函数概念的形成与发展
函数概念的形成与发展

函数概念的形成与发展北京教育学院宣武分院 彭 林北京师范大学数学系 张 宇 历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用.(一)马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽.自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源.(二)早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义.1673年,莱布尼兹首次使用函数一词表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.由此可以看出,函数一词最初的数学含义是相当广泛而较为模糊的,几乎与此同时,牛顿在微积分的讨论中,使用另一名词“流量”来表示变量间的关系,直到1689年,瑞士数学家约翰·贝努里才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义,贝努里把变量x 和常量按任何方式构成的量叫“x 的函数”,表示为y x .当时,由于连接变数与常数的运算主要是算术运算、三角运算、指数运算和对数运算,所以后来欧拉就索性把用这些运算连接变数x 和常数c 而成的式子,取名为解析函数,还将它分成了“代数函数”与“超越函数”.18世纪中叶,由于研究弦振动问题,达朗贝尔与欧拉先后引出了“任意的函数”的说法.在解释“任意的函数”概念的时候,达朗贝尔说是指“任意的解析式”,而欧拉则认为是“任意画出的一条曲线”.现在看来这都是函数的表达方式,是函数概念的外延.(三)函数概念缺乏科学的定义,引起了理论与实践的尖锐矛盾.例如,偏微分方程在工程技术中有广泛应用,但由于没有函数的科学定义,就极大地限制了偏微分方程理论的建立.1833年至1834年,高斯开始把注意力转向物理学.他在和W ·威伯尔合作发明电报的过程中,做了许多关于磁的实验工作,提出了“力与距离的平方成反比例”这个重要的理论,使得函数作为数学的一个独立分支而出现了,实际的需要促使人们对函数的定义进一步研究.后来,人们又给出了这样的定义:如果一个量依赖着另一个量,当后一量变化时前一量也随着变化,那么第一个量称为第二个量的函数.“这个定义虽然还没有道出函数的本质,但却把变化、运动注入到函数定义中去,是可喜的进步.”在函数概念发展史上,法国数学家富里埃的工作影响最大,富里埃深刻地揭示了函数的本质,主张函数不必局限于解析表达式.1822年,他在名著《热的解析理论》中说,“通常,函数表示相接的一组值或纵坐标,它们中的每一个都是任意的……,我们不假定这些纵坐标服从一个共同的规律;他们以任何方式一个挨一个.”在该书中,他用一个三角级数和的形式表达了一个由不连续的“线”所给出的函数.更确切地说就是,任意一个以2π为周期函数,在[-π,π]区间内,可以由α02+Σx k =1(αkcos kx +b k sin kx )数学走廊 中学数学教学参考2003年第11期61 =α2+(α1cos x+b1sin x)+…表示出,其中αk =1ππ-πf(x)cos kx dx Θ,b k=1ππ-πf(x)sin kx dx Θ.富里埃的研究,从根本上动摇了旧的关于函数概念的传统思想,在当时的数学界引起了很大的震动.原来,在解析式和曲线之间并不存在不可逾越的鸿沟,级数把解析式和曲线沟通了,那种视函数为解析式的观点终于成为揭示函数关系的巨大障碍.通过一场争论,产生了罗巴切夫斯基和狄里克莱的函数定义.1834年,俄国数学家罗巴切夫斯基提出函数的定义:“x的函数是这样的一个数,它对于每个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的.”这个定义建立了变量与函数之间的对应关系,是对函数概念的一个重大发展,因为“对应”是函数概念的一种本质属性与核心部分.1837年,德国数学家狄里克莱(Dirichlet)认为怎样去建立x与y之间的关系无关紧要,所以他的定义是:“如果对于x的每一值,y总有完全确定的值与之对应,则y是x的函数.”根据这个定义,即使像如下表述的,它仍然被说成是函数(狄里克莱函数):f(x)=1 (x为有理数),0 (x为无理数).,如果x由0逐渐增大地取值,则f(x)忽0忽1.在无论怎样小的区间里,f(x)无限止地忽0忽1.因此,它难用一个或几个式子来加以表示,甚至究竟能否找出表达式也是一个问题.但是不管其能否用表达式表示,在狄里克莱的定义下,这个f(x)仍是一个函数.