概率论习题2答案
福师《概率论》在线作业二满分答案

福师《概率论》在线作业二试卷总分:100 得分:100一、单选题(共50 道试题,共100 分)1. 已知随机变量X服从二项分布,且E(X)=2.4,D(X)=1.44,则二项分布的参数n,p 的值为()A. 4,0.6B. 6,0.4C. 8,0.3D. 24,0.1满分:2 分正确答案:B2. 设随机变量的数学期望E(ξ)=μ,均方差为σ,则由切比雪夫不等式,有{P(|ξ-μ|≥3σ)}≤()A. 1/9B. 1/8C. 8/9D. 7/8满分:2 分正确答案:A3. 点估计( )给出参数值的误差大小和范围A. 能B. 不能C. 不一定D. 以上都不对满分:2 分正确答案:B4. 设P(A)=a,P(B)=b,P(A+B)=C,则B的补集与A相交得到的事件的概率是A. a-bB. c-bC. a(1-b)D. a(1-c)满分:2 分正确答案:B5. 设随机变量X~B(n,p),已知EX=0.5,DX=0.45,则n,p的值是()。
A. n=5,p=0.3B. n=10,p=0.05D. n=5,p=0.1满分:2 分正确答案:D6. 设离散型随机变量X的取值是在2次独立试验中事件A发生的次数,而在每次试验中事件A发生的概率相同并且已知,又设EX=1.2。
则随机变量X的方差为()A. 0.48B. 0.62C. 0.84D. 0.96满分:2 分正确答案:A7. 对以往的数据分析结果表明当机器调整得良好时,产品的合格率为90% , 而当机器发生某一故障时,其合格率为30% 。
每天早上机器开动时,机器调整良好的概率为75% 。
已知某天早上第一件产品是合格品,试求机器调整得良好的概率是多少?A. 0.8B. 0.9C. 0.75D. 0.95满分:2 分正确答案:B8. 一个工人照看三台机床,在一小时内,甲、乙、丙三台机床需要人看管的概率分别是0.8,0.9和0.85,求在一小时内没有一台机床需要照看的概率()A. 0.997B. 0.003C. 0.338D. 0.662满分:2 分正确答案:B9. 一个袋内装有20个球,其中红、黄、黑、白分别为3、5、6、6,从中任取一个,取到红球的概率为A. 3/20B. 5/20C. 6/20D. 9/20满分:2 分10. 进行n重伯努利试验,X为n次试验中成功的次数,若已知EX=12.8,DX=2.56 则n=()A. 6B. 8C. 16D. 24满分:2 分正确答案:C11. 安培计是以相隔0.1为刻度的,读数时选取最靠近的那个刻度,允许误差为0.02A,则超出允许误差的概率是()A. 0.4B. 0.6C. 0.2D. 0.8满分:2 分正确答案:B12. 假设一厂家一条自动生产线上生产的每台仪器以概率0.8可以出厂,以概率0.2需进一步调试,经调试后,以概率0.75可以出厂,以概率0.25定为不合格品而不能出厂。
概率论第二章习题答案

概率论第二章习题答案习题1:离散型随机变量及其分布律设随机变量X表示掷一枚公正的六面骰子得到的点数。
求X的分布律。
解答:随机变量X的可能取值为1, 2, 3, 4, 5, 6。
由于骰子是公正的,每个面出现的概率都是1/6。
因此,X的分布律为:\[ P(X=k) = \frac{1}{6}, \quad k = 1, 2, 3, 4, 5, 6 \]习题2:连续型随机变量及其概率密度函数设随机变量Y表示从标准正态分布中抽取的数值。
求Y的概率密度函数。
解答:标准正态分布的概率密度函数为高斯函数,其形式为:\[ f(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}, \quad -\infty < y < \infty \]习题3:随机变量的期望值已知随机变量X的分布律为:\[ P(X=k) = p_k, \quad k = 1, 2, ..., n \]求X的期望值E(X)。
解答:随机变量X的期望值定义为:\[ E(X) = \sum_{k=1}^{n} k \cdot p_k \]习题4:随机变量的方差继续使用习题3中的随机变量X,求X的方差Var(X)。
