四年级数学竞赛奥数讲义-例题

合集下载

四年级奥数讲义

四年级奥数讲义

四年级奥数讲义本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第一讲和倍问题知识点:已知两个量的和与这两个量的倍数关系,要我们求这两个量分别是几。

和÷(倍数+1)= 较小数;较小数 × 倍数= 较大数;和-较小数= 较大数例1:甲、乙两个仓库共存货物960吨,已知甲仓库所存货物是乙仓库的2倍,问甲、乙两个仓库各存货物多少吨?例2:果园里有梨树,苹果树和桃树共1800棵,其中梨树的棵数是苹果树的2倍,桃树的棵数是苹果树的2倍,问三种树各多少棵例3:学校里的足球只数是排球的3倍,篮球的只数是排球的5倍,足球和篮球共72只,问三种球各多少只?例4:三块钢板共重207千克,第一块的重量是第二块的3倍,第二块的重量是第三块的2倍,第三块钢板重多少千克?例5:某小学购进红粉笔和白粉笔共244盒,购进的白粉笔比红粉笔的7倍少12盒,问购进红粉笔、白粉笔各多少盒?例6:两箱茶叶共重88千克,如果从甲箱取15千克放入乙箱,那么乙箱的重量是甲箱的3倍,问两箱原有茶叶各多少千克?例7:甲水池有水1500升,乙水池有水1200升,每分钟从甲水池流入乙水池25升水,问多少分钟后乙水池的水是甲水池的2倍?自我检测:填空。

小红和妈妈的年龄加在一起是40岁,妈妈的年龄是小红年龄的4倍。

妈妈岁,小红岁。

生产队养公鸡、母鸡共404只,其中公鸡是母鸡的3倍。

公鸡有只,母鸡有只。

小明买语文本和数学本共25本,其中语文本比数学本的2倍多4本,语文练习本买了本,数学练习本买了本。

师傅和徒弟一共生产零件190个,师傅生产的个数比徒弟的3倍少10个。

徒弟生产零件个,师傅生产零件个。

A、B两人同时从学校出发相背而行,2小时共行48千米,A的速度是B的2倍,求A的速度是,B的速度是。

一块长方形木板,长是宽的2倍,周长是54厘米。

这块长方形木板的长是厘米,宽是厘米,面积是平方厘米。

四年级数学竞赛奥数讲义例题

四年级数学竞赛奥数讲义例题

×计算:66666×133332求算式{200982009920096999888666⨯÷L L L 123123个个个的计算结果的各位数字之和。

计算:{{222010120108888111-L L 个个计算:22222×99999+33333×33334计算1009100910099999991999⨯+L L L 123123123个个个结果末尾有多少个零?【你还记得吗】 (★★★) 计算:2010××计算:333××测试题1.计算222222×999999A .B .C .D . 2.计算6666×13332A .B .C .D .3.计算:3001300229931111222233334÷L L L 1231424314243个个个A .3013333L 14243个3B .2003333L 14243个3C .3003333L 14243个3D .3063333L 14243个34.计算100×100-99×99+98×98-97×97+…+2×2-1×1A .4950B .5050C .5150D .5250第一讲:多位数计算(★★★)(★★★★)(★★★★)(★★★★)(★★★)(★★★★)(★★★★★)(★★★★)5.计算99999×26+33333×24A.3996366 B.6933669 C.3399966 D.36699666.计算:899×899+1799A.819000 B.810000 C.900000 D.9810007.计算111111×777777+444444×5555558.计算2009×-2007×A.2 B.4016 C.4017 D.0第二讲:容斥原理上(★★)网校老师共50人报名参加了羽毛球或乒乓球的训练,其中参加羽毛球训练的有30人,参加乒乓球训练的有35人,请问:两个项目都参加的有多少人?(★★★)一个班30人,完成作业的情况有三种:一种是完成语文作业没完成数学作业;一种是完成数学作业没完成语文作业;一种是语文、数学作业都完成了。