狄里克莱的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义.(四)生产实践和科学实验的进一步发展,又引起函数概念新的尖锐矛盾,本世纪20年代,人类开始研究微观物理现象.1930年量子力学问世了,在量子力学中需要用到一种新的函数———δ-函数,即 ρ(x)=0,x≠0,∞,x=0.且+∞-∞ρ(x)dx=1Θ.δ-函数的出现,引起了人们的激烈争论.按照函数原来的定义,只允许数与数之间建立对应关系,而没有把“∞”作为数.另外,对于自变量只有一个点不为零的函数,其积分值却不等于零,这也是不可想象的.然而,δ-函数确实是实际模型的抽象.例如,当汽车、火车通过桥梁时,自然对桥梁产生压力.从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点x=0处的压强是P(0)=压力接触面=1=∞.其余点x≠0处,因无压力,故无压强,即P(x)=0.另外,我们知道压强函数的积分等于压力,即+∞-∞ρ(x)dx=1Θ.函数概念就在这样的历史条件下能动地向前发展,产生了新的现代函数定义:若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元.函数的现代定义与经典定义从形式上看虽然只相差几个字,但却是概念上的重大发展,是数学发展道路上的重大转折,近代的泛函分析可以作为这种转折的标志,它研究的是一般集合上的函数关系.函数概念的定义经过二百多年来的锤炼、变革,形成了函数的现代定义,应该说已经相当完善了.不过数学的发展是无止境的,函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念—“关系”.设集合X、Y,我们定义X与Y的积集X×Y为X×Y={(x,y)|x∈X,y∈Y}.积集X×Y中的一子集R称为X与Y的一个关系,若(x,y)∈R,则称x与y有关系R,记为x Ry.若(x,y) R,则称x与y无关系.现设f是X与Y的关系,即f<X×Y,如果(x,y),(x,z)∈f,必有y=z,那么称f为X到Y的函数.在此定义中,已在形式上回避了“对应”的术语,全部使用集合论的语言了.从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.62 数学走廊中学数学教学参考2003年第11期。
函数的发展历程

函数的发展历程一、古希腊时期古希腊数学家希腊斯科特·伯涅劳斯(Scctonius)在公元前4世纪就提出了函数的概念。
他用字母表示一个量,并用等式将这个量和另一个量联系在一起。
例如,他用f(x)表示x的平方,即f(x)=x^2。
但是,他并没有将函数作为独立的数学概念来看待,只是作为一种辅助工具。
二、17世纪17世纪是函数发展的重要时期。
著名数学家斯特林(Stevin)在其著作《五十个数学问题》中提出了函数的概念。
他指出,函数是一种可以用数学公式表示的规律,即f(x)=x^2。
三、18世纪18世纪是函数发展的关键时期。
著名数学家莫尔(Leibniz)在公元1694年提出了微积分的概念。
他认为,微积分是一种研究变化的工具,可以用来研究连续函数的变化。
这为函数研究开辟了新的天地。
四、19世纪19世纪是函数发展的全盛时期。
著名数学家高斯(Gauss)在公元1801年提出了高维空间的概念。
他认为,高维空间是一个可以用函数表示的数学模型,即可以用函数来描述多维空间的性质。
这为函数的研究提供了更加广阔的空间。
五、20世纪20世纪是函数发展的高潮时期。
著名数学家华罗庚(Huang Qiu-Guang)在公元1943年提出了泛函分析的概念。
他认为,泛函分析是一种研究函数性质的数学方法,可以用来研究连续函数和离散函数的性质。
这为函数的研究提供了更加丰富的内容。
六、21世纪21世纪是函数发展的新时期。
计算机技术的发展使得函数在计算机科学和工程领域中发挥着越来越重要的作用。
函数也被广泛用于数据挖掘和人工智能领域,为科学技术的发展做出了重要贡献。
综上,函数作为一种独立的数学概念,在古希腊时期就已经提出,但是直到17世纪才得到正式的定义。
随着时间的推移,函数在数学和工程领域的应用越来越广泛,为科学技术的发展做出了巨大贡献。
函数的起源,发展及演变

函数的起源,发展与演变。
一.函数定义1.本义一般的,在一个变化过程中,有两个变量x、y,如果给定一个x 值,相应的就确定唯一的一个y,那么就称y是x的函数,其中x是自变量,y是因变量,x的取值范围叫做这个函数的定义域,相应y 的取值范围叫做函数的值域。
