最新人大附中小升初分班考试数学试题及答案
【小升初】2023-2024学年人教版数学升学分班考真题模拟测试题2套(含解析)

【小升初】2023-2024学年人教版数学升学分班考真题模拟测试题一.计算题(共3小题)1.(2022•周至县)直接写出得数。
12=0.6×1.5==12.5%﹣==5×3÷3×5=2.(2022•舞阳县)计算下面各题,怎样简便就怎样算。
4.7×101﹣4.736×(+)54×60%+45×+0.6(+﹣)×48 3.(2022•怀远县)解方程或比例。
x+= 2.75x﹣25%x=1.5x:18=:10二.选择题(共10小题)4.(2022•讷河市)下面不具有相反意义的量是()A.前进5m和后退5mB.节约3吨水和浪费2吨水C.存入800元和支出500元D.身高增加3cm和体重减少3千克5.(2021秋•白云区期末)六(1)班有学生44人,男生与女生人数的比可能是()A.2:3B.3:4C.4:5D.5:6 6.(2022春•临泉县期中)下面四个圆柱中,表面积最小的是()A.底面半径2厘米,高3厘米B.底面直径4厘米,高1厘C.底面半径3厘米,高2厘米D.底面直径1厘米,高4厘米7.两根同样长的绳子,第一根截去全长的,再截去米;第二根先截去米,再去余下的20%,两根剩下的部分相比()A.第一根长B.第二根长C.一样长D.无法比较8.(2022•龙华区)下面各选项中的两个量,成正比例的是()A.同一时间、同一地点,不同高度竹竿的高和竿影的长B.一个人的体重和年龄C.圆的面积与半径D.路程一定,行驶的速度与时间9.(2022春•兴化市月考)景华小学对五年级学生进行了英语测试,测试结果统计如图,已知及格人数为30人,则优秀的人数为()人。
A.200B.100C.58D.12 10.(2022春•阳原县期中)把4×5=2×10改写成比例可能是()A.4:5=2:10B.4:2=10:5C.5:4=10 11.(2022•东莞市)在地图上,北京在上海的北偏西30°方向上,那么上海在北京的()方向上。
小升初数学专项解析+习题-数论篇-通用版(附答案)

小升初重点中学真题之数论篇1 (人大附中考题)有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。
2 (101中学考题)如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。
3(人大附中考题)甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。
4 (人大附中考题)下列数不是八进制数的是( )A、125B、126C、127D、128预测1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?预测2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。
2004年元旦三个网站同时更新,下一次同时更新是在____月____日?预测3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______.数论篇二1 (清华附中考题)有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.2 (三帆中学考题)140,225,293被某大于1的自然数除,所得余数都相同。
2002除以这个自然数的余数是 .3 (人大附中考题)某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.4 (101中学考题)一个八位数,它被3除余1,被4除余2,被11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是__________。
5 (实验中学考题)(1)从1到3998这3998个自然数中,有多少个能被4整除?(2)从1到3998这3998个自然数中,有多少个各位数字之和能被4整除?预测1. 如果1=1!,1×2=2!,1×2×3=3!……1×2×3×……×99×100=100!那么1!+2!+3!+……+100!的个位数字是多少?预测2.(★★★★)公共汽车票的号码是一个六位数,若一张车票的号码的前3个数字之和等于后3个数字之和,则称这张车票是幸运的。
北京名校小升初考试数学真题参考答案

北京名校小升初考试数学真题参考答案1(人大附中考题>【解】后一半路程和原来地时间相等,这样前面一半地路程中现在地速度比=3:1,所以时间比=1:3,也就是节省了2份时间就是10分钟,所以原来走路地时间就是10÷2×3=15分钟,所以总共是30分钟.2,(人大附中考题>【解】两车第3次相遇地时候,甲走地距离为6×5=30M,乙走地距离为6×5+3=33M所以两车速度比为10:11.因为甲每秒走5厘M,所以乙每秒走5.5厘M.3 (人大附中考题>【解】 (1>,11,22,33,…99,这就9个数都是必选地,因为如果组成这个无穷长数地就是1~9某个单一地数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选.(2>,比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必须选出一个来.(3>,同37地例子,01和10必选其一,02和20必选其一,……09和90必选其一,选出9个12和21必选其一,13和31必选其一,……19和91必选其一,选出8个.23和32必选其一,24和42必选其一,……29和92必选其一,选出7个.………89和98必选其一,选出1个.如果我们只选两个中地小数这样将会选出9+8+7+6+5+4+3+2+1=45个.再加上11~99这9个数就是54个.4<人大附中考题)无5(清华附中考题>【解】根据追及问题地总结可知:4速度差=1.5大货车;3(速度差+5>=1.5大货车,所以速度差=15,所以大货车地速度为40千M每小时,所以小轿车速度=55千M每小时.6,(清华附中考题>【解】:画图可知某一个人到C点时间内,第一次甲走地和第二次甲走地路程和为一个全程还差90×10/60=15千M,第一次乙走地和第二次乙走地路程和为一个全程还差60×1.5=90千M.而速度比为3:2;这样我们可以知道甲走地路程就是:(90-15>÷(3-2>×3=225,所以全程就是225+15=240千M.7 (清华附中考题>【解】分解质因数,找出质因数再分开,所以分组为33,35,30,169和14,39,75,143.8(清华附中考题>【解】最大正方体地边长为6,这样剩下表面积就是少了两个面积为6×6地,所以现在地面积为(8×7+8×6+7×6> ×2-6×6×2=220.9(十一中学考题>【解】:甲,乙相遇后4分钟乙,丙相遇,说明甲,乙相遇时乙,丙还差4分钟地路程,即还差4×(75+60>=540M;而这540M也是甲,乙相遇时间里甲,丙地路程差,所以甲,乙相遇=540÷(90-60>=18分钟,所以长街长=18×(90+75>=2970M.10(07十一中学考题>无11(08十一中学考题>无12(首师大附考题>【解】10分钟两人共跑了(3+2>×60×10=3000 M 3000÷100=30个全程.