解答:随机变量X的方差定义为期望值的平方与每个值乘以其概率之和的差:\[ Var(X) = E(X^2) - (E(X))^2 \]其中,\( E(X^2) = \sum_{k=1}^{n} k^2 \cdot p_k \)习题5:二项分布设随机变量X表示n次独立伯努利试验中成功的次数,每次试验成功的概率为p。
求X的分布律和期望值。
解答:X服从参数为n和p的二项分布。
其分布律为:\[ P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, ..., n \]X的期望值为:\[ E(X) = np \]结束语:以上是概率论第二章的一些典型习题及其解答。
概率论第二章习题解答

a
b X t
ba
0
F
t
t b
a a
1
ta at b bt
2024年8月31日7时2分
P44 2.4.1 X ~ U 0,10,均匀分布 0, x 0
概率密度f
方程x2
x
1
=10
,
0,
Xx 1
0 x 10 分布函数F 其它
0有实根,
x
x 10 1
0 x 10 10 x
=X 2 4 0 X 2
1 P A1 A2 A3 1 P A1 A2 A3 1 P A1A2 A3
1 P A1 P A2 P A3 1 0.9730633 0.078654
设Y “3人维修的90台设备发生故障的台数”
近似
则Y ~ B 90,0.01, 2 =np 90 0.01 0.9,Y ~ 0.9
Probability
2024年8月31日7时2分
第二章 随机变量及其分布 P35练习2.2
1
P
X
k
k
A
k 1
k
1, 2,
,且
k 1
k
A
k 1
1
1
k 1
k
A
k 1
A
k 1
k
1
k 1
A 11
1 2
1 2
1 3
1 3
1 4
A
A1
2024年8月31日7时2分
P35练习2.2
2 解:设X =8次射击击中目标次数,则X ~ N 8,0.3
2024年8月31日7时2分
P49 2.5.1 Y sin X 1,0,1
X
概率论课本答案2(龙版)

第二章 (证明题略)练习2-1练习题1. 2. 3. 见教材P259页解答。
4.解:X: 甲投掷一次后的赌本。
Y :乙……… 21214020p x 21213010Y p⎪⎩⎪⎨⎧≥<≤<=40,14020,2120,0)(F ~x x x x x X ⎪⎩⎪⎨⎧≥<≤<=30,13010,2110,0)(F ~Y x x x y Y5.解(1)∑∑∑∑=====⇒=⇒=⇒==10011001100110012112121)(i ii i i i ia a a i x p(2)31211112112121)(1111=⇒=--⇒=⇒=⇒=⇒==∑∑∑∑∞=∞=∞=∞=a a a a ai x p i i i i i i i6.解 21 51 101512 0 25X --p 7.解(1)X:有放回情形下的抽取次数。
P (取到正品)=107C C 11017=P (取到次品)=103 107)103( 107)103( 107103,107i 3 2 1X 1-i 2 ⋅p(2)Y:无放回情形下。
778192103 87 92103 97 103 1074 3 2 1 Y ⋅⋅⋅⋅⋅⋅p8.解54511)5(1)3(1)3P(=-=-=-=-≤-=->X p X p X 542)P(X 0)P(X )2()33()3X P(==+=+-==<<-=<X p X p 107)5()2()3()1()21P(2)1()21X P(=-=+==-<+>=-<++>+=>+X p X p X p X p X X p9.解(1)根据分布函数的性质11)1()(2lim 1lim 1=⇒=⇒=++→→A Ax F x F x x(2))5.0()8.0()8.05.0(F F X P -=≤<225.08.0-==0.3910.解:依据分布满足的性质进行判断: (1)+∞<<∞-x单调性:+∞<<<⇒<x x F x F x x 0).()(2121在时不满足。