近代演变义设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称fA→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。
其中x叫作自变量,x的取值范围A叫做函数的定义域;与x值相对应的y值叫做函数值,函数值的集合叫做函数的值域。
2.几何含义函数与不等式和方程存在联系(初等函数)。
令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。
另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。
二.起源早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义.1673年,莱布尼兹首次使用函数一词表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.由此可以看出,函数一词最初的数学含义是相当广泛而较为模糊的,几乎与此同时,牛顿在微积分的讨论中,使用另一名词“流量”来表示变量间的关系,直到1689年,瑞士数学家约翰·贝努里才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义,贝努里把变量x和常量按任何方式构成的量叫“x的函数”,表示为yx.当时,由于连接变数与常数的运算主要是算术运算、三角运算、指数运算和对数运算,所以后来欧拉就索性把用这些运算连接变数x和常数c而成的式子,取名为解析函数,还将它分成了“代数函数”与“超越函数”.18世纪中叶,由于研究弦振动问题,达朗贝尔与欧拉先后引出了“任意的函数”的说法.在解释“任意的函数”概念的时候,达朗贝尔说是指“任意的解析式”,而欧拉则认为是“任意画出的一条曲线”.现在看来这都是函数的表达方式,是函数概念的外延.三.发展δ-函数的出现,引起了人们的激烈争论.按照函数原来的定义,只允许数与数之间建立对应关系,而没有把“∞”作为数.另外,对于自变量只有一个点不为零的函数,其积分值却不等于零,这也是不可想象的.然而,δ-函数确实是实际模型的抽象.例如,当汽车、火车通过桥梁时,自然对桥梁产生压力.从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点x=0处的压强是P(0)=压力/接触面=1/0=∞.其余点x≠0处,因无压力,故无压强,即P(x)=0.另外,我们知道压强函数的积分等于压力,即函数概念就在这样的历史条件下能动地向前发展,产生了新的现代函数定义:若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元.函数的现代定义与经典定义从形式上看虽然只相差几个字,但却是概念上的重大发展,是数学发展道路上的重大转折,近代的泛函分析可以作为这种转折的标志,它研究的是一般集合上的函数关系.函数概念的定义经过二百多年来的锤炼、变革,形成了函数的现代定义,应该说已经相当完善了.不过数学的发展是无止境的,函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念—“关系”.设集合X、Y,我们定义X与Y的积集X×Y为X×Y={(x,y)|x∈X,y∈Y}.积集X×Y中的一子集R称为X与Y的一个关系,若(x,y)∈R,则称x与y有关系R,记为xRy.若(x,y)R,则称x与y无关系.现设f是X与Y的关系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么称f为X到Y的函数.在此定义中,已在形式上回避了“对应”的术语,全部使用集合论的语言了.从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.三.演变设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称fA→B为从集合A到集合B的一个函数,记作y=f(x),x∈A。
函数概念的发展历史和应用总结报告

一、概述函数作为数学、计算机科学、工程学等多个学科领域中的重要概念,在其发展历史中扮演着至关重要的角色。
本报告将对函数概念的发展历史进行回顾,并总结其在各个领域中的应用情况,以期为相关领域的研究和教育提供参考。
二、函数概念的发展历史1. 函数的最早概念函数的最早概念可以追溯至古希腊数学家欧几里得的《几何原本》中,他将函数理解为图形和数之间的关系。
此后,函数的概念在数学中逐渐得到发展,包括勒让德、傅里叶、魏尔斯特拉斯等数学家的贡献。