我们知道两人同时从两地相向而行,他们总是在奇数个全程时相遇(不包括追上>1,3,5,7...29共15次.13 (首师附中考题>【解】共有10×10×10=1000个小正方体,其中没有涂色地为(10-2>×(10-2>×(10-2>=512个,所以至少有一面被油漆漆过地小正方体为1000-512=488个.14 (三帆中学考题>【解】客车速度:货车速度=4:3,那么同样时间里路程比=4:3,也就是说客车比货车多行了1份,多30千M;所以客车走了30×4=120千M,所以两城相距120×2=240千M.15 (三帆中学考题>【解】上面地规律是:右边地数和左边第一个数地差正好是奇数数列3,5,7,9,11……,所以下面括号中填地数字为奇数列中地第2001个,即4003.16 (三帆中学考试题>【解】原正方体表面积:1×1×6=6(平方M>,一共切了2+3+4=9(次>,每切一次增加2个面:2平方M.所以表面积: 6+2×9=24(平方M>.17 (西城实验考题>【解】小强比平时多用了16分钟,步行速度:骑车速度=1/3:1=1:3,那么在2千M中,时间比=3:1,所以步行多用了2份时间,所以1份就是16÷2=8分钟,那么原来走2千M骑车8分钟,所以20分钟地骑车路程就是家到学校地路程=2×20÷8=5千M.18 (西城实验考题>【解】:"第一次相遇点距B处60 M"意味着乙走了60M和甲相遇,根据总结,两次相遇两人总共走了3个全程,一个全程里乙走了60,则三个全程里乙走了3×60=180M,第二次相遇是距A 地10M.画图我们可以发现乙走地路程是一个全程多了10M,所以A,B相距=180-10=170M.19 (101中学考题>【解】不妨设爷爷步行地速度为"1",则小灵通步行地速度为"2",车速则为"20".到家需走地路程为"1".有小灵通到家所需时间为1÷2=0.5,爷爷到家所需时间为4/7÷20+3/7÷1=16/35.16/35<0.5,所以爷爷先到家20 (东城二中考题>【解】:第一次写后和增加5,第二次写后地和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,……它们地差依次为5,15,45,135,405……为等比数列,公比为3.它们地和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825.申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。
最新人教版小升初数学专项解析+习题-数论篇-通用版(附答案)

小升初重点中学真题之数论篇数论篇一1 (人大附中考题)有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。
2 (101中学考题)如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。
3(人大附中考题)甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。
4 (人大附中考题)下列数不是八进制数的是( )A、125B、126C、127D、128预测1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?预测2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。
2004年元旦三个网站同时更新,下一次同时更新是在____月____日?预测3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______.数论篇二1 (清华附中考题)有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.2 (三帆中学考题)140,225,293被某大于1的自然数除,所得余数都相同。
2002除以这个自然数的余数是 .3 (人大附中考题)某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.4 (101中学考题)一个八位数,它被3除余1,被4除余2,被11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是__________。
5 (实验中学考题)(1)从1到3998这3998个自然数中,有多少个能被4整除?(2)从1到3998这3998个自然数中,有多少个各位数字之和能被4整除?预测1. 如果1=1!,1×2=2!,1×2×3=3!……1×2×3×……×99×100=100!那么1!+2!+3!+……+100!的个位数字是多少?预测2.(★★★★)公共汽车票的号码是一个六位数,若一张车票的号码的前3个数字之和等于后3个数字之和,则称这张车票是幸运的。
2020-2021中国人民大学附属中学小学数学小升初模拟试题带答案

2020-2021中国人民大学附属中学小学数学小升初模拟试题带答案一、选择题1.下面得数不相等的一组是()。
A. B. C. D.2.下面的立体图形,从左侧面看到的形状为应该是图()。
A. B. C. D.3.如图,阴影部分的面积相当于甲圆面积的,相当于乙圆面积的,那么甲、乙两个圆的面积是().A. 6: 1B. 5: 1C. 5: 6D. 6: 5 4.某市规定每户每月用水量不超过6吨时,每吨价格为2.5元;当用水量超过6吨时,超过的部分每吨价格为3元。
下图中能正确表示每月水费与用水量关系的是()。
A. B.C. D.5.钟面上,时针经过1小时旋转了()度。
A. 30B. 60C. 180D. 3606.一个底面积是20cm2的圆柱,斜着截去了一段后,剩下的图形如下图。
截后剩下的图形的体积是()cm3。
A. 140B. 180C. 220D. 3607.下面各题中的两种量成反比例关系的是()。
A. 单价一定,总价与数量B. 圆柱的体积一定,圆柱的底面积与高C. 全班人数一定,出勤人数与缺勤人数D. 已知圆的面积=圆周率×半径的平方,圆的面积与半径8.甲车间的出勤率比乙车间高,以下说法正确的是()A. 甲车间的总人数一定比乙车间多B. 甲车间的出勤人数一定比乙车间多C. 甲车间的未出勤人数一定比乙车间少D. 以上说法都不对9.小明五次数学考试成绩如下表,第五次考试成绩是()分。
次别第一次第二次第三次第四次第五次平均分成绩(分)8896939993A. 88B. 89C. 90D. 91 10.五一班有学生50人,其中男生有30人,男生人数占全班人数的几分之几?正确的是()A. B. C. D.11.小方每天上学先向北偏东40°方向走200米,再向正东方向走300米到学校,他每天放学先向正西方向走300米,再向()方向走200米到家。
A. 北偏东40°B. 南偏西40°C. 西偏南40°12.有一张方格纸,每个小方格的边长是1厘米,上面堆叠有棱长1厘米的小正方体(如左下图),小正方体A的位置用(1,1,1)表示,小正方体B的位置用(2,6,5)表示,那么小正方体 C的位置可以表示成()。
【精选试卷】北京市人大附中小升初数学解答题专项练习测试题(含答案解析)

一、解答题1.李阿姨要买16瓶某种品牌的酸奶,经了解,甲、乙两个商店这种品牌酸奶的单价都是8.5元/瓶,甲店:每瓶打八折出售,乙店:每2瓶一组,第1瓶全价,第2瓶半价。
