑基坑支护技术规程》(JGJ120-99)中有无相应的依据?该系数应如何取值? 答:“弯矩折减系数”在《规程》中没有规定,是软件开放的一个经验系数,由用户自主交互,用于凭经验调整内力设计值大小。如不做调整,可取1即可。 问题3:单元计算中,冠梁的“水平计算刚度”的计算公式是什么?该刚度的设定在《建筑基坑支护技术规程》(JGJ120-99)中有无相应的依据? 答:冠梁的“水平计算刚度”的经验公式请参看说明书203页或软件帮助附2.5.1。该刚度在《规程》中没有规定,是我们根据基本力学原理推导而出的经验公式。冠梁的“水平计算刚度”值是由用户自主交互,以上经验公式只做为参考,建议用整体计算方法自动计算。以上问题,请尽快给予书面解答。谢谢。中铁隧道勘测设计院有限公司

数码产品结构设计参考资料

小型数码产品结构设计指南 小型数码产品的结构设计是实现产品功能的关键,这不仅需要与产品外观相协调,更要考虑后序的生产装配、喷漆、喷绘、模具设计制造等各个方面。 小型数码产品的形体结构设计牵扯知识范围十分广泛,主要有: 1. 材料选用 ; 2. 表面处理 ; 3. 加工手段 ; 4. 包装装潢 ; 这些因素的运用直接影响着小型数码产品的生命和外观形象的变化。可以说设计者水平的高低决定了产品的生命力和产品的档次高低,高档次产品不一定是高造价,运用低造价设计出高档次的产品是设计者高水平高素质的体现。 1. 要评审造型设计是否合理可靠,包括制造方法,塑件的出模方向、出模斜度、抽芯、结构强度,电路安装(和电路设计人员配合)等是否合理。 2. 根据造型要求确定制造工艺是否能实现。包括模具制造、产品装配、外壳的喷涂、丝印、材质选择、须采购的零件供应等。 3. 确定产品功能是否能实现,用户使用是否最佳。 4. 进行具体的结构设计、确定每个零件的制造工艺。要注意塑件的结构强度、安装定位、紧固方式、产品变型、元器件的安装定位、安规要求,确定最佳装配路线。 5. 结构设计要尽量减小模具设计和制造的难度,提高注塑生产的效率,最小限度的减低模具成本和生产成本。 6. 确定整个产品的生产工艺、检测手段,保证产品的可靠性。 一、塑料件的设计指南 1.工程塑料的性能简介: 1.1有些固态物质具有分子排布有序,致密堆积的特性,如食用盐,糖,石 英,矿物质和金属。其它表现为固态物质,并不形成有规则的晶体排列方式。 它们只是冷却成为无序的或随机的分子团,称为无定型聚合物。非晶体物质不是真正的固体,最普通的例子就是玻璃,它们只是过冷的,极端粘稠的液体。 塑料树脂可以分为结晶型和无定型的。结晶型是相对的概念,由于聚合物的分子链大而复杂,所以不能够向无机化合物那样有完美的晶体排列次序。