2. 函数在工程学中的应用函数在工程学中的应用可以追溯至17世纪,当时牛顿和莱布尼兹分别发现了微积分学科,其中涉及了函数的概念。
自此之后,函数的应用在工程学中不断深入,成为解决工程问题的重要数学工具。
3. 函数在计算机科学中的发展函数在计算机科学中的发展可以追溯至20世纪50年代的代数逻辑理论。
随着计算机的发展,函数成为了编程和算法设计中的基础概念,如递归函数、高阶函数等。
三、函数在各领域中的应用总结1. 数学领域在数学领域中,函数的应用广泛,涉及微积分、数学分析、代数学等多个分支。
函数作为数学建模的基础,被广泛应用于科学研究和工程技术中。
2. 工程学领域在工程学领域中,函数的应用与数学领域紧密相关,包括控制系统、信号处理、电路分析等。
工程师通过函数分析和设计,解决了许多现实世界中的难题。
3. 计算机科学领域在计算机科学领域中,函数的应用涉及编程语言、算法设计、数据结构等多个方面。
函数作为计算机程序中的基本单位,对计算机科学的发展起到了至关重要的作用。
四、结语函数作为一个跨学科的概念,在数学、工程学、计算机科学等多个领域中得到了广泛的应用。
通过回顾函数概念的发展历史及其在各领域中的应用情况,我们可以更好地理解函数的重要性和作用,为今后在相关领域的研究和应用提供借鉴和指导。
希望本报告能对相关领域的研究和教育工作有所助益。
五、函数概念的发展历史和应用案例1. 函数在物理学中的应用在物理学中,函数的概念被广泛运用于描述自然界中的各种规律和现象。
函数概念的历史发展(完整版)

函数概念的历史发展(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)函数概念的历史发展众所周知,函数是数学中一个重要概念,它几乎渗透到每一个数学分支,因此考察函数概念的发展历史及其演变过程,无疑有助于我们学生更深刻、更全面地理解函数的本职,并且从中得到有益的方法论启示。
1 函数概念的产生阶段—变量说马克思曾认为,函数概念是源于代数中自罗马时代就已经开始的不定方程的研究,那时,伟大的数学家丢番图对不定方程的研究已有相当程度,据此,可以认为函数概念至少在那时已经萌芽。
实际上作为变量和函数的朴素概念,几乎和数学源于同一时期,因为数学家在研究物体的大小及位置关系时,自然会导致通常称为函数关系的那种从属关系。
但是,真正导致函数概念得以迅速发展则是在16世纪以后,特别是由于微积分的建立,伴随这一学科的产生、发展和完善,函数概念也经历了产生、发展和完善的演变过程。
哥白尼的天文学革命以后,运动成为文艺复兴时期科学家共同感兴趣的问题,到了16世纪,对于运动的研究已变成自然科学的中心问题。
在这一时期,函数概念在不同科学家那里有着不同形式的描述。
在伽利略的《两门新科学》一书中,几乎从头到尾包含着函数的思想,他用文字和比例的语言表述函数关系。
例如,他提出:“两个等体积圆柱体的面积之比,等于它们高度之比的平方根。
”“两个侧面积相等的正圆柱,其体积之比等于它们高度之比的反比。
”他又说:“从静止状态开始以定常加速度下降的物体,其经过的距离与所用时间的平方成正比。
”这些描述非常清楚地表明伽利略已涉及并讨论变量和函数,但他并没有做出一般的抽象,并且也没有把文字叙述表示为符号形式。
几乎与此同时,许多数学家,如托里拆利、瓦里斯、笛卡儿、牛顿、莱布尼兹等,从不同角度对函数进行了不同程度的研究.有的数学家是把一些具体的函数看成曲线进行研究,尽管当时还没有建立实连续的概念,但数学家却默认曲线都是连续的。
托里拆利就曾对曲线()0≥y ex进行过研究;而瓦里斯在他的《动学》中研究过正弦曲=xae线,并注意到了这一函数的周期性。
函数的起源与发展

函数的起源与发展函数是数学领域中的重要概念,起源于古希腊数学,发展至今已经成为现代数学的基石之一。
本文将探讨函数的起源及其发展历程。
一、起源:古希腊的函数概念函数的概念最早可以追溯到古希腊数学家欧多克索斯(Euclid)的著作《几何原本》中。
他在书上首次提出了“比例”这一概念,将其应用于几何学中。
比例即表示两个量之间的关系,这种关系可以表示为一个方程。
欧多克索斯认为,比例是由特定规律决定的,这种规律可以用图形表示。
此后,亚历山大的赛尼库斯(Heron of Alexandria)提出了函数的概念。
他将比例的概念扩展到变量之间的关系,提出了函数的定义:“当一个量由其他量决定时,我们称这个量是其他量的函数。
”赛尼库斯以几何图像的方式表示函数,将其作为几何问题的解决方法。
二、发展:函数的发展与数学分析的崛起函数的概念在古希腊数学时代虽然已有初步的形成,但真正的发展要追溯到十七世纪的科学革命时期。