李阿姨到哪个商店购买比较划算?最少需要多少元钱?2.明明看一本故事书,第一天看了27,第二天与第一天看的页数同样多,还剩下这本书的几分之几?3.李大爷将20000元存入银行,存期为一年。
一年后,李大爷得到利息多少元?4.列式并计算.(1)2减23与34的积,所得的差除以58得多少?(2)甲数的18是24,乙数是24的18,甲乙两数相比谁多,多多少?5.有一个半径是8米的圆形花坛,在它的周围铺设一条2米宽的人行道,这条人行道的面积是多少平方米?(π取3.14)6.外婆养了24只鸡,比鸭的只数多15,外婆养鸡鸭一共有多少只?7.张叔叔驾车行驶在高速公路上,当前车速是125千米/时.当前方出现限速标志时,如果张叔叔保持原速度继续行驶,他将受到什么处罚?(写出理由)8.明明和妈妈步行到2000米远的超市购物,返回时从文具店买钢笔回家.请根据折线图回答问题.(1)明明和妈妈在超市购物停留了________分钟.(2)明明家离文具店有________米.(3)明明和妈妈去超市时步行的平均速度是每小时多少米?9.一辆汽车从甲地开往乙地,前3小时行了156千米。
照这样的速度,从甲地到乙地共需8小时,甲、乙两地相距多少千米?(用比例解)10.只列式不计算。
(1)一本故事书原价20元,现在每本按原价打九折出售,现价多少元?(2)某校五(1)班今天到校48人,请病假的有2人,这个班今天的出勤率是多少?11.一个圆锥形的沙堆,底面积是28. 26平方米,高是2.5米,用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?12.李萍将压岁钱500元存人银行,存期三年,年利率是2.75%,到期后,李萍总共能取出多少钱?13.仓库里有水泥6000千克,现取出其中的40%,按5:3分配给甲、乙两个建筑队,两队各分得水泥多少千克?14.暑假期间,学校准备用方砖铺走廊,用边长0.3米的方砖,正好需要480块,如果改用边长是0.4米的方砖铺,则需要多少块?(用比例知识解答)15.如图,学校操场的跑道由长方形的两条对边和两个半圆组成.沿着操场跑一圈,一共是多少米?16.求下图阴影部分的面积。
最新人大附中分班考试试题及解答1-4

第一讲计算与几何✧分班讲义由各校分班考试题及点招题汇总而来;✧例题平均难度比各分班考试题要大;✧本讲义不设课后练习,但例题较多,老师可以选择讲授,将剩余题目作为课后练习;1.计算:12744 76511 1.857979⎛⎫⎛⎫++÷++⎪ ⎪⎝⎭⎝⎭【答案】42.(1)解方程组:99910022991______ 10019973011______ x y xx y y-==⎧⎧⎨⎨-==⎩⎩,【答案】5,2(2)已知x、y满足方程组76()130,72()10x x yy x y+-=⎧⎨--=⎩则x-y的值是().【答案】83.一个分数的分子与分母之和为25,将它化为小数后形如0.38…,则这个分数的分母是().【答案】184.下面几个分数中不能化成有限小数的是()A.512B.1325C.1435D.5265【答案】A5.1232433213331 123123332333333333333333333⎛⎫⎛⎫÷++++-+++⎪ ⎪⎝⎭⎝⎭【分析】原式12143332331 11(()() 332333333333333333333 =÷+-+-++-166332111332166551 333333333333333333111=++++=+=个计算教师必读6.已知11111611616A B C C -=+++++其中A 、B 、C 都是大于0且互不相同的自然数,则(A +B )÷C =___.【分析】根据题意,容易解出1191112286166-=++,所以137111911A B C C+=+++,而11B C C ++大于1,所以1A =,同理可知,5,6B C ==,则()1A B C +÷=7.计算:121231234122001223234232001+++++++++⨯⨯⨯⨯++++++ 【分析】先进行通项归纳:(1)12(1)12(2)(1)23(2)(1)122n n n n n n n n n n n n n n ++++++===⨯+-++++--+ ,所以,原式2334452001200214253620002003⎛⎫⎛⎫⎛⎫⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 2342001345200212320004562003⎛⎫⎛⎫=⨯⨯⨯⨯⨯⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭ 36003200120032003=⨯=8.计算:621739458739458378621739458378739458126358947358947207126358947207358947⎛⎫⎛⎫⎛⎫⎛⎫++⨯++-+++⨯+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【分析】经还原整理得:原式=6213789126207⨯=.9.计算:35737123234345181920++++⨯⨯⨯⨯⨯⨯⨯⨯ .【分析】原式=1223341819123234345181920+++++++⨯⨯⨯⨯⨯⨯⨯⨯111111123341920132417191820111111122021192201131760⎛⎫⎛⎫=++++++++ ⎪ ⎪⨯⨯⨯⨯⨯⨯⨯⎝⎭⎝⎭⎛⎫⎛⎫=-+⨯-+- ⎪ ⎪⎝⎭⎝⎭=10.如图,P 为平行四边形ABCD 外一点,已知三角形PAB 和三角形PCD 的面积分别为7平方厘米和3平方厘米,平行四边形ABCD 的面积为平方厘米.PD CBA NMPDCBA 【分析】设P 到AB 的距离为1h ,P 到CD 的距离为2h ,则平行四边形高12h h h =-再设AB=CD=a ,则有1117142ah ah =⇒=;211362ah ah =⇒=则ABCD 的面积=1212()1468ah a h h ah ah =-=-=-=11.如图,在ABC ∆中,D 为BC 中点,E 为AB 上一点,且13BE AB =.已知四边形BDME 的面积为35,那么三角形ABC 的面积为______.【分析】做辅助线如右图构造燕尾模型;根据两个线比标分数如图所示,则有4335530150a a a a +=⇒=⇒=12.如图,两个长方形大小相同,长和宽分别为12和8,求阴影部分的面积.812812【分析】如右图所示,连接AC .871DC =-=;根据勾股定理:22222AC AD DC AB BC =+=+,所以2222121881BC =+-=⇒9BC =.几何则四边形ABCD 的面积等于11121894222⨯⨯+⨯⨯=,阴影部分的面积为1284254⨯-=.13.如图所示,AC 和DF 平行,在AC 和DF 上各取点B 和点E .设AE 和BD 的交点为G ,CE 和BF的交点为H ,如果HC 的长度是EH 的1.5倍,三角形ADG 的面积是210cm ,三角形CEF 的面积是220cm ,四边形BGEH 的面积2cm .G HD E FA B C【分析】连接BE ,则有10BGE AGD S S ∆∆==,而BHF CHBS S ∆∆=:3:2CH EH =320125CHB S ∆=⨯=12BHF S ∆∴=101222BGEH S ∴=+=四边形 A B CD E FG H14.