四年级下册数学试题-奥数专题讲练:4 定义新运算 竞赛篇(解析版)全国通用

四年级下册数学试题-奥数专题讲练:4 定义新运算 竞赛篇(解析版)全国通用

第四讲 定义新运算卷Ⅰ这一讲我们主要学习定义新运算的三大计算类型:1、理解并熟练掌握根据新的定义运算方式进行加减乘除运算;2、理解并熟练掌握根据计算机编程语言计算输出结果;3、了解其它类型的定义运算.分析:因为狼△狼=狼,所以原式=羊△(狼☆羊)☆羊△狼无论前面结果如何,最后一步羊△狼或者狼△狼总等于狼,所以原式=狼同学们,我们已经学习了加、减、乘、除四种运算,我们知道“+”这个符号表示求两数之和,“-”表示两个数的差,“×”表示两个数的积,“÷”表示两个数的商.但是在很多情况下,特别是当代计算机程序编辑过程中,仅仅应用这四种运算是不够的,我们还需要运用到很多其他的运算方式.这些运算是由一些新定义的运算符号而导出的一种运算,如△、◎、※等等,这些特殊的运算符号,表示特定的意义,是人为设定的,这类运算就是我们常见的定义新运算问题.定义新运算都是以一种新的面孔出现,其中的符号没有确定的运算意义,都是根据实际的需要而人为地规定.这种题型大多数都是根据题目规定的运算方式直接计算,但是还有一些与方程以及其他方面的综合.这主要考察学生的实际应用能力,我们不能死读书,要灵活运用题干信息,把定义的新运算转化成我们所熟悉的四则运算,这样才是解决这类题目的关键.专题精讲教学目标羊和狼在一起时,狼要吃掉羊.所以关于羊及狼,我们规定一种运算,用符号△表示:羊△羊=羊;羊△狼=狼;狼△羊=狼;狼△狼=狼以上运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,但是狼与羊在一起便只剩下狼了.小朋友总是希望羊能战胜狼.所以我们规定另一种运算,用符号☆表示:羊☆羊=羊;羊☆狼=羊;狼☆羊=羊;狼☆狼=狼, 这个运算的意思是:羊与羊在一起还是羊,狼与狼在一起还是狼,但由于羊能战胜狼,当狼与羊在一起时,它便被羊赶走而只剩下羊了. 对羊或狼,可以用上面规定的运算作混合运算,混合运算的法规是从左到右,括号内先算.运算的结果或是羊,或是狼.求下式的结果:羊△(狼☆羊)☆羊△(狼△狼)想 挑 战 吗 ?(一) 直接运算型【例1】 定义运算※为a ※b =a ×b -(a +b ), (1) 求5※7,7※5; (2) 求12※(3※4),(12※3)※4;(3) 这个运算“※”有交换律、结合律吗?分析:(1)5※7=5×7-(5+7)=35-12=23,7※ 5= 7×5-(7+5)=35-12=23.(2)要计算12※(3※4),先计算括号内的数,有:3※4=3×4-(3+4)=5,再计算第二步12※5=12×5-(12+5)=43,所以 12※(3※4)=43.对于(12※3)※4,同样先计算括号内的数,12※3=12×3-(12+3)=21,其次21※4=21×4-(21+4)=59,所以(12※ 3)※4=59.(3)由于a ※b =a ×b -(a +b );b ※a =b ×a -(b +a )=a ×b -(a +b )(普通加法、乘法交换律), 所以有a ※b =b ※a ,因此“※”有交换律.由(2)的例子可知,运算“※”没有结合律.[巩固]定义新的运算a b a b a b ⊕=⨯++,求: (1)62⊕,26⊕(2)(12)3⊕⊕,1(23)⊕⊕(3)这个运算有交换律吗?分析:(1)62⊕=6×2+6+2=20;26⊕=2×6+2+6=20(2)(12)3⊕⊕=(1×2+1+2)⊕3=5⊕3=5×3+5+3=23; 1(23)⊕⊕=1⊕(2×3+2+3)=1⊕11=1×11+1+11=23(3)由于a b a b a b ⊕=⨯++=×b a b a ++(普通加法、乘法交换律),所以a b b a ⊕=⊕,即满足交换律.[拓展]如果a 、b 、c 是三个整数,则他们满足加法交换律和结合律,即a +b =b +a ,(a +b )+c =a +(b +c ).现在规定一种运算“*”,它对于整数a 、b 、c 、d 满足:(a ,b )*(c ,d )=(a ×c +b ×d ,a ×c -b ×d ).例如:(4,3)*(7,5)=(4×7+3×5,4×7-3×5)=(43,13).请你举例说明:“*”运算是否满足交换律和结合律.分析:(7,5)*(4,3)=(4×7+3×5,4×7-3×5)=(43,13),所以“*”运算满足加法交换律, (2,1)*(3,2)*(3,4)=(2×3+1×2,2×3-1×2)*(3,4)=(8,4)*(3,4)=(3×8+4×4,3×8-4×4)=(40,8) ;(2,1)*[(3,2)*(3,4)]=(2,1)*[3×3+2×4,3×3-2×4]=(2,1)*[17,1]=(2×17+1×1,2×17-1×1)=(35,33).所以,(2,1)*(3,2)*(3,4)≠ (2,1)*[(3,2)*(3,4)],因此 “*”不满足结合律.【例2】 定义新运算“\”表示求两个自然数相除所得商的运算,例如:9\2=4,10\3=3.(1) 求27\8,2007\81,2002\66;(2) 试用符号“\”和已经学过的运算符号来表示求两个自然数相除所得的余数的运算.分析:(1)27\8=3;2007\81=24; 2002\66=30;(2)由于被除数÷除数=商……余数, ∴余数=被除数-除数×商,∴a 除以b 的余数为a -b ×(a\b ). [前铺]两个整数a 和b ,a 除以b 的余数记为a b.例如,135=3.根据这样定义的运算,计算:(1)(269)4等于多少?(2)108(200819)分析:(1)因为:26÷9=2……8,8÷4=2,所以 (269)4=84=0 (2)因为:2008÷19=105……13,108÷13=8……2,所以 108(200819)=10813=4【例3】 如果 3*2=3+33=36 2*3=2+22+222=246 1*4=1+11+111+1111=1234 那么4*5=( ).分析:4*5=4+44+444+4444+44444=49380[巩固]规定: 6*2=6+66=72,2*3=2+22+222=246,1*4=1+11+111+1111=1234. 求7*5.分析:7*5=7+77+777+7777+77777=86415【例4】 定义两种运算“⊕”“⊗”,对于任意两个整数a 、b ,a ⊕b=a+b-1,a ⊗b=a ×b-1,计算:4[]⊗⊕⊕⊕(68)(35)分析:⊕68=6+8-1=13,⊕35=3+5-1=7,137⊕=13+7-1=19,4⊗19=4×19-1=754[]⊗⊕⊕⊕(68)(35)=75[巩固]规定:符号“△”为选择两数中较大的数的运算,“ ☆”为选择两数中较小的数的运算,例如,3△5=5,3☆5=3.请计算下式:[(70☆3)△5]×[ 5☆(3△7)].分析:因为(70☆3)△5=3△5=5,5☆(3△7)=5☆7=5,所以[(70☆3)△5]×[ 5☆(3△7)]=5×5=25【例5】定义“*”的运算如下:对任何自然数a 、b ,如果a +b 是3的倍数,则a*b =a b3+,如果a +b 除以3余数为1,则a*b =a b-13+,如果a +b 除以3余数为2,则a*b =a b-23+. 求:(2005*2006)*(2007*2008)分析:因为2005+2006=4011是3的倍数,所以2005*2006=4011÷3=1337,因为2007+2008=4013,4013÷3=1337…2,所以2007*2008=(4011-2)÷3=1337,因为1337+1337=2674,2674÷3=891…1,所以1337*1337=(1337+1337-1)÷3=891,所以(2005*2006)*(2007*2008)=891 [前铺]定义运算“⊙”如下:2a ba b +⊕=. (1) 计算2007⊕2009,2006⊕2008 (2) 计算1⊕5⊕9,1⊕(5⊕9),分析:(教师先告诉学生2a b+表示(a+b )÷2) (1)2007⊕2009=200720092+=2008;2006⊕2008=200620082+=2007(2)1⊕5⊕9=152+⊕9=3⊕9=392+=6 1⊕(5⊕9)=1⊕592+=1⊕7=172+=4;[巩固]定义“☆”的运算如下:对任何自然数a 、b ,如果a +b 是偶数,则a ☆b =a b2+,如果a +b 是奇数,则a ☆b =a b 12+-. 求:(1)(1 999☆2 000)☆(2 001☆2 002); (2)1 998☆(2 000☆2 002)☆2 004.分析: (教师先告诉学生2a b+表示(a+b )÷2) (1)因为1999+2000=3999是奇数,所以1999☆2000=19992000119992+-=,2001+2002=4003是奇数,所以2001☆2002=20012002120012+-=,1999+2001=4000是偶数,所以1999☆2001=1999200120002+=,所以(1 999☆2 000)☆(2 001☆2 002)=2000 (3) 因为2000+2002=4002是偶数,2000☆2002=2000200220012+=,1998+2001=3999是奇数,所以1 998☆2001=19982001119992+-=,1999+2004=4003是奇数,所以1999☆2 004=19992004120012+-=,所以1 998☆(2 000☆2 002)☆2 004=2001【例6】 对自然数m ,n (n ≥m ),规定mn P =n ×(n -1)×(n -2)×…×(n -m +1);[(1)(1)][(1)1]m m m n m nn n n m m m CP P =÷=⨯-⨯⨯-+÷⨯-⨯⨯L L .求:123456666666,,,,,C C C C C C分析:16C=(16P)÷(11P)=6÷1=6;26C=(6×5)÷(2×1)=15;36C=(6×5×4)÷(3×2×1)=20;46C=(6×5×4×3)÷(4×3×2×1)=15;56C=(6×5×4×3×2)÷(5×4×3×2×1)=6;66C=(66P)÷(66P)=1[前铺]对自然数m ,n (n ≥m ),规定m n P =n ×(n -1)×(n -2)×…×(n -m +1).例如:24P =4×3=12.34P =4×3×2=24.求:(1)345555P P P ,,;(2)34566666P P P P ,,,.分析:(1)35P =5×4×3=60,45P =5×4×3×2=120,55P =5×4×3×2×1=120(2)36P =6×5×4=120,46P =6×5×4×3=360,56P =6×5×4×3×2=720,66P =6×5×4×3×2×1=720.[总结]这类题型就是直接按照题目的要求进行运算,在运算的过程中特别要注意每个位置上对应的数字.卷Ⅱ(二) 反求未知数【例7】 规定:a △b=a +(a +1)+(a +2)+…+(a +b-1),其中a 、b 表示自然数。