概率论与数理统计(第三版)课后答案习题2

第二章 随机变量2.1 X 2 3 4 5 6 7 8 9 10 11 12 P 1/361/181/121/95/361/65/361/91/121/181/362.2解:根据1)(0==∑∞=k k XP ,得10=∑∞=-k kae,即1111=---eae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=1122020*********2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P {0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++=11[1()]1441314k k lim→∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯= 1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
概率论与数理统计习题解答 (2)

x<0 0 ≤ x <1 x ≥1
1/ 2
P{ X < 1 / 2} = P{X > 3 / 2} =
−∞ ∞
∫ f ( x)dx = ∫ 2 xdx =1/ 4 或 P{X < 1/ 2} = F (1/ 2) = 1/ 4
0
1/ 2
3/ 2
∫
∞
f ( x)dx =
3/ 2
∫ 0dx = 0
或
P{X > 3 / 2} = 1 − P{X ≤ 3 / 2} = 1 − F (3 / 2) = 1 − 1 = 0
x<0 0 ≤ x <1 x ≥1
求
(1)常数 A
(2)概率密度函数
(3) P{X < 1 / 2} ; P{X > 3 / 2} ;
P{0 ≤ X ≤ 2} 。
解法一:由于连续型随机变量 X 的分布函数是连续的
⎧0 ⎪ ∴ 1 = F( 1 ) = lim F ( x) = lim Ax = A f ( x) = F ' ( X ) = ⎨ 2 x x⎯ ⎯→ 1 x⎯ ⎯→ 1 ⎪0 ⎩
+∞
所以一年中该地区受台风袭击次数为 3~5 的概率为 0.547027 11、有 10 台机床,每台发生故障的概率为 0.08, 而 10 台机床工作独立,每台 故障只需一个维修工人排除。问至少要配备几个维修工人,才能保证有故障而 不能及时排除的概率不大于 5%。 解:随机变量 X 示发生故障的机床的台数则 设配备 n 个维修工人 (0 ≤ n < 10) 则“有故障而不能及时排除”事件为
−1 r k −r (2) P{X = k } = Ckr − , k = r , r + 1,...... 1 p (1 − p )
概率论第二章习题参考解答

P{η=j|ξ=i}=1/i, (i=1,2,3,4;j=1-i)
因此有
pij=P{ξ=i,η=j}=P{ξ=i}P{η=j|ξ=i}=1/(4i), (i=1,2,3,4;j=1-i),
联合概率分布如下表所示:
η
ξ
1
解:基本事件总数为 ,
有利于事件{ξ=i}(i=0,1,2,3,4)的基本事件数为 ,则
ξ
0
1
2
3
4
P
0.2817
0.4696
0.2167
0.031
0.001
6.一批产品包括10件正品, 3件次品,有放回地抽取,每次一件,直到取得正品为止,假定每件产品被取到的机会相同,求抽取次数ξ的概率函数.
解:每次抽到正品的概率相同,均为p=10/13=0.7692,则每次抽到次品的概率q=1-p=0.2308则ξ服从相应的几何分布,即有
0.260
0.095
0.018
以及η的边缘分布如下表所示:
η
0
1
2
3
4
5
6
P
0.202
0.273
0.208
0.128
0.1
0.06
0.029
当i=1及j=0时,
因
因此ξ与η相互间不独立.