如图:已知在梯形ABCD 中,上底是下底的23,其中F 是BC 边上任意一点,三角形AME 、三角形BMF 、三角形NFC 的面积分别为14、20、12.求三角形NDE的面积.【分析】如图,设上底为2a ,下底为3a ,三角形ABE 与三角形ABF 的高相差为h .由于20146ABF ABE BMF AME S S S S ∆∆∆∆-=-=-=,所以1262ah ⨯=.即6ah =.又11336922CDE CDF DEN CFN S S S S ah ∆∆∆∆-=-=⨯=⨯⨯=,所以12921DEN S ∆=+=.15.如图,在正方形ABCD 中,E 、F 分别在BC 与CD 上,且2CE BE =,2CF DF =,连接BF ,DF ,相交于点G ,过G 作MN ,PQ 得到两个正方形MGQA 和正方形PCNG ,设正方形MGQA 的面积为1S ,正方形PCNG 的面积为2S ,则12:S S =________.QPN MABC D E FGQPNMABCD E FG【分析】做辅助线如右图根据“金字塔”相似易得:2:3EF BD =;再根据“沙漏”相似易得:2:3EG DG =;再根据另一“沙漏”易得:2:3PG QG =,即正方形的边长之比为2:3,则面积之比应为4:916.长方形ABCD 被分成四块甲、乙、丙、丁.其面积关系如下:甲+乙=162平方厘米;乙+丙=208平方厘米;丙+丁=126平方厘米;已知c 与a 的长度之差为4厘米,请问d 与b 的长度之差是多少?dc ba丁丙乙A 甲DCB【分析】根据题意,可得甲+乙+丙+丁=162+126=288.由于乙+丙=208,则甲+丁=288-208=80;在CD 上取点E ,使CE=AH=a ,过E 作平行线EF.则阴影部分EFGH=208-80=128平方厘米.因为c-a=4.所以AD=128÷4=32.对应的长方形的宽AB 为288÷32=9.同理,在BM 上取一点Q ,使得BQ=ND ,这样QM 即为d 与b 的差.而甲+乙的面积较丙+丁的面积大162-126=36平方厘米.即阴影部分PNQM 的面积为36平方厘米.而AB=9.所以QM=36÷9=4.即d 与b 的差为4厘米.H G Q P N MFE a 4BCD 甲A乙丙丁a b d17.在一个棱长为8的立方体上切去一个三棱柱(如图),那么表面积减少().【答案】2834818.在图中,红色部分的面积________阴影部分的面积.(填“>”、“<”或“=”)【分析】因为,大圆半径R 等于小圆半径r 的2倍,即2R r =,所以,大圆面积22π4πR r ==,小圆面积2πr =,所以,大圆面积4=个小圆面积.因为4S S S S =-⨯+大圆小圆阴影部分红色部分,4S S =⨯大圆小圆,所以S S =阴影部分红色部分.19.已知三角形ABC 是直角三角形,4AC =厘米,2BC =厘米,求阴影部分的面积.CBA【分析】ABCS S S S ∆=+-阴影大半圆小半圆2214121ππ24 2.5π4 3.8522222⎛⎫⎛⎫=⨯+⨯-⨯⨯=-= ⎪ ⎪⎝⎭⎝⎭(平方厘米).第二讲数论与数字谜1.小红、小明二人在讨论年龄,小红说:“我比你小,当你像我这么大时,我的年龄是个质数,”小明说:“当你长到我这么大时,我的年龄也是个质数.”小红说:“我发现现在咱俩的年龄和是个质数的平方.”那么小明今年()岁.(小明今年年龄小于31岁,年龄均为整数岁)【答案】162.将小于36的11个质数分别填入下列的方格内,使得A 是质数.A 最小是几?A +++++=+□□□+□□□□+□+□□□【分析】根据题意,设yA x=,得Ax y =,因()1160A x x y +=+=,显然A+1是160的约数,若A=3,则16040112931x ===++,12023571317192331y ==++++++++3.对四位数abcd ,若存在质数p 和正整数k ,使k a b c d p ⨯⨯⨯=,且5p a b c d p +++=-,求这样的四位数的最小值,并说明理由.【分析】因为2250-<,33522-=,555-太大,所以3p =.3k a b c d ⨯⨯⨯=,显然,,,a b c d 中不含3以外的质因子,只能为1,3,9.观察可知恰有139922+++=,所以最小的这样的四位数是1399.4.一个自然数的3次方恰好有100个约数,那么这个自然数本身最少有()个约数.【分析】3次方数质因数的指数都是3倍数,则指数加1后除以3余1100=1003993334x a x a ⇒=⇒=⇒个100=4×25332482918x a b x ab ⇒=⇒=⇒⨯=个100=10×10399334416x a b x a b ⇒=⇒=⇒⨯=个5.一个自然数,加上4后就可表示3个连续的3的倍数的和,加上3后就可表示成4个连续的4的倍数之和,那么它最小需要加()后才能表示成6个连续的6的倍数之和.【分析】3个连续3倍数和应为9倍;4个连续4倍数和应为8倍;6个连续6倍数和应为18倍;则这个自然数除以9余5,除以8余5,则该数为725a +;其除以18也余5,则最小需要加13才行6.已知a,b,c 是三个自然数,且a 与b 的最小公倍数是60,a 与c 的最小公倍数是270.求b 与c 的最小公倍数.数论【分析】显然|(60,270)=30=235a ⨯⨯,而222333602352|23|[,]2702353|b b c c⎧=⨯⨯⇒⎪⇒⨯⎨=⨯⨯⇒⎪⎩则有23[,]23108b c =⨯=或23[,]235540b c =⨯⨯=7.一棵树木,2009年树龄是59岁,如果将这棵树木的树龄作为分子,当年的公元纪元年号作为分母写成分数,如2005年这棵树木的树龄是55岁,写成分数是552005,那么,这棵树木树龄从1岁至59岁,可以写出59个分数,其中最简分数有多少个?【分析】由题意可知,分子与分母差总为1950;设树龄为a ,则要求1950aa +中()(),19501,19501a a a +=⇒=,因为2195023513=⨯⨯⨯所以a 不是2,3,5,13的倍数.共14个数符合条件:1,7,11,17,19,23,29,31,37,41,43,47,49,538.已知238=1444,像1444这样能表示为某个自然数的平方,并且末3位数字为不等于0的相同数字,我们就定义为“好数”.(1)请再找出一个“好数”.(2)讨论所有“好数”的个位数字可能是多少?(3)如果有一个好数的末4位数字都相等,我们就称之为“超好数”,请找出一个“超好数”,或者证明不存在“超好数”.【分析】(1)210381077444=(2)平方数的个位只能是0,1,4,5,6,9考虑个位为1,则末两位11除以4余3,不能成为平方数;考虑个位为5,则末两位55除以4余3,不能成为平方数;考虑个位为6,则末三位666除以8余2,不能成为平方数;考虑个位为9,则末两位99除以4余3,不能成为平方数;可见,好数的个位只能是4;(3)末四位4444除以16余12,不能成为平方数因此不存在超好数9.一个自然数在四进制表示当中的各位数字之和是5,在五进制表示当中的各位数字之和是4,那么这个自然数除以3的余数是(),满足要求的最小自然数是(十进制表示)().