四年级奥数讲义

四年级奥数讲义

奥数讲义【例题1】六合农场把98000千克粮食分别存入两个仓库,已条存入第一仓库里的粮食是第二仓库的3倍。

两个仓库各存多少千克粮食?【思路导航】我们把已知几个数的和及它们之间的倍数关系,求这几个数各是多少的问题称为和倍问题。

解答和倍问题,要在已知条件中确定一个数为标准(一般以小数作为标准),假定小数是1倍或1份,再根据其他几个数与小数的倍数关系,确定总和相当于1倍数的多少倍,然后用除法求出小数,再算出其他各数。

和倍问题的数量关系是:和÷(倍数+1)=小数小数×倍数=大数本题中,第二个仓库的粮食比第一个中的少,所以设第二个仓库为小数。

则第一个仓库就是3倍的小数,由题可知,一、二仓库粮食总和为98000,则4倍的小数等于98000,计算可得小数=24500。

所以,第一个仓库粮食为73500,第二个仓库粮食为24500千克。

练习1:(1)学校有科技书和故事书共480本,科技书的本数是故事书的3倍,两种书各有多少本?(2)用锡和铝制成的合金是720千克,其中铝的重量是锡的5倍,铝和锡各用了多少千克?(3)甲、乙两书的和是112,甲数除以乙数的商是6,甲、乙两数各是多少?【例题2】果园里有梨树、桃树和苹果树共1200棵,其中梨树的棵树是苹果树的3倍,桃树的棵树是苹果树的4倍。

求梨树、桃树和苹果树各有多少棵?【思路导航】较上个题稍微复杂,从题目中可以看出三种果树中,苹果树数量最少,确定为标准数。

则梨树为3个标准数,桃树为4个标准数。

总共有8个标准数,而三种果树总共有1200棵,所以一个标准数等于1200/8=150。

所有苹果树有150棵,梨树有450棵,桃树有600棵。

练习2:(1)某专业户李大伯养鸡、鸭、鹅共960只,养鸡的只数是鹅的3倍,养鸭的只数是鹅的4倍,鸡、鸭、鹅各养了多少只?(2)甲、乙、丙三数之和是360,又知甲是乙的3倍,丙为乙的2倍,求甲、乙、丙各是多少?(3)商店有铅笔、钢笔、圆珠笔共560支,圆珠笔的支数是钢笔的3倍,铅笔的支数和圆珠笔的支数同样多。

四年级下册数学试题-奥数讲义-第07讲-逻辑推理初步-(含答案)人教版

四年级下册数学试题-奥数讲义-第07讲-逻辑推理初步-(含答案)人教版

第八讲逻辑推理初步【例1】在三只盒子里,一只装有两个黑球,一只装有两个白球,还有一只装有黑球和白球各一个.现在三只盒子上的标签全贴错了.你能否仅从一只盒子里拿出一个球来,就确定这三只盒子里各装的是什么球?分析与解:可以枚举,一一尝试.当从贴有“一黑一白”的盒子中取出一个球,如果是白球,那么这只盒子一定装有两个白球,于是贴有“两个黑球”的盒子一定装有一个白球和一个黑球,最后贴有“两个白球”的盒子一定装有两个黑球.对应的,如果从贴有“一黑一白”的盒子中取出一个球,如果是黑球,那么这只盒子一定装有两个黑球,剩下的两只盒子可以同上分析出.所以,只要从贴有“一黑一白”的盒子中取球即可。

【例2】甲、乙、丙、丁4位同学的运动衫上印有不同的号码.赵说:“甲是2号,乙是3号.”钱说:“丙是4号,乙是2号.”孙说:“丁是2号,丙是3号.”李说:“丁是l 号,乙是3号.”又知道赵、钱、孙、李每人都只说对了一半.那么丙的号码是几号?分析与解:如下表,先假设赵的前半句话正确,判断一次;再假设赵的后半句正确,再判断一次.即甲是1号,乙是3号,丙是4号,丁是2号.所以丙的号码是4号。

拓展训练要点总结课堂精讲有三个人拿着一块金属,第一个人说:“这不是铁,这是锡。

”第二个人说:“不对,是铁不是锡。

”第三人说:“这不是铁也不是铜。

”三人各执一词,最后他们去问一位物理老师。

老师听了以后说:“你们之中,有一个人的两个判断都不对,有一个人的两个判断一对一错,有一个人的两个判断都对。

”三个人想了一会儿,终于明白这是一块什么金属。

现在你知道了吗?答案:这是一块铁。

由第一个人与第二个人的谈话可知,这两个人的观点正好完全相反,因此,这两个人中一定有一个人的结论完全正确,一个人的结论完全错误,而第三个人的结论一对一错。

由此可得出此结论。

【例3】某参观团根据下列条件从A,B,C,D,E这5个地方中选定参观地点:①若去A地,则也必须去B地;②B,C两地中至多去一地;③D,E两地中至少去一地;④C,D两地都去或者都不去;⑤若去E地,一定要去A,D两地.那么参观团所去的地点是哪些?分析与解:假设参观团去了A地,由①知一定去了B地,由②知没去C地,由④知没去D地,由③知去了E地,由⑤知去了4、D两地,矛盾.所以开始的假设不正确,那么参观团没有去A地,由①知也没去B地,由②知去了C地,由④知去了D地,因为A、D两地没有都去,所以由⑤知没去E地.即参观团去了C、D两地。