21.假设电子显示牌上有3个灯泡在第一排, 5个灯泡在第二排.令ξ,η分别表示在某一规定时间内第一排和第二排烧坏的灯泡数.若ξ与η的联合分布如下表所示:
η
ξ
0
1/3
1
-1
0
1/12
1/3
0
1/6
概率论第二章习题解答(全)

概率论第二章习题1考虑为期一年的一张保险单,若投保人在投保一年内意外死亡,则公司赔付20万元,若投保人因其它原因死亡,则公司赔付5万元,若投保人在投保期末自下而上,则公司无需传给任何费用。
若投保人在一年内因意外死亡的概率为0.0002,因其它原因死亡的概率为0.0010,求公司赔付金额的分崣上。
解设赔付金额为X ,则X 是一个随机变量,取值为20万,5万,0,其相应的概率为0.0002;0.0010;0.9988,于是得分布律为X20(万)5万0xp 0.00020.00100.99882.(1)一袋中装有5只球,编号为1,2,3,4,5。
在袋中同时取3只,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,试求X 的分布律。
解(1)在袋中同时取3个球,最大的号码是3,4,5。
每次取3个球,其总取法:35541021C ⋅==⋅,若最大号码是3,则有取法只有取到球的编号为1,2,3这一种取法。
因而其概率为22335511{3}10C P X C C ====若最大号码为4,则号码为有1,2,4;1,3,4;2,3,4共3种取法,其概率为23335533{4}10C P X C C ====若最大号码为5,则1,2,5;1,3,5;1,4,5;2,3,5;2,4,5;3,4,5共6种取法其概率为25335566{5}10C P X C C ====一般地3521)(C C x X p x -==,其中21-x C 为最大号码是x 的取法种类数,则随机变量X 的分布律为X 345xp 101103610(2)将一颗骰子抛掷两次,以X 表示两次中得到的小的点数,则样本点为S ={(1,1),(1,2),(1,3),…,(6,6)},共有36个基本事件,X 的取值为1,2,3,4,5,6,最小点数为1,的共有11种,即(1,1,),(1,2),(2,1)…,(1,6),(6,1),11{1}36P X ==;最小点数为2的共有9种,即(2,2),(2,3),(3,2),…,(3,6),(6,3),9{2}36P X ==;最小点数为3的共有7种,7{3}36P X ==;最小点数为4的共有5种,5{4}36P X ==;最小点数为5的共有3种,3{5}36P X ==;最小点数为6的共有1种,1{6}36P X ==于是其分布律为X 123456kp 11369367365363361363设在15只同类型的产品中有2只次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品的次数,(1)求X 的分布律;(2)画出分布律的图形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题22.1 (2)抛掷一颗匀称质骰子两次, 以X 表示前后两次出现点数之和,求X 的概率分布,并验证其满足(2.2.2)式。
2.1解:样本空间为{})6,6(),....,1,2(),16(),...,2,1(),1,1(=Ω,且每个样本点出现的概率均为361,X 的所有可能的取值为2,3,4,5,6,7,8,9,10,11,12,且有 {}{}{}363)2,2(),1,3(),3,1()4(,362)1,2(),2,1()3(,361)1,1()2(=========P X P P X P P X P类似地,365)6(,364)5(====X P X P ,365)8(,366)7(====X P X P ,363)10(,364)9(====X P X P ,361)12(,362)11(====X P X PX 的概率分布为36118112191365613659112118136112111098765432kp X 满足:1362/652636543212366)(122=⨯⨯+=+++++==∑=k k X P 2.2设离散随机变量X 的概率分布为 {}kP X k ae -==, k=1,2,…,试确定常数.a 2.2解:由于11111)(1--∞=-∞=-====∑∑e e a aek X P k kk ,故1111-=-=--e ee a2.3 甲、乙两人投篮,命中率分别为0.7,和0.4,今甲、乙两人各投篮两次,求下列事件的概率:(1)两人投中的次数相同 ; (2)甲比乙投中的次数多。