【分析】四进制数码和为5,则除以3的余数等价于数码和5除以3的余数,也就是2;同理,五进制数码和为4,则除以4的余数等价于数码和4除以4的余数,也就是0;验证符合条件的最小的数8:48(20)=,舍去;验证8+12=20:420(110)=,舍去;验证20+12=32:432(200)=,舍去;验证32+12=44:4544(230)(134)==,舍去;验证44+12=56:4556(320)(211)==,符合要求.10.在下图的方格中填入合适的数,使每一行都为完全平方数,则最后结果为()【答案】1649784⨯=11.在下图所示的写有数字1的加法算式中,不同的汉字代表不同的数字,只有“仁”与“人”代表的数字相同,那么“仁华学校”代表的四位数字最小可能是().【分析】“人”只能为1,进而推知“大”只能为0,则“仁华学校”理论最小值为1234,经验证成立.12.已知123(2)n n ++++> 的和的个位数为3,十位数为0,则n 的最小值是【分析】(1)1232n n n +++++=的个位为3,则(1)n n +的个位为6,则n 的个位只能为2或71213,1718,2223,2727,3233,3738......⨯⨯⨯⨯⨯⨯经试,当37n =时符合条件.3738123377032⨯++++== .13.将数字1至9分别填入图中所示竖式的方格内使竖式成立(每个数字恰好使用一次),那么加数的四位数最小是.【分析】加数的数字和为46,而和数的数字和为10,说明运算中共4个进位.因为百位向千位数字谜进了1位,个位只能进1位()7892428++=<,所以十位向百位进了2位.因此三个个位数字之和为18,三个十位数字之和为19,三个百位数字之和为8.不难构造得出四位数最小为1125.14.下表中,A 、B 、C 、D 、E 、F 、G 、H 、M 各代表一个互不相同的非零数字,其中A +B =14,M ÷G =M -F =H -C ,D ⨯F =24,B +E =16,那么H 代表_________;A B C D E F GHM【分析】根据A+B=14,B+E=16,得到B=9,A=5,E=7,向下分析即可如图填写:59187324615.将0~9这十个数字分别填入下面算式的□内,每个数字只能用一次;那么满足条件的正确填法共有种.□+□□+□□□=□□□□【分析】设这个算式为A BC DEF GHIJ ++=,易见1G =,9D =,0H =.910AB C E F IJ+根据弃九法,易得加数数字和为36,和的数字和为9,则I+J=8=2+6=3+5=5+3=6+2⑴2I =且6J =时,113847B E +==+=+,对应的457358A C F ++=++=++.2类.⑵3I =且5J =时,81248B +==+,对应的267A C F ++=++.1类.⑶5I =且3J =时,1468B E +==+,对应的247A C F ++=++.1类.⑷6I =且2J =时,1578B E +==+,对应的345A C F ++=++.1类.对于以上每类,B ,E 可以调换,A ,C ,F 可以调换;所以,正确的填法共有:52!3!60⨯⨯=种.第三讲应用题(含行程)1.妈妈买来一箱桔子,若每天比计划多吃一个,则比计划少吃2天;若每天比计划少吃一个,则计划的时间过去后,还剩12个,那么这一箱桔子共()个?【答案】602.有一个分数,如果分子减1,那么这个分数就变为13,如果分母减1,那么这个分数就变为12,那么这个分数是______.【分析】分子减1与分母减1之后,约分之前,分子分母的和是不变的,因此13=39,14=28,说明之前的分数是49.3.有两块重量相同的铜锌合金.第一块合金中铜与锌质量比为2:5,第二块合金中铜与锌的重量比是1:3.现在把这两块合金铸成一块大的.求合铸所成的合金中铜与锌的重量之比.【分析】设每块合金的重量为“28”,则第一块合金中有铜“8”,有锌“20”;第二块合金中有铜“7”,有锌“21”.两块合金熔在一起后铜与锌的重量比为(87):(2021)15:41++=4.某俱乐部男、女会员的人数比是3︰2,分为甲、乙、丙三组.已知甲、乙、丙三组的人数比是10︰8︰7,甲组中男、女会员的人数比是3︰1,乙组中男、女会员的人数比是5︰3.求丙组中男、女会员的人数比.【分析】设共有男会员30份,女会员20份.则甲组有20份,男会员15份,女会员5份;乙组有人16份,男会员10份,女会员6份.所以丙组有30-15-10=5份男会员;20-5-6=9份女会员.男女会员人数比为5:9.5.民航规定:乘坐飞机普通舱的旅客每人最多可免费携带20千克行李,超过部分每千克按飞机票价的1.5%购买行李票.小芳的父亲出差带了40千克重的行李乘飞机,机票和行李费共付了1404元.请问:小芳的父亲购买的普通舱机票的票价是多少?【分析】设机票票价是x 元,则有()4020 1.5%1404x x +-⨯=解得1080x =应用题6.某小学租了汽车旅游,出租汽车公司规定:一辆车满30人,往返车费为500元,每多出1人,增加车费10元.(1)照这样计算,他们平均每人的车费15元.问有多少人乘坐这辆车?(2)为保障安全,如果限定超出人数不超过5人,那么平均每人的车费最少要多少元?(精确到0.01元)【分析】(1)设多出30人的人数为x 人,则可列方程()153050010x x +=+⇒10x =,所以乘车人数有301040+=人(2)()500503515.72+÷≈(元)7.学校组织老师进行智力竞赛,共20道题,答对一题得5分,不答不给分,答错扣2分,已知所有老师的总分为600多分,且男老师总分为女老师总分的2倍多1分,答对总题数为答错总数的3倍少1题.又知每人恰好有1道或2道题未答.求男老师的总分为多少?【分析】设女老师得分为a ,则男老师得分为21a +,则有60031700200232a a <+<⇒≤≤设男老师做错b 题,则做对31b -题,则有:13215(31)232ba b b a +=--⇒=-当b=32时,a=205,2a+1=411,此时男老师对错共127道,7人有20712713⨯-=题未答;当b=34时,a=218,2a+1=417,此时男老师对错共135道,7人有2071355⨯-=题未答;当b=36时,a=231,2a+1=463,此时男老师对错共143道,8人有20814317⨯-=题未答;根据每人恰好有1道或2道未答可知,男老师总分411分符合要求.8.康师傅加工一批零件,加工720个之后,他的工作效率提高了20%,结果提前4天完成任务;如果康师傅从一开始就把工作效率提高12.5%,那么也可以提前4天完成任务.这批零件共有多少个?【分析】若一开始就将工作效率提高12.5%,相当于效率89→,则所需时间98→可见原计划工作时间为9436⨯=天,加工720个零件后:工作效率56→,则所需时间65→,可见原计划这部分工作量所需时间为:6424⨯=天,这说明先加工的720个零件需362412-=天完成这批零件共有72036216012⨯=个9.甲、乙、丙三队要完成A ,B 两项工程,B 工程的工作量比A 工程的工作量要大14,如果让甲、乙、丙三队单独做,完成A 工程所需时间分别是20天,24天,30天.现在让甲队做A 工程,乙队做B 工程,为了同时完成这两项工程,丙队先与乙队合做B 工程若干天,然后再与甲队合做A 工程若干天.问丙队与乙队合做了多少天?【分析】设A 的工作量为[20,24,30]120=,则B 的工作量为112011504⨯=则甲效:120620=;乙效:120524=;丙效:120430=三队完成两项工程所需天数:12015018654+=++天;那么丙队帮乙队做的天数为:150518154-⨯=天.10.