四年级数学竞赛奥数讲义例题图文百度文库

四年级数学竞赛奥数讲义例题图文百度文库

四年级数学竞赛奥数讲义例题图文百度文库一、拓展提优试题1.21个篮子,每个篮子中有48个鸡蛋,现在将这些鸡蛋装到一些盒子中,每个盒子装28个鸡蛋,可以装盒.2.甲、乙、丙、丁四人参加了一次考试,甲、乙的成绩比丙、丁的成绩和高17分,甲比乙低4分,丙比丁高5分.四人中最高分比最低分高分.3.一辆公共汽车有78个座位,空车出发,第一站上一位乘客,第二站上二位乘客,第三站上三位乘客,依次下去,多少站以后,车上坐满乘客?4.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D再到A,走了31米,此问长方形ABCD的周长多少米?5.六个人传球,每两人之间至多传一次,那么这六个人最多共进行15次传球.6.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年岁.7.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生名.8.如图是长方形,将它分成7部分,至少要画条直线.9.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有辆.10.四年级的两个班共有学生72人,其中有女生35人,四(1)班有学生36人,四(2)班有男生19人,则四(1)班有女生人.11.如果,那么=.12.有白棋子和黑棋子共2014个,按照如图的规律从左到右排成一行,其中黑棋子的个数是.○●○●●○●●●○●○●●○●●●○●○●●○…13.(15分)水果店用三种水果搭配果篮,每个果篮里有2个哈密瓜,4个火龙果,10个猕猴桃,店里现有的火龙果的数量比哈密瓜的3倍多10个,猕猴桃的数量是火龙果的2倍,当用完所有的哈密瓜后,还剩130个火龙果.问:(1)水果店原有多少个火龙果?(2)用完所有的哈密瓜后,还剩多少个猕猴桃?14.如图,一个大正方形被分成四个相同的小长方形和一个小正方形,若一个小长方形的周长是28,则大正方形的面积是.15.商店里有甲、乙、丙三筐苹果,丙筐内苹果的个数是甲筐内苹果的个数的2倍,若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果,则乙筐内原有苹果个.16.一个质数的2倍和另一个质数的5倍的和是36,求这两个质数的乘积是多少?17.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有天..18.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是平方米.19.洋洋从家出发去学校,若每分钟走60米,则它6:53到达学校,若每分钟走75米,则她6:45到达学校,洋洋从家里出发的时刻是.20.一个正方形的面积与一个长方形的面积相等,若长方形的长是1024,宽是1,则正方形的周长是.21.学校有足球和篮球共20个,恰好可供96名同学同时活动,足球每6人玩一个,篮球每3人玩一个,其中足球有个.22.是三位数,若a是奇数,且是3的倍数,则最小是.23.三个连续自然数的乘积是120,它们的和是.24.已知x,y是大于0的自然数,且x+y=150,若x是3的倍数,y是5的倍数,则(x,y)的不同取值有对.25.如图,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向移动其中的4个长方形,则所得图形的周长是cm.26.观察7=5×1+2,12=5×2+2,17=5×3+2,这里7,12和17被叫做“3个相邻的被5除余2的数”,若有3个相邻的被5除余2的数的和等于336,则其中最小的数是.27.甲乙两所学校共有学生864人.新学期开学前,由甲校调入乙校32人,这时甲校还比乙校多48人.原来甲校有个学生.28.如果今天是星期五,那么从今天算起,57天后的第一天是星期.29.4名工人3小时可以生产零件108个,现在要在8小时内生产504个零件,需增加工人名.30.将1~11填入下图的各个圆圈内,使每条线段上三个圆圈内的数的和都等于18.31.(8分)如图,已知正方形的面积是100m2,图中灰色部分的面积是m2.32.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是米.33.学校组织春游,租船让学生划.每条船坐3人,有16人没有船坐;如果每条船坐5人,则有一条船上差4人.学校共有学生人.34.A说:“我10岁,比B小2岁,比C大1岁.”B说:“我不是年龄最小的,C和我差3岁,C是13岁.”C说:“我比A年龄小,A是11岁,B比A 大3岁.”以上每人所说的三句话中都有一句是错误的,请确定其中A的年龄是岁.35.(7分)有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有是偶数.36.(7分)用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.37.定义运算:A△B=2A+B,已知(3△2)△x=20,x=.38.一个两位数除723,余数是30,满足条件的两位数共有个,分别是.39.一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米.这捆电线原来有多少米?40.甲,乙二人先后从一个包裹中轮流取糖果,甲先取1块,乙接着取2块,然后甲再取4块,乙接着取8块,…,如此继续.当包裹中的糖果少于应取的块数时,则取走包裹中所有糖果,若甲共取了90块糖果,则最初包裹中有块糖果.【参考答案】一、拓展提优试题1.【分析】根据乘法的意义,可用21乘48计算出鸡蛋的总个数,然后再根据除法的意义,用总的鸡蛋个数除以28进行计算即可得到需要的盒子数.解:21×48÷28=1008÷28=36(盒)答:可以装36盒.故答案为:36.【点评】此题主要考查的是乘法意义和除法意义的应用.2.解:设乙得了x分,则甲得了x﹣4分,丙得了y分,则丁得了y﹣5分,所以(x+x﹣4)﹣(y+y﹣5)=17,整理,可得:2x﹣2y+1=17,所以2x﹣2y=16,所以x﹣y=8,所以乙比丙得分高;因为x﹣y=8,所以(x﹣4)﹣(y﹣5)=9,所以甲比丁得分高,所以乙得分最高,丁得分最低,所以四人中最高分比最低分高:x﹣(y﹣5)=x﹣y+5=8+5=13(分)答:四人中最高分比最低分高13分.故答案为:13.3.解:设第n站以后车上坐满了乘客,可得:[1+1+(n﹣1)×1]×n÷2=78[2+n﹣1]×n÷2=78,[1+n]×n÷2=78,(1+n)×n=156,由于12×13=156,即n=12.答:12站以后,车上坐满乘客.4.解:长方形长比宽多:38﹣31=7(米),长方形宽:(38﹣7×2)÷3,=24÷3,=8(米),长:8+7=15(米),(15+8)×2,=23×2,=46(米),答:长方形ABCD的周长46米.5.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.故答案为:13.6.解:10×4﹣(97﹣59)=40﹣38=2(岁)所以豆豆是3年前出生的,即今年豆豆应该是3岁,今年豆豆的哥哥的年龄为:3+3=6(岁),今年全家的年龄和为:97﹣5×4=77(岁),今年爸爸妈妈的年龄和为:77﹣3﹣6=68(岁),豆豆的妈妈今年的年龄为:(68﹣2)÷2=33(岁).答:豆豆妈妈今年33岁.故答案为:33.7.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.解:(730﹣16)÷17=714÷17=42(名);答:这个班共有学生42名.故答案为:42.【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.8.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.解:1+1+2+3=7答:在一个长方形上画上3条直线,最多能把长方形分成7部分.故答案为:3.【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.9.解:假设24辆全是4个轮子的汽车,则三轮车有:(24×4﹣86)÷(4﹣3),=10÷1,=10(辆),答:三轮车有10辆.故答案为:10.10.【分析】先用两个班的总人数减去四(1)班的人数,求出四(2)班的人数,再用四(2)班的人数减去四(2)班男生的人数,求出四(2)班女生的人数,再用女生的总人数35人,减去四(2)班的女生人数,就是四(1)班的女生人数.解:35﹣(72﹣36﹣19)=35﹣17=18(人)答:四(1)班有女生 18人.故答案为:18.【点评】解决本题注意理解题意,把总人数按照两种方法进行分类:总人数=四(1)班人数+四(2)班人数=男生人数+女生人数.11.解:因为,所以(b+10a)×65=4800+10a+b,即10a+b=75,因此b=5,a=7.即=75.故答案为:75.12.【分析】根据每9个棋子是一个循环,用2014除以9,用得到的商乘以一个循环中黑棋子的个数,再根据余数的情况判断最后需加上几个黑棋子即可.解:2014÷9=223…7,循环了223次后,还剩7个,里面有4个黑棋子,223×6+4=1338+4=1342(个)答:其中黑棋子的个数是1342个.故答案为:1342.【点评】答此类问题的关键是找出每几个数或每几个图形是一个循环.13.【分析】(1)所有的果篮用掉2个哈密瓜,4个火龙果,8个猕猴桃.当哈密瓜全部用完时,用掉火龙果的数量是哈密瓜的2倍,依题意,可画出线段图帮助理解:剩下的130个对应着箭头部分,然后列式解答;(2)先求出水果店原有的猕猴桃,即370×2=740(个);再求用完所有的哈密瓜后,还剩下的猕猴桃数即可.