2.3解:设Y X ,分别为甲、乙投中的次数,则有)4.0,2(~),7.0,2(~B Y B X ,因此有2,1,0,)6.0()4.0()(,)3.0()7.0()(2222=====--k C k Y P C k X P k k kk k k(1) 两人投中次数相同的概率为∑======23142.0)()()(k k Y P k X P Y X P(2) 甲比乙投中次数多的概率为5628.0)]1()0()[2()0()1()()()(2==+==+===<==>∑=Y P Y P X P Y P X P k Y P k X P Y X P k 2.4设离散随机变量X 的概率分布为 {}12kP X k ==, k=1,2,….求 (1){}2,4,6,...P X =; (2){}2.5P X ≥;2.4解:(1){}4.015615321)3()2()1(31==++==+=+==≤≤X P X P X P X P (2){}2.01531521)2()1(5.25.0==+==+==<<X P X P X P2.5设离散随机变量X 的概率分布为 {}15kk X P ==, k=1,2,3,4,5.求(1){}13P X ≤≤; (2){}0.5 2.5P X <<;2.5解:(1){}314/114/14121)2(,...6,4,21121=-======∑∑∑∞=∞=∞=k k k k k k X P X P (2)25.0412/118/121)()3(33==-====≥∑∑∞=∞=k kk k X P X P 2.6 设事件A 在每次试验中发生的概率为0.4,当A 发生3次或3次以上时,指示灯发出信号,求下列事件的概率.(1)进行4次独立试验,指示灯发出信号; (2)进行5次独立试验,指示灯发出信号;2.6解:设X 为4次独立试验时事件A 发生的次数,设Y 为5次独立试验时事件A 发生的次数,则有)4.0,5(~),4.0,4(~B Y B X (1)所求概率为:1792.04.06.04.04)4.01(4.0)4.01(4.0)4()3()3(434444434334=+⨯⨯=-+-==+==≥--C C X P X P X P(2)所求概率为:31744.04.06.04.056.04.010)4.01(4.0)4.01(4.0)4.01(4.0)5()4()3()3(5423555554544535335=+⨯⨯+⨯⨯=-+-+-==+=+==≥---C C C Y P Y P Y P Y P2.7 某城市在长度为t (单位:小时)的时间间隔内发生火灾的次数X 服从参数为0.5t 的泊松分布,且与时间间隔的2无关,求下列事件的概率. (1)某天中午12点到下午15点末发生火灾;(2)某天中午12点到下午16点至小发生两次火灾。
2.7解:(1)设X 为中午12点到下午15点发生火灾的次数,根据题意可知,X 服从参数为5.15.03=⨯=λ的泊松分布,所求概率为22313.0!05.1)0(5.15.10≈===--e e X P(2)设Y 为中午12点到下午16点发生火灾的次数,根据题意可知,Y 服从参数为25.04=⨯=λ的泊松分布,所求概率为59399.031!12!021)]1()0([1)1(1)2(22120≈-=--==+=-=≤-=≥---e e e Y P Y P Y P Y P 2.8 为保证设备正常运行,必须配备一定数量的设备维修人员,现有同类设备180台,且各设备工作相互独立,任一时间设备发生故障的概率都是0.01。
假定一台设备由一人进行修理,问至小配备多小设备维修人员,才能保证设备发生故障后得到及时维修的概率不小于0.99?.2.8解:设X 为180台机器同时发生故障的台数,则)8.1()01.0,180(~P B X ≈,设需要n 个维修人员才能保证{}99.0≥≤n X P ,即01.0)1(≤+>n X P ,现在8.1!8.1)(-==e k k X P k ,于是1.0)(1==∑∞+=n k k X P ,查表得6,71==+n n ,即6个维修人员可满足要求。
其它2.9 某种元件的寿命X(单位:小时)的概率密度函数为:210001000,,()1000.0,x f x x x ⎧≥⎪=⎨<⎪⎩求5个元件使用1500小时后,恰有2个元件失效的概率。