某天甲、乙两人完成一件工作,计划两人都从早上7:00开始工作,他们将在上午11:00完成;如果甲比原计划晚1小时开始工作,乙比甲再晚半小时开始,那么他们将比原计划晚1小时20分钟完成;如果乙比原计划提前半小时开始工作,甲比乙晚1小时开始,那么他们完成工作的时刻是______点______分.【分析】设甲的效率为a ,乙的速度是b ;则有154()43236a b a b b a +=+⇒=;设12a b =⎧⎨=⎩,则总工作量为:4(12)12⨯+=;设甲工作了t 小时,则乙工作了1t +小时,则12(1)1233t t t ++=⇒=;则最后完成的时刻为17:30310:503h +=;11.某商店花同样多的钱,购进甲、乙、丙三种不同的糖果.已知甲、乙、丙三种糖果每千克的价格分别是9.60元,16元和18元.如果把这三种糖果混合成什锦糖,按20%的利润定价,那么这种什锦糖每千克定价应为多少元?【分析】甲、乙、丙三种糖果的单价之比为9.6:16:1824:40:45=,由于购买这三种糖果所花的钱同样多,所以这三种糖果的量的比为111::15:9:8244045=.假设甲、乙、丙三种糖果分别有15千克、9千克和8千克,则购买这三种糖果的总成本为9.6153432⨯⨯=元.把这三种糖果混合成什锦糖,按20%的利润定价,每千克什锦糖的价格为432(120%)(1598)16.2⨯+÷++=元.12.有大、小两瓶酒精溶液,重量比为3:2,其中大瓶中溶液的浓度为8%.现在把这两瓶溶液混合起来,得到的酒精溶液浓度恰好是原来小瓶酒精溶液浓度的2倍.那么原来小瓶酒精溶液的浓度是()【分析】设原来小瓶溶液的浓度为%a ,则混合溶液的浓度为2%a ,则有:3233%282a a a a-=⇒=⇒-13.某工厂接到任务要用甲、乙两种原料生产A 、B 两种产品共50件,已知每生产一件A 产品需甲原料9千克和乙原料3千克;每生产一件B 产品需甲原料4千克和乙原料10千克.现在工厂里只有甲原料360千克和乙原料290千克,那么该工厂利用这些原料,应该生产A 、B 两种产品各多少件,才能完成任务?请求出所有的生产方案.【分析】设生产A 产品a 件,则生产B 产品b 件.则有:943605160321850a b a a b a b +≤⎧⇒≤⇒≤⇒≥⎨+=⎩并有:3102907140203050a b b b a a b +≤⎧⇒≤⇒≤⇒≤⎨+=⎩可见30321820a b ≤≤⎧⎨≤≤⎩,符合要求的生产方案为:3020a b =⎧⎨=⎩,3119a b =⎧⎨=⎩,3218a b =⎧⎨=⎩.14.甲、乙二人分别从A 、B 两地同时出发,他们计划在距A 地35处相遇,但中途甲休息了15秒钟,结果乙比计划多走36米才相遇,那么甲速为()米/秒.【分析】设甲速为3v ,则乙速为2v ,设AB 两地距离为5a ;则有:2363361523623a a v v v v+--=⇒=⇒=15.一支解放军部队从驻地乘车赶往某地抗洪抢险,如果行驶1个小时后,将车速提高五分之一,就可比预定时间提前20分钟赶到;如果先按原速度行驶72千米,再将车速提高三分之一,就可比预定时间提前30分钟赶到.问:这支解放军部队一共需要行多少千米?【分析】将车速提高五分之一,即车速56→,则所需时间65→,可见剩下的路程按原速需620120⨯=分钟=2小时,全程按原速走需1+2=3小时;行驶72千米后,将车速提高三分之一,即车速34→,则所需时间43→;可见剩下的路程按原速需430120⨯=分钟=2小时,可见前72千米用时1小时;即车速为72千米/小时,全程为72×3=216千米.16.一艘船从甲港顺水而下到乙港,到达后马上又从乙港逆水返回甲港,共用了12小时.已知顺水每小时比逆水每小时多行16千米,又知前6小时比后6小时多行80千米.那么,甲、乙两港相距______千米.【分析】设逆水速度为v ,则顺水速度为v+16,设顺水用了a 小时,逆水用了b 小时,则有[]12580(16)(6)67a b a a v a v v b +=⎧=⎧⎪⇒⎨⎨=++--=⎪⎩⎩则有5(16)740280S v v v S =+=⇒=⇒=.17.甲、乙两人分别骑车从A 地同时同向出发,甲骑自行车,乙骑三轮车.12分钟后丙也骑车从A 地出发去追甲.丙追上甲后立即按原速沿原路返回,掉头行了3千米时又遇到乙.已知乙的速度是每小时7.5千米,丙的速度是乙的2倍.那么甲的速度是多少?行程【分析】上图描绘了两个状态,丙出发时和丙追上甲时;丙出发时,落后乙127.5 1.560⨯=千米,丙追上甲时领先乙3 1.5 4.5+=千米;可见历时1.5 4.54157.55+=-小时;设甲的速度为a ,则根据丙追甲的过程有:124(15)12605a a a =-⇒=18.甲、乙两人同时从山脚开始爬山,到达山顶后就立即下山,他们两人的下山速度都是各自上山速度的1.5倍,而且甲比乙速度快.两人出发后1小时,甲与乙在离山顶600米处相遇,当乙到达山顶时,甲恰好下到半山腰.那么甲从出发到回到出发点共用了多少小时?【分析】设山顶到山脚的距离为S ,甲的上山速度为a ,乙的上山速度为b ;根据乙到达山顶甲下到半山腰有:124233S S abS +⨯==(将下山的路程折算成原速度的路程)根据甲乙在距山顶600米处相遇有:26004336006003S a S bS +⨯==⇒=-则乙速为3600-600=3000米/小时=3千米/小时;对应甲速应为4千米/小时,其下山速度为6千米/小时甲往返需时:3.6 3.61.546+=小时.第四讲组合数学1.初一4班第一组有6个座位和6名同学,如果他们每天安排一次座位,那么安排完所有不同的方法大约需要______年(得数只保留整数)【分析】安排完所有的方法大致需要有:6×5×4×3×2×1÷365≈1.9726≈2年,2.用1~9可以组成()个不含重复数字的三位数;如果再要求这三个数字中任何两个的差不能是1,那么可以组成()个满足要求的三位数.【分析】39504A =;两个数字差1的情况有:12,23,34,45,56,67,78,89;对应33(65555556)252A +++++++⨯=种;三个数字差1的情况有:123,234,345,456,567,678,789;对应33742A ⨯=种则不出现相邻数字的三位数有50425242210--=3.在下面的□中填入数字,使等式成立(注:每个□内只允许填0,1,2,……,9中的一个数字,允许重复)101⨯+=□□□□那么满足以上要求的等式可以填出______个.【分析】设101ab c d ⨯+=,1d =时,100502254205ab c ⨯==⨯=⨯=⨯,3种2d =时,99991333119ab c ⨯==⨯=⨯=⨯,3种3d =时,98981492147ab c ⨯==⨯=⨯=⨯,3种4d =时,97971ab c ⨯==⨯,1种5d =时,96961482323244166128ab c ⨯==⨯=⨯=⨯=⨯=⨯=⨯,6种6d =时,95951195ab c ⨯==⨯=⨯,2种7d =时,94941472ab c ⨯==⨯=⨯,2种8d =时,93931313ab c ⨯==⨯=⨯,2种9d =时,92921462234ab c ⨯==⨯=⨯=⨯,3种共有33316222325++++++++=种填法.4.用数字1,2组成一个8位数,其中至少有连续4位都是数字1的有多少个?