解:(1)(130﹣10)÷2=120÷2=60(个)60×6+10=360+10=370(个)答:水果店原有370个火龙果.(2)370×2=740(个)740﹣60×10=740﹣600=140(个)答:还剩140个猕猴桃.【点评】此题属于比较难的题目,解答的关键在于画出线段图来理解,找出数量关系式,列式解答.14.【分析】一个小长方形的周长是28,也就是小长方形的长和宽的和是28÷2=14,也就是大正方形的边长,然后根据正方形的面积公式,解决问题.解:28÷2=1414×14=196答:大正方形的面积是196.故答案为:196.【点评】根据长方形的长和宽与正方形边长之间的关系,先求出小长方形的长和宽的和,即求出了大正方形的边长.15.【分析】根据题意“若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果”则原来甲筐比丙筐少(12+24)=36个苹果,结合原来丙筐内苹果的个数是甲筐内苹果的个数的2倍,可以求出原来甲筐和丙筐苹果的数量,同时知道原来乙筐比丙筐多(6+12)个苹果,进而求出原来乙筐苹果的个数.解:根据题意可知,原来甲筐比丙筐少(12+24)=36个苹果,且原来丙筐是甲筐个数的2倍,则原来甲筐有:36÷(2﹣1)=36个,原来丙筐有:36×2=72个,原来乙筐有:72+(6+12)=90(个)答:乙筐内原有苹果 90个.故答案为:90.【点评】此题考查了差倍问题,根据题意得出:原来甲筐比丙筐少(12+24)=36个苹果,原来乙筐比丙筐多(6+12)个苹果,是解答此题的关键.16.【分析】一个质数的2倍一定是偶数,一个质数的5倍一定是5的倍数,而36要拆成两个数的和,要么都是偶数,要么都是奇数,本题中2的倍数一定是偶数,所以只能拆成两个偶数,故此5的倍数只能是个位上带0的数,当是10时,36﹣10=26,26÷2=13当是20时,4×5=20,4不是质数当是30时,5×6=30,6不是质数,据此解答.解:根据分析可得:符合题意的5的倍数只能是10,20,305×2=10,5×4=20,5×6=30,4和6不是质数,所以只能是2,36﹣10=26.答:这两个质数的乘积是26.【点评】本题考查了质数的定义及其奇数与偶数的性质.17.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期每一周期有一天重合,那么100周期共有100天重合.故答案为:100.【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.18.解:(35﹣7)×7÷2=28×7÷2=98(平方米)答:这块养猪场的面积是 98平方米.故答案为:98.19.【分析】6时53分﹣6时45分=8分钟,设从家到学校若每分钟走60米,x分钟到学校,则若每分钟走75米,x﹣8分钟到学校,因为从家到学校的距离一定,根据“速度×时间=路程”列方程解答即可.解:设从家到学校若每分钟走60米,x分钟到学校,6时53分﹣6时45分=8分钟60x=(x﹣8)×7560x=75x﹣60015x=600x=40;6时53分﹣40分=6时13分;答:洋洋从家里出发的时刻是6:13.故答案为:6:13.【点评】此题考查列方程解应用题,本题关键是根据题意找出基本数量关系,设未知数为x,由此列方程解决问题.20.【分析】若长方形的长是1024,宽是1,根据长方形的面积=长×宽,可求出长方形的面积,再根据正方形的面积公式可求出正方形的边长,然后再根据正方形的周长=边长×4可求出它的周长.解:1024×1=10241024=2×2×2×2×2×2×2×2×2×2=32×32,所以正方形的边长是32.32×4=128答:正方形的周长是128.【点评】本题主要考查了学生对长方形面积和正方形面积与周长公式的掌握.21.解:假设全是足球,96÷6=16(个),4×6=24(人),篮球:24÷(6﹣3),=24÷3,=8(个);足球:20﹣8=12(个);答:其中足球有12个.故答案为:12.22.【分析】要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,然后根据能被3整除的数的特征确定c的最小值即可.解:要使最小,那么百位数字最小是1,那么十位数字是0,这个数就为,又因为是3的倍数,所以可得:1+0+c的和是3的倍数,所以,c最小是2,则,最小是102.故答案为:102.【点评】本题考查了能被3整除的数的特征的灵活应用,关键是确定百位和十位的数字.23.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.解:120=2×2×2×3×5=(2×2)×(2×3)×5,2×2=4,2×3=6,5,即,三个连续自然数的乘积是120,这三个数是4、5、6,所以,和是:4+5+6=15.故答案为:15.【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.24.【分析】首先根据5的整除特性可知尾数是0或者5,那么150和5的倍数差依然是尾数是0或者5的数字枚举即可.解:根据5的整除特性可知尾数是0或者5.那么150减去这个数字尾数还是0或者5.可以找到尾数是0或者5的数字是3的倍数.30,60,90,120,15,45,75,105,135共9个数字满足条件.对应的数字就有9对.故答案为:9.【点评】本题是考察数的整除特性,关键在于找到尾数是0或5的数字是3的倍数,枚举即可解决问题.25.【分析】本题考察图形边长的平移.解:画出移动后的图,所得图形的周长是5×2+(5+1×2+2×2+3×2+4×2+5)=10+30=40cm.【点评】本题主要抓住平移后的图形每条边边长为多少即可求解.26.【分析】本题主要考察等差数列中最小的项.解:因为这三个数都是被5除余2,所以这三个相邻的数是个等差数列,中间数是336÷3=112,所以最小的是112﹣5=107.【点评】本题主要找到每相邻两个数相差5就能解答.27.解:甲校比乙校多的人数:32×2+48=112人,甲校的人数:(864+112)÷2,=976÷2,=488(人).答:原来甲校有488人.故答案为:488.28.【分析】今天算起,57天后的第一天也就是经过了57天,用57除以7,求出经过了多少周,还余几天,然后根据余数推算.解:57÷7,=57÷7,=8(周)…1(天);余数是1,星期五再过1天是星期六.故答案为:六.【点评】解决这类问题先求出经过的天数,再求经过的天数里有几周还余几天,再根据余数推算.29.解:504÷8÷(108÷3÷4)﹣4,=504÷8÷9﹣4,=63÷9﹣4,=7﹣4,=3(名),答:需增加3名,故应填:3.30.解:设中间的圆圈中的数是A;根据题意可得:1+2+3+4+5+6+7+8+9+10+11+A+A+A+A=18×5,66+4A=90,4A=24,A=6;那么每条线段剩下的两个数的和是:18﹣6=12;又因为,1+11=12,2+10=12,3+9=12,4+8=12,5+7=12;分别放到每条线段剩下的两个圆圈中;由以上可得:.31.解:根据分析可得,100÷2=50(平方米)答:图中灰色部分的面积是 50m2.故答案为:50.32.解:根据分析可得,660÷(40﹣10),=660÷30,=22(米);22×10=220(米);答:火车的车身长是 220米.故答案为:220.33.解:船:(16+4)÷(5﹣3),=20÷2,=10(条);学生:3×10+16=46(人);答:学校共有学生46人.故答案为:46.34.解:根据题干分析,将讨论分析的过程利用表格的形式进行统计如下:×√以得出:B是11+2=13岁,C是11﹣1=10岁;即A11岁、B13岁、C10岁;将这个结论代入上表中,可以得出B说的C是13岁时错误的,其他两句正好符合题意是正确的,由此可得,此假设成立;答:由上述推理可以得出A是11岁.故答案为:11.35.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.解:2007÷3=669,又因为,每一个循环周期中有2个奇数,1个偶数,所以前2007个数中偶数的个数是:1×669=669;答:前2007个数中,有699是偶数.故答案为:699.36.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.37.解:(3△2)△x=20,(2×3+2)△x=20,8△x=20,2×8+x=20,16+x=20,x=20﹣16,x=4;故答案为:4.38.解:723﹣30=693,693=3×3×7×11,所以一个两位数除723,除数大于30的两位数因数有:11×3=33,11×7=77,3×3×7=63,11×3×3=99,共4个;故答案为:33、63、77、99.39.解:[(15+7﹣10)×2+3]×2=[12×2+3]×2=[24+3]×2=27×2=54(米)答:这捆电线原来长54米.40.【分析】通过题意,甲取1块,乙取2块,甲取4块,乙取8块, (1)20,2=21,4=22,8=23…,可以看出,甲取的块数是20+22+24+26+28+…,相应的乙取得块数是21+23+25+27+29+…,我们看一看90是甲取了几次,乙相应的取了多少次,把两者总数加起来,即可得解.解:甲取的糖果数是20+22+24+…+22n=90,因为1+4+16+64+5=90,所以甲共取了5次,4次完整的,最后的5块是包裹中的糖果少于应取的块数,说明乙取了4次完整的数,即乙取了21+23+25+27=2+8+32+128=170(块),90+170=260(块),答:最初包裹中有 260块糖果.故答案为:260.【点评】判断出甲乙取得次数是解决此题的关键.。