2.9解:设事件A 为元件寿命大于1500小时,则3215001000|10001000)()1500()(1500150015002==-===≥==∞∞∞⎰⎰x dx x dx x f X P A P p 设Y 为5个元件中寿命不大于1500小时的元件个数,则)3/1,5(~B Y ,所求概率为:24380929110)3/11()3/1()2(3325225=⨯⨯=-==-C Y P2.10 设某地区每天的用电量X(单位:百万千瓦)是一连续型随机变量,概率密度函数为: 120(1),01,()0,.x x x f x -<<⎧=⎨⎩其它假设每天供电量仅有80万千瓦时,求该地区每天的供电量不足的概率。
若每天供电量上升到90万千瓦时,每天的供电量不足的概率是多小?2.10解:(1)若供电量为80万千瓦小时,则供电量不足的概率为:0272.0)2(12)1(12)()8.0(18.0328.018.02=+-=-==>⎰⎰⎰∞dx x x x dx x x dx x f X P(2)若供电量为90万千瓦小时,则供电量不足的概率为:0237.0)2(12)1(12)()9.0(19.0329.019.02=+-=-==>⎰⎰⎰∞dx x x x dx x x dx x f X P2.11设随机变量~(2,4)K U -,求方程22230x Kx K +++=有实根的概率.2.11解:K 的密度函数为:⎪⎩⎪⎨⎧<<-=其他,,0,42,61)(x x f则方程有实根的概率为:{}{}{}{}{}3161616161)1()3(0)3(,0)1(0)3(,0)1(0)3)(1(0320)32(44431222=+=+=-≤+≥=≤-≤++≥-≥+=≥-+=≥--=≥+-=⎰⎰--dx dx K P K P K K P K K P K K P K K P K K P p2.12 设某型号的飞机雷达发射管的寿命X (单位:小时)服从参数为0.005的指数分布,求下列事件的概率:(1)发射管的寿命不超过100小时; (2)发射管的寿命超过300小时。
(3)一只发射管的寿命不超过100小时,另一只发射管的寿命在100至300小时之间。
2.12解:X 的密度函数为:⎪⎩⎪⎨⎧≤>=-0,0,0,2001)(200/x x e x f x(1) 所求概率为 39341.01|)()100(5.01001000200/≈-=-==≤--⎰e e dx xf X P x (2) 所求概率为 22313.0|)()300(5.1300300200/≈=-==>-∞∞-⎰e e dx xf X P x(3) 由于两个事件相互独立,故所求概率为 15.0]][1[)300100()100(5.15.05.0≈--=<<<---e e eX P X P2.13 设每人每次打电话的时间X (单位:分钟)服从参数为0.5的指数分布,求282人次所打电话中,有两次或两次以上超过10分钟的概率。
2.13解:设A 为事件“打电话时间超过10分钟”,X 为打电话时间,则X 服从参数5.0=λ的指数分布,即)5.0(~Exp X ,于是00674.0|5.0)()10()(51010105.05.0≈=-===>==-∞∞∞--⎰⎰e e dx e dx x f X P A P p x x设Y 为282人中“打电话时间超过10分钟”的人次,则)9.1()282(),282(~P p P p B Y =≈。
所求概率为56625.09.219.11)1()0(1)1(1)2(9.19.19.1=-=--≈=-=-=≤-=≥---eeeY P Y P Y P Y P2.14 某高校女生的收缩压X (单位:毫米汞柱)服从2(110,12)N ,求该校某名女生: (1)收缩压不超过105的概率;(2)收缩压在100至120之间的概率。
2.14解:(1)收缩压不超过105的概率为:3372.06628.01)42.0(1)42.0(10110105)105()105(=-=Φ-=-Φ=⎪⎭⎫ ⎝⎛-Φ==≤F X P (2)收缩压在100至120之间的概率为:5934.017967.021)83.0(2)83.0()83.0(1011010010110120)100()120()120100(=-⨯=-Φ=-Φ-Φ=⎪⎭⎫⎝⎛-Φ-⎪⎭⎫ ⎝⎛-Φ=-=≤<F F X P 2.15 公共汽车门的高度按成年男性与车门碰头的机会不超过0.01设计的,设成年男性的身高X (单位:厘米)服从正态分布2(170,6)N ,问车门的最低高度应为多小? 2.15解:设车门最低高度为a ,则01.0)(≤≥a X P ,即99.0617099.0)()(01.0)(1≥⎪⎭⎫ ⎝⎛-Φ≥<=≤<-a a X P a F a X P 反查标准正态分布函数表得33.26/)170(≥-a ,即18498.18333.26170≈=⨯+≥a ,即车门最低高度为184厘米。