【分析】连续8个1:1种连续7个1:2种连续6个1:1111112211111122111111,共2125++=种连续5个1:11111221111122111112211111,共22222212+++=种连续4个1:1111221111221111221111221111,共322232222228++++=种共有125122848++++=个.5.如果一个时刻的时、分、秒3个数构成递增的等差数列,则称这个时刻为幸运时刻(采用24小时制),例如00点02分04秒和17点20分23秒都是幸运时刻,那在一天中与()个幸运时刻.【分析】00开头:00:01:02,00:02:04,...,00:29:58,共29个;01开头:01:02:03,01:03:05,...,01:29:59,共29个;02开头:02:03:04,02:04:06,...,02:30:58,共28个;03开头:03:04:05,03:05:07,...,03:31:59,共28个;......共()292827182564++++⨯= 个6.在一个圆周上有1个红点和49个蓝点,所有顶点都是蓝点的凸多边形的个数,与有一个顶点是红点的凸多边形的个数,相差.【分析】所有顶点均为蓝点的凸多边形有:34484949494949C C C C ++++ ;有一个顶点为红点的凸多边形共有:23448494949494949C C C C C +++++ .两者相差:2491176C =.7.有10枚棋子,每次拿出2枚或3枚,要想将10枚棋子全部拿完,共有多少种不同的拿法?【分析】若设n 枚棋子的拿法为()f n ,则必有()(2)(3)f n f n f n =-+-已知(1)0f =,(2)1,(3)1,(4)1f f f ===,可生成如下数列:0,1,1,1,2,2,3,4,5,7,......可见(10)7f =8.(第八届走美杯六年级初赛)50个互不相同的正整数,总和是2010.这些数里至多有个偶数.【分析】最小的45个正偶数之和为:2469020702010+++=> 说明偶数数量应小于45,且因为2010是偶数,则50个数中奇数数量为偶数个最小的44个正偶数之和为246881980+++= ,这要求其余6个奇数和为30,无解;最小的42个正偶数之和为246841806+++= ,这要求其余8个奇数和为204;有解.这50个数中最多有42个偶数.9.(第八届走美杯六年级初赛)两个自然数,差为11,每一个的数字和都能被11整除.满足要求的最小一对自然数中较小的那个为.【分析】设11a b +=,设a 的数字和为11x ,b 的数字和为11y ;根据弃九法必有:1111911x k y ++-=,其中k 为进位次数;简化得:11()9211|9210min x y k k k -=-⇒-⇒=;此时891199min x y x x -=⇒=⇒=,即a 的数字和最小为99,此时a 最小是18999999999910.在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成十等份;第二种将木棍分成十二等份;第三种将木棍分成十五等份;如果沿每条刻度线将木棍锯断,则木棍总共被锯成______段.【分析】设木棍长为[10,12,15]60=厘米则应在60610=倍、60512=倍和60415=倍处做标记;则标记的数量有:606060606060602865430122060⎛⎫⎛⎫⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤++-+++= ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎝⎭⎝⎭个这28个标记包含末端60厘米处,说明只需要据27次;但依然形成28段.11.从写有1~9的九张卡片中抽出一张,其余的八张平分成四组,使第一组两张卡片上的两数之和等于7,第二组两张卡片上的两数之积等于6,第三组两张卡片上的两数之差等于4,第四组两张卡片上的两数之商等于3.则抽出的卡片上的数是______.【分析】设7;6;4;3a b c d e f g h +=⨯=-=÷=623c d ⨯==⨯时,没有符合条件的3g h ÷=616c d ⨯==⨯时,393g h ÷==÷,则725a b +==+,则484e f -==-成立可见抽出的卡片是7.12.有人问赵、钱、孙三人的年龄.赵说:“我22岁,比钱小2岁,比孙大1岁”.钱说:“我不是年龄最小的,孙和我差3岁,孙25岁.”孙说:“我比赵年岁小,赵23岁,钱比赵大3岁.”以上每人所说的三句话中,都有一句是故意说错的,那么,孙的真实年龄是岁.【分析】重新梳理每人的说辞:赵:赵22岁;钱24岁;孙21岁;钱:孙25岁;钱22岁或28岁;钱不是最小的;孙:赵23岁;钱26岁;孙小于23岁显然“赵22岁”和“赵23岁”矛盾,只能对一个假设“赵22岁”是对的,则“赵23岁”就是错的;孙的三句话依次为:×√√;依此推理钱的三句话:√×√;再依次推理赵的三句话:√√×;而“钱24岁”和“钱26岁”矛盾;因此“赵22岁”是错的,推知孙21岁.13.4道选择题,每题都有A 、B 、C 、D 四个选项,其中每题只有一个选项是正确的,有800名学生做这四道题,至少有______人的答题结果是完全一样的.【分析】4道选择题有44256=种不同的选法,而800256332÷= ;根据抽屉原理,至少有314+=个人的答题结果是完全一样的.14.从1~12中选出7个自然数,要求选出的数中不存在某个自然数是另一个自然数的2倍,那么一共有()种选法.【分析】{1,2,4,8}中至多取2个;{3,6,12}中至多取2个;{5,10}中至多取1个;{7,9,11}可任取则最多可取2+2+1+3=8个;若{1,2,4,8}少取1个:41218⨯⨯⨯=种取法若{3,6,12}少取1个:332118⨯⨯⨯=种取法若{5,10}少取1个:31113⨯⨯⨯=种取法若{7,9,11}少取1个:312318⨯⨯⨯=种取法共81831847+++=种取法15.(15届华杯决赛)足球队A ,B ,C ,D ,E 进行单循环赛(每两队赛一场),每场比赛胜队得3分,负队得0分,平局两队各得1分.若A ,B ,C ,D 队总分分别是1,4,7,8,请问:E 队至多得几分?至少得几分?【分析】1分:1平3负;4分:1胜1平2负或4平;7分:2胜1平1负;8分:2胜2平;若B 队1胜1平2负,则四队合计5胜6负5平,此时E 队可能为2胜1负1平(7分),也可能为1胜3平(6分);若B 队4平,则四队合计4胜4负8平,此时E 队可能是1胜1负2平(5分),也可能是2胜2负(6分),可见E 队至多得7分,至少得5分.16.一个班有五十多名同学,上体育课时大家排成一行,先从左至右1234,1234报数,再从右至左123、123报数,后来统计了一下,两次报到同一个数的同学有15名,那么这个班一共有()名同学.【分析】以左起前12个人为研究对象:123412341234321321321321⎧⎨⎩,其中报同一个数的有3个,要保证15人报同一个数,至少要有125357⨯-=人(保证最右边的人从1起报);123412341234213213213213⎧⎨⎩,其中报同一个数的有3个,要保证15人报同一个数,至少要有125159⨯-=人;123412341234132132132132⎧⎨⎩,其中报同一个数的有3个,要保证15人报同一个数,至少要有125161⨯+=人,舍去17.