四年级下册数学奥数讲义-角的分类和角的计算 含答案

四年级下册数学奥数讲义-角的分类和角的计算 含答案

角 角,既可以用静止的眼光来观察,也可以用运动的眼光来看待.具有公共端点的两条射线组成的图形或一条射线绕着端点从一个位置旋转到另一位置所成的图形,称为角.角也是几何学的基本图形之一,与角相关的知识有:周角、平角、直角、锐角、钝角、角平分线、数量关系角(如余角、补角)、位置关系角(如邻补角、对顶角)等概念及关系.解与角有关的问题,类似于解与线段相关的问题,常常用到重要概念、分类的思想、代数化的观点等知识与方法.例题【例1】如图是一个3× 3的正方形,则图中∠1+∠2+∠3+…+∠9的度数是 .思路点拨 除∠3=∠5=∠7=45°外,其他各角的度数无法求出,故不能顺序求和.考虑应用加法的交换律、结合律,关键是对图形进行恰当的处理.【例2】 如图.A 、O 、B 在一条直线上,∠1是锐角,则∠1的余角是( ).A .21∠2一∠lB .21∠2一23∠1 C .21(∠2一∠l ) D .(∠2+∠1)思路点拨 ∠1的余角表示为90°一∠1,化简这个代数式,直至与选择项相符为止.注:概念是数学的基础与出发点,几何的学习贯彻着丰富的概念,为掌握重要的几何概念,应注意以下几点:(1)重视概念的图化,即用田来反映出概念,做到图意相通.(2)图文互译,由图说出概念,由概念的文字叙述画出图,做到会说、会写、会画.(3)注意概念判定与性质在解题中的双重作用.【例3】 已知∠1和∠2互补,∠3和∠2互余,求证∠3=21 (∠l 一∠2).思路点拨 依据互补、互余的概念得到含∠l 、∠2、∠3的两个等式,盯住所要达到的目的,恰当处理两个等式.31【例4】 如图,已知∠AOB 与∠BOC 互为补角,OD 是∠AOB 的平分线,OE 在∠BOC 内,∠BOE=21∠EOC ,∠DOE= 72°,求∠EOC 的度数.思路点拨 设∠AOB=x 度,∠BOC= y 度,建立x 、y 的方程组,用代数方法解几何问题是一种常用的方法.【例5】(1)如图,已知∠AOB=90°,∠BOC=30°,OM 平分∠AOC ,ON 平分之∠BOC ,求∠MON 的度数.(2) 如果(1)中∠AOB=α,其他条件不求,求∠MON 的度数.(3) 如果(1)中∠BOC=β(β为锐角),其他条件不求,求∠MON 的度数.(4)从(1)、(2)、<3)的结果中能得出什么结论?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法,请你模仿(1)~(4)设计一道以线段为背景的计算题,写出其中的规律,并给出解答.思路点拨 本例层层设问,由易到难,从特殊入手,观察归纳,发现一般规律,并运用类比的方法(线段与角相关概念类比)提出问题,是一个从模仿到创造的过程,根据条件,结合图形寻找图形中各种数量之间的关系是解这类问题的常用方法.注:互余、互补的概念在角的计算与证明中占有重要地位,由这两个概念得到的两个等式,是几何问题代数化的桥梁,方程(组)的应用,可以简洁、清晰地表示出几何量之间的数量关系。