桩基础设计内容

(转自网络)桩基础设计内容: 选择桩的类型和几何尺寸 确定单桩竖向承载力设计值(特征值) 确定桩的数量、间距和布置方式 验算桩基的承载力和沉降 桩身结构设计 承台设计 绘制桩基施工图 一、确定单桩竖向承载力设计值 桩侧总极限摩阻力标准值:Rsk=Up×Σlifsi 桩端极限阻力标准值:Rpk=Ap×fp 单桩竖向承载力设计值Rd=( Rsk+Rpk )/1.65 单桩竖向承载力特征值Ra=( Rsk+Rpk )/2.0 二、确定桩的数量、间距和布置方式 初步估算桩数时,先不要考虑群桩效应, 当为轴心受压,n≥(F+G)/Ra 当为偏心受压,一般桩的根数应相应的增加10%~20%。 桩的间距(中心距)采用3~4倍桩径 桩在平面上的布置:有方形,矩形网格或者三角形(梅花式)形式,还有采用不等距排列原则:使得群桩横截面的重心应与荷载合力的作用点重合和接近或者是使其重心处于合力作用点变化范围之内,并应尽量接近最不利的合力作用点。 梁式或板式承台下群桩,布桩时应注意使梁、板中的弯矩尽量减少,即多布设桩在柱墙,以减少梁和板跨中的桩数。 三、验算桩基的承载力和沉降 四、桩身结构设计 预制的混凝土强度等级不宜低于C30,采用静压法沉桩时,不宜小于C20 五、承台设计 独立承台、柱下或墙下条形承台(梁式承台),以及筏板承台和箱形承台,承台设计包括选择承台的材料及其强度等级,几何形状及其尺寸,进行承台结构承载力计算,并应使其构造满足一定的要求。 构造要求:承台最小宽度不应小于500mm,承台边缘至桩中心的距离不宜小于桩的直径或边长,边缘挑出部分不应小于150mm,墙下条形承台边缘挑出部分可降低至75mm。 条形和柱下独立承台的最小厚度为500mm,其最小埋深为600mm。

混凝土结构设计原理第三章作业及参考资料讲解学习

混凝土结构设计原理第三章作业及参考资 料

第三章受弯构件正截面承载力计算习题及作业 一、思考题 1、试述少筋梁、适筋梁和超筋梁的破坏特征,在设计中如何控制梁的破坏形 态。 2、什么是有效截面高度、相对受压区高度、界限相对受压区高度、最小配筋率 和最大配筋率? 3、梁的截面高度、截面宽度与哪些因素有关,设计中通常如何选取? 4、梁中共有几种钢筋,其作用分别是什么? 5、受弯构件计算中采用了几个基本假定,这些基本假定是什么?如何理解? 6、单筋矩形截面梁的计算方法是什么?对矩形截面受弯构件而言,为提高其受 弯承载力,可采取的措施有多少种?其中最有效的是哪种? 7、何时采用双筋截面梁?双筋截面梁的计算方法是什么?双筋截面梁有少筋或 超筋问题吗?如何在设计中进行控制? 8、T形截面形成的原因?如何计算T形截面最小配筋率,为什么? 9、T形截面的计算方法是什么?工程中何时采用T形截面进行计算? 10、翼缘在受拉区的T形截面对承载力有无影响?工程中还有无应用价值?若有价值何时采用? 二、作业题 1、某办公楼一钢筋混凝土简支梁,梁的计算跨度m ,承受均布线荷 l2.5 载,其中可变荷载标准值为8m kN/(不包括梁 kN/,永久荷载标准值为9.5m 的自重),拟采用C30混凝土和HRB335级钢筋,结构安全等级为二级,环境

类别为一类。钢筋混凝土容重为25m kN/3。试设计该构件所需的纵向钢筋面积,并选配钢筋。 2、某办公楼一矩形截面简支梁,截面尺寸为200X450mm2,计算跨度4.5m,承受均布荷载设计值为79kN/m(含自重)。结构安全等级为二级,环境类别为一类。混凝土强度等级C30,钢筋采用HRB500级。A、试设计该梁?B、若该梁已经配有HRB500级受压钢筋320,受拉钢筋需要多少? 3、已知梁截面尺寸为b×h=250×500mm,混凝土强度等级C30,纵向钢筋级别为HRB335,受压区配有216钢筋,受拉区配有625钢筋,试求该梁能够承受的极限弯矩是多少? 4、一T形截面梁,截面尺寸如图,混凝土强度等级C30,钢筋级别为 HRB400,结构安全等级为二级,环境类别为一类。试按以下三种弯矩设计值M,分别设计纵向受拉钢筋面积。 (1)M=300kNm(a s=40mm) (2)M=500kNm(a s=65mm) (1)M=600kNm(a s=65mm) 以下为参考资料

相关文档
最新文档