圆周上放置有7个空盒子,按顺时针方向依次编号为1,2,3,4,5,6,7.小明首先将第1枚白色棋子放入1号盒子,然后将第2枚白色棋子放入3号盒子,再将第3枚白色棋子放入6号盒子,……,放置了第1k -枚白色棋子后,小明依顺时针方向向前数了1k -个盒子,并将第k 枚白色棋子放在下一个盒子中,小明按照这个规则共放置了200枚白色棋子.随后,小青从1号盒子开始,按照逆时针方向和同样的规则在这些盒子中放入了300枚红色棋子.请回答:每个盒子各有多少枚白色棋子?每个盒子各有多少枚棋子?【分析】根据编号规则,1号、8号、15号、...等形如71k +的号码都是1号;同理,2号、9号、16号、...等形如72k +的号码都是2号;......6号、13号、20号、...等形如76k +的号码都是6号;7号、14号、21号、...等形如77k +的号码都是7号;白棋子依次放入1,3,6,3,1,7,7,1,3,6,3,1,7,7,......;200个白棋子进行分组:200=7×28组+4个;对应红棋子依次放入1,6,3,6,1,2,2,1,6,3,6,1,2,2......;300个红棋子进行分组:300=7×42组+6个;列表统计如下:盒子编号1234567白子57058002956红子86854300860棋子总数1438510111556。
人大附中小升初数学试卷

人大附中小升初选拔考试数学试卷姓名____________考试日期____________一、解答1.计算:)428571714285()285714714285(3333+÷+的结果是多少?2.计算:2001322001321432432132321221+⋅⋅⋅+++⋅⋅⋅+++⨯⋅⋅⋅⨯+++++⨯+++⨯+3.用数字1,2,3,4,5,6组成无重复数字的三位数,然后把它们从小到大排成一个数列,那么这个数列的所有项之和是多少?4.一块正方形玻璃,一边截去15厘米,另一个非平行边截去10厘米,剩下的长方形玻璃比原来的面积减少1750平方厘米,那么原来的正方形的边长是多少厘米?5.在算式))((1)()()()(=-的每个括号内各填入一个数字(所填数字均选自1,2,3, (8)9),要求所填的数字都是质数,并使得算式成立,请写出这个算式.6.两个四位数,都不含有重复数字,乘积等于22084429.其中一个四位数的每一位都是质数,另一个四位数有3位都被3除余1,则这两个四位数之和等于多少?7.某商品按定价出售,每个可获利润45元.如果按照定价的70%出售10件,与按定价每个减价25元出售12件所获得的利润一样多,那么这种商品每件定价多少元?8.从数字2、0、1、9中选出若干个(不包括1个)数字,使它们的和是3的倍数,共有多少种选法?9.如图,一个长方体的长、宽、高分别为4,2,1有一个小虫子要从A 点沿表面爬到B 点,问爬行的最短距离是多少?10.从写1~9有的九张卡片中抽出一张,其余的八张平分成四组,使第一组两张卡片上的两数之和等于7,第二组两张卡片上的两数之积等于6,第三组两张卡片上的两数之差等于4,第四组两张卡片上的两数之商等于3.则抽出的卡片上的数是多少?11.如图,大正方体的体积512是立方厘米,N M 、分别是立方体两条棱的中点,那么,三棱锥BAMN的表面积是多少平方厘米?12.有n 个连续自然数的和是484,那么这些数中,最大的数最大可能是多少?13.某项工程由甲工程队单独完成要100天,乙工程队单独完成要120天,丙工程队单独完成要150天,为了缩短工期,让甲、乙、丙三个工程队合做,但在合做过程中,甲工程队被派去支援另一项工程,结果共用了60天才把这项工程完成.请计算甲工程队撤出后,乙、丙两个工程队又合做了几天才完成?14.设n 是一个正整数,且⋅⋅⋅=4848481.0270a a a n,那么n 是多少?15.按如图所示的程序计算,若开始输入的x 的值为48,可以发现第一次得到的结果为24,第2次得到的结果为12,……,请你探索第2019次得到的结果为多少?16.定义新运算:1)1(=f ,且1)1())1()((=-⋅--n n n f n f ,那么)2019(f 的结果是多少?17.暑假中,小明读一本长篇小说,如果第一天读40页,以后每天都比前一天多读5页,结果最后一天读35页可读完;如果第一天读50页,以后每天都比前一天多读5页,结果最后一天读45页可读完,试问这本小说共多少页?18.有4个数,每次取其中两个相加,其中5个和分别是15、19、21、22、25,问这四个数中最大的数是多少?19.对于无理数⋅⋅⋅=57182818284.2e ,定义新运算)(n f 是e 小数点后的第n 位数字(n 为自然数),规定2)0(=f ,那么,)))(((n f f f 的所有可能取值的和是多少?20.在一根长木棍上,有三种刻度线,第一种刻度线将木棍分成十等份;第二种将木棍分成十二等份;第三种将木棍分成十五等份;如果沿每条刻度线将木棍锯断,则木棍总共被锯成多少段?21.甲、乙、丙三人去旅游,甲负责买车票,乙负责买食品,丙负责买饮料.乙花的钱数是甲的0.9倍,丙和乙花的钱数之比是3:2.根据费用均摊的原则,丙又拿出35元还给甲和乙.问:甲、乙分别应得多少元?22.小赵、小钱、小孙、小李、小周、小吴、小郑、小王,这8名同学站成一排.其中小孙和小周不能相邻,小钱和小吴也不能相邻,小李必须在小郑和小王之间(可相邻也可不相邻).则不同的排列方法共有多少种?23.一艘船从甲港顺水而下到乙港,到达后马上又从乙港逆水返回甲港,共用了12小时.已知顺水每小时比逆水每小时多航行16千米,又知前6小时比后6小时多航行80千米.那么,甲、乙两港相距多少千米?24.有一块正方形铁皮,边长是36厘米,在四角各剪去一个的小正方形后,将剩余部分焊成一个无盖的长方体(或正方体)盒子,那么这个盒子的容积最大是多少立方厘米?25.大于0的自然数n 小于100,并且满足等式n n n n =⎥⎦⎤⎢⎣⎡+⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡632,其中][x 表示不超过x 的最大整数,这样的自然数n 有多少个?26.将所有正整数从小到大分组,其中第k 组含有1+k 个数:第1组:(1,2);第2组:(3,4,5);第3组:(6,7,8,9),那么,2019所在那一组所有数的平均数是多少?27.有A 、B 、C 三个蜂鸣器,每次持续鸣叫的时间比是5:4:3.每个蜂鸣器每次鸣叫完后停8秒钟又开始鸣叫.最初三个蜂鸣器同时开始鸣叫,14分钟后,此时B 蜂鸣器已是第43次鸣叫了,问:最初同时开始鸣叫后的多少秒A 与C 第一次同时结束鸣叫?28.O 是KM 与BN 的交点,4:1:=KB AK ,5:4:=MC BM ,1:3:=OM KO ,OD 垂直于AC ,它的长度4=d ,如果10=AC ,那么KMN ∆的面积是多少?29.请计算3020的所有因数中,比1520小且不是1520的因数的数有多少个?30.如图为一个含有一段直路AB 和一段圆路组成的封闭环形路,有甲、乙两辆汽车同时从A 同向出发(走到圆形路后,旋转方向也相同)连续行驶.AB 长5千米,圆周长30千米,每辆汽车总是A →B(转圈)→B→A→B…的路线,已知甲车速度是乙车速度的0.7倍,求甲、乙两车第一次迎面相遇的位置距A处多少千米?。