四年级数学奥数讲义+练习-第3讲 简单推理(全国通用版,含答案)

四年级数学奥数讲义+练习-第3讲 简单推理(全国通用版,含答案)

奥数已经成为现在孩子学习的加强工具。

一种思维方式的训练,一种让孩子学以致用,举一反三的法宝,一种可以扩宽孩子思维的奥秘兵器。

老师经常对学生们说,养成好的学习品质,拥有好的学习方法比学习知识自己重要得多,它是学好知识的前提。

学习奥数更是如此。

奥数题对学生们的要求是非常严格的,你既要注意到思维有广度有深度,在做题时还要加倍小心。

有些题往往是一字之差,谬之千里。

习惯的养成不是一朝一夕之功。

要养成好的学习习惯,首先,需要学生对这个问题有个正确的认识,有些家长往往错误地认为。

只要是标题问题理解了,出点小错不妨。

这样做的结果,往往助长了学生粗心大意之习气。

而在奥数题中,一点小错,往往是致命的。

学生做题出错了,我们应把它做为一个好的教育学生的契机,引导学生找出错误原因并不停积累,是知识方面的,要牢记。

是习惯方面的,要改正。

相信久而久之,好的习惯必能养成。

第3讲简单推理一、知识要点解答推理问题,要从许多条件中找出关键条件作为推理的突破口。

推理要有条理地进行,要充分利用已经得出的结论,作为进一步推理的依据。

二、精讲精练【例题1】一包巧克力的重量等于两袋饼干的重量,4袋牛肉干的重等于一包巧克力的重量,一袋饼干等于几袋牛肉干的重量?【思路导航】根据“一包巧克力的重量=两袋饼干的重量”与“4袋牛肉干的重量=一包巧克力的重量”可推出:两袋饼干的重量=4袋牛肉干的重量。

因此,一袋饼干的重量=两袋牛肉干的重量。

练习1:(1)一只菠萝的重量等于4根香蕉的重量,两只梨子的重量等于一只菠萝的重量,一只梨子的重量等于几根香蕉的重量?(2)3包巧克力的重量等于两袋糖的的重量,12袋牛肉干的重量等于3包巧克力的重量,一袋糖的重量等于几袋牛肉干的重量?(3)一只小猪的重量等于6只鸡的重量,3只鸡的重量等于4只鸭的重量。

一只小猪的重量等于几只鸭的重量?【答案】(1)2(2)6(3)8【例题2】一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算:999999999×111111111计算:66666×133332求算式200982009920096999888666⨯÷个个个的计算结果的各位数字之和。

计算:222010120108888111-个个计算:22222×99999+33333×33334第一讲:多位数计算(★★★)(★★★★)(★★★★)(★★★★)(★★★)计算1009100910099999991999⨯+个个个结果末尾有多少个零?201032010420102201053335556444222⨯+⨯⨯个个个个【你还记得吗】 (★★★)计算:2010×20112011-2011×20102010计算:333×332332333-332×333333332(★★★★)(★★★★★) (★★★★)测试题1.计算222222×999999A .222222217880B .222222788888C .222221777778D .2222221777882.计算6666×13332A .88871112B .88881112C .88872222D .888822223.计算:3001300229931111222233334 个个个A .3013333个3B .2003333个3C .3003333个3D .3063333个34.计算100×100-99×99+98×98-97×97+…+2×2-1×1A .4950B .5050C .5150D .52505.计算 99999×26+33333×24A .3996366B .6933669C .3399966D .36699666.计算:899×899+1799A .819000B .810000C .900000D .9810007.计算111111×777777+444444×555555A .333332666667B .333333666667C .333332777777D .3333337777778.计算2009×20072008-2007×20092008A .2B .4016C .4017D .0网校老师共50人报名参加了羽毛球或乒乓球的训练,其中参加羽毛球训练的有30人,参加乒乓球训练的有35人,请问:两个项目都参加的有多少人?一个班30人,完成作业的情况有三种:一种是完成语文作业没完成数学作业;一种是完成数学作业没完成语文作业;一种是语文、数学作业都完成了。

已知做完语文作业的有20人;做完数学作业的有23人。

这些人只完成数学作业的有多少人?网校老师组织理财培训,报名股票培训的有23人,报名基金培训的有32人,两项都报名的有8人,两项都没有报名的有5人,那么网校老师有多少人?网校组织40名老师参加趣味运动会,参加同心协力项目的有26人,参加万众一心项目的有18人,两个项目都没参加的有6人,两个项目都参加的有多少人?第二讲:容斥原理上(★★)(★★★)(★★★)(★★★)(★★★)网校老师60人组织春游。

报名去香山的有37人,报名去鸟巢的有42人,两个地点都没有报名的有8人,那么只报名其中一个地点的有多少人?(★★★)1~100中是2或5的倍数的数有多少个?(★★★)1~100中既不是3的倍数,也不是4的倍数的数有多少个?(★★★★)写有1到100编号的灯100盏,亮着排成一排,第一次把编号是3的倍数的灯拉一次开关,第二次把编号是5的倍数的灯拉一次开关,那么亮着的灯还有多少盏?本讲总结巧用文氏图,找准每一样。

重复就减去,少算要加上。

不重也不漏,计数你最棒!重点例题:例3,例6,例8测试题1.学而思四年级㈠班共40人报名参加了课外兴趣小组,其中学习画画的有35人,学习音乐的有20人,请问:两个项目都参加的有( )人?A.10 B.15 C.40 D.552.一个学校四年级选出40人参加竞赛考试,考试情况如下:一些同学语文得了奖牌而数学没得奖牌;一些同学数学得了奖牌而语文没得奖牌;一些同学语文、数学都得了奖牌。

已知语文获得奖牌的有26人,数学获得奖牌的有28人,这些同学只得了一项奖牌的有( )人。

A.12 B.14 C.26 D.283.一个饮料公司对所有网校老师进行问卷调查,结果如下:喜欢喝橙汁的老师有52人,喜欢喝桃汁的老师有63人,既喜欢喝橙汁又喜欢喝桃汁的老师有21人,既不喜欢喝橙汁又不喜欢喝桃汁的老师有12人,则网校老师总共有( )人。

A.82 B.94 C.103 D.1064.一天有36名同学去商店买笔,有24人买了圆珠笔,20人买了钢笔,两种笔都没买的同学有4人,两种笔都买了的同学有( )人。

A.4 B.8 C.12 D.165.在46人参加的采摘活动中,采了草莓的有22人,采了樱桃的有25人,既没采草莓又没采樱桃的有6人,只采了其中一种水果的有( )人。

A.7 B.15 C.24 D.336.1~100中是4或5的倍数的数有( )个。

A.20 B.30 C.40 D.507.1~100中既不是2的倍数,也不是7的倍数的数有( )个。

A.33 B.43 C.53 D.638.50名同学面向老师站成一行,老师先让大家从左至右按1,2,3,…,49,50依次报数,再让报数是3的倍数的同学向后转,接着又让报数是4的倍数的同学向后转,现在面向老师的同学还有( )名。

A.24 B.27 C.30 D.33第三讲:容斥原理下(★★★)在网校50名老师中,喜欢看电影的有15人,不喜欢唱歌的有25人,既喜欢看电影也喜欢唱歌的有5人。

那么只喜欢唱歌的有多少人?(★★★)在网校40名老师中,每个人都爱喝橙汁、桃汁、苹果汁中的一种或几种。

其中有10人爱喝橙汁,15人不爱喝橙汁却爱喝桃汁。

请问:只爱喝苹果汁的有几人?(★★★)网校老师组织体育比赛,分成轮滑、游泳和羽毛球三个组进行,参加轮滑比赛的有20人,参加游泳比赛的有25人,参加羽毛球比赛的有30人,同时参加了轮滑和游泳比赛的有8人,同时参加了轮滑和羽毛球比赛的有7人,同时参加了游泳和羽毛球比赛的有6人,三种比赛都参加的有4人,问参加体育比赛的共有多少人?(★★★★)网校老师共有90人,其中有32人参加了专业培训,有20人参加了技能培训,40人参加了文化培训,13人既参加了专业又参加了文化培训,8人既参加了技能又参加了专业培训,10人既参加了技能又参加了文化培训,而三个培训都未参加的有25人,那么三个培训都参加的有多少人?(★★★★★)网校共130名老师,其中70人参加了歌唱小组,80人参加了舞蹈小组,60人参加了模特小组,至少参加两个小组的有60人,参加了三个小组的有30人,那么网校老师有多少人没有参加小组?(★★★★)在1至100的自然数中,既不能被2整除,又不能被3整除,还不能被5整除的数有多少个?(★★★★★)2006盏亮着的电灯,各有一个拉线开关控制,按顺序编号为l,2,…,2006。

将编号为2的倍数的灯的拉线各拉一下;再将编号为3的倍数的灯的拉线各拉一下,最后将编号为5的倍数的灯的拉线各拉一下。

拉完后亮着的灯数为多少盏?本讲总结三者文氏图:奇层加,偶层减重点例题:例3,例4,例7测试题1.在网校45名老师中,会打乒乓球的有12人,不会打网球的有18人,既会打乒乓球也会打网球的有7人,那么只会打网球的有( )人。

A.15 B.20 C.25 D.302.在网校60名老师中,每个人都喜欢上微博、论坛、空间中的一种或几种。

其中有28人喜欢上微博,12人不喜欢上微博却喜欢上论坛,则只喜欢上空间的有( )人。

A.15 B.20 C.32 D.463.网校组织老师参加业余培训活动,有茶艺、美容化妆和理财三个活动,参加茶艺的有22人,参加美容化妆的有28人,参加理财的有35人;同时参加了茶艺和美容化妆培训的有11人,同时参加了茶艺和理财培训的有9人,同时参加了美容化妆和理财培训的有8人,三种培训都参加的有7人,则参加业余培训活动的共有( )人。

A.50 B.57 C.60 D.644.网校老师共有120人,其中有44人喜欢看动作电影,有35人喜欢看爱情电影,52人喜欢看喜剧电影,21人既喜欢看动作又喜欢看喜剧电影,17人既喜欢看动作又喜欢看爱情电影,15人既喜欢看爱情又喜欢看喜剧电影,而三种类型电影都不喜欢看的有20人,那么三种类型电影都喜欢看的有( )人。

A.20 B.21 C.22 D.235.网校举办了一个晚会,最后统计如下:网校共96名老师,其中21名老师参加了小品表演,36名老师参加了歌舞表演,11名老师参加了魔术杂技类表演,至少参加了两种表演的有14人,参加了三种表演的有4人,那么网校老师有多少人没有参加晚会表演?A.38 B.40 C.42 D.466.在1至100的自然数中,既不能被3整除,又不能被4整除,还不能被7整除的数有( )个。

A.42 B.43 C.44 D.587.2011盏亮着的电灯,各有一个拉线开关控制,按顺序编号为l,2,…,2011。

将编号为3的倍数的灯的拉线各拉一下;再将编号为4的倍数的灯的拉线各拉一下,最后将编号为7的倍数的灯的拉线各拉一下。

拉完后亮着的灯数为多少盏?A.529 B.862 C.1126 D.1195解方程:19x -2(2x +3)=10-x5年前爸爸的年龄是阳阳的6倍多5岁,现在爸爸的年龄是阳阳年龄的4倍。

那么现在阳阳多少岁?第四讲:应用题综合(★★★)(★★★)网校给老师发洗发水和沐浴露。

且沐浴露的数量是洗发水的2倍。

如果每个老师分2瓶洗发水,就少6瓶洗发水;如果每个老师分3瓶沐浴露,则多18瓶沐浴露。

网校买来的洗发水和沐浴露各多少瓶?海海默写千字文和弟子规,千字文四字一句,弟子规三字一句。

一共默写了296个字。

其中千字文比弟子规句数的2倍少了14句。

那么海海默写了多少句千字文?佳佳、海海、阳阳共有99本课外书。

佳佳的本数除以海海的本数,海海的本数除以阳阳的本数,商都是2,而且余数也都是2。

海海有多少本课外书?一个六位数abcdef ,如果满足4abcdef fabcde ⨯=,则称为“迎春数”(如4×102564=410256,则102564就是“迎春数”)。

请你求出所有“迎春数”的总和是_________。

老师出了200道题让王亮、李涛、张清三人做。

三人每人都做对了120道,且每道题都有人做对。

如果把三人都做对的称为简单题,有两人都做对的称为中等题,只有一人做对的称为难题,那么难题比简单题多_____道。

相关文档
最新文档