牛顿(Isaac Newton)和莱布尼茨(Gottfried Wilhelm Leibniz)两位伟大的数学家和物理学家几乎同时独立地发展了微积分学,从而为函数的研究奠定了基础。
牛顿和莱布尼茨将函数视为一种能够以无穷小的变化率来描述的数学对象。
他们引进了导数和积分的概念,并将其作为函数变化率和面积的度量。
他们的工作将函数的研究提升到了一个新的高度,使得函数成为数学分析的核心内容。
随着数学分析的发展,函数的研究也变得更加丰富和深入。
欧拉(Leonhard Euler)提出了指数函数和对数函数的概念,并发展了复变函数的理论。
拉格朗日(Joseph-Louis Lagrange)和柯西(Augustin-Louis Cauchy)等数学家也在函数的研究方面做出了重要贡献。
函数的研究不仅局限于实数领域,还拓展到复数、向量、矩阵等多个数学领域。
三、应用:函数在科学和工程中的重要性函数作为一种描述变化规律的数学工具,在科学和工程领域具有广泛的应用。
函数概念产生和发展的几个阶段

第2卷 第3期山西教育学院学报Vol 2 No 3 1999年9月Journal of ShanXi Educational College Sep1999 函数概念产生和发展的几个阶段王爱兰 雷玲香摘 要:本文通过对函数的研究,介绍了函数产生、发展、成熟的三个阶段关键词:函数 产生 发展自十七世纪近代数学产生以来,函数概念一直处于数学思想的核心位置,它不仅是近代数学的主要研究对象,而且自然科学的绝大部分都受到了函数关系的支配。
从而使科学之母 数学注入了新鲜血液。
因此,了解函数概念产生与发展的历史,掌握现代数学的思想方法,对于指导我们当前的工作是十分有益的。
一、函数概念的产生阶段进入十七世纪,经过文艺复兴革命的欧洲冲破了中世纪的黑暗的束缚,科学技术得到前所未有的发展。
与以前不同的是,科学技术的发展愈来愈依赖于数学思想和方法。
正如牛顿(英)所说:古代人在自然事物的研究中把力学科学推崇到极端重要的地位,而近代人则排除物体的形式和玄妙的质,努力把自然现象放在数学的控制之下!。
在当时,扩展数学领域,改进数学方法的要求更加迫切。
顺应历史潮流,费尔玛(法)、笛卡尔(法)等人打破传统数学思想,首先用代数方法研究几何问题,由点对应到数形统一,创立了解析几何这门新的数学学科。
尢为重要的是变量进入数学,辩证法进入了数学,数学发生了飞跃。
函数概念正是在这种沃土中发芽生长的。
函数概念的产生经历了一个较长的历史时期。
函数一词是1673年莱布尼茨(德)创造的。
函数的思想最初是在处理不定方程时,引入代数中的。
如果要表达一个量,它是不定的,除非预先给其它的量认一个确定的值,这些数值是数目不定的上述其它的量,在同一问题中可以取得的,那么就用函数一词来表达这种依赖关系。
当时,人们对这种依赖关系的认识还相当模糊。
但感觉到它的作用,后来随着科学技术和生产实践的需要,对各种运动的研究更加深入,进而使函数作为描述变量之间的相互依赖关系的思想,逐渐被更多的人接受和应用。
关于函数的形成与发展的数学小论文

关于函数的形成与发展的数学小论文函数是数学中一个重要的概念,它在不同国家的数学思想中有着丰富的发展历程。
本论文将从函数概念的形成、函数与方程的关系以及函数的进一步发展等方面进行介绍和分析。
一、函数概念的形成函数的概念最早可以追溯到古希腊时期。
当时古希腊数学家用被称为底数的量和被称为脚数的量来描述两者的关系。
然而,由于古希腊数学的几何本质,这种关系主要是通过图形来表示的。
在十七世纪,随着代数学的发展,函数的概念得到了一定的推广和改进。
约翰·沃利斯被认为是函数概念的奠基人之一,他定义了一种通过代数表达式表示的函数。
而克里斯蒂安·荷伯特也提出了函数的图像和论域的概念。
二、函数与方程的关系函数与方程的关系在十七世纪的代数学中得到了深入的研究。
鲁内斯对函数与方程进行了明确的区分,提出了函数可以包含方程的多个解的概念。
同时,拉格朗日也对函数与方程的关系进行了进一步的研究,他将函数看作是方程的延伸。
三、函数的进一步发展在十九世纪,函数的研究进入了一个新的阶段。
卡尔·魏尔斯特拉斯提出了连续函数和可微函数的概念。
他强调了函数的连续性和光滑性,并引入了极限的思想。
这一思想为后来的微积分的发展奠定了基础。
在现代数学中,函数的发展更是展现出了丰富多样的形式和应用。
函数的理论在数学的各个领域得到了广泛的应用,如数学分析、微积分、概率统计等。
同时,函数的研究也在计算机科学和物理学等领域得到了应用。
总结函数作为数学中一个重要的概念,经历了漫长的历史发展过程。
它最早在古希腊时期被提出,并在十七世纪得到了进一步的推广和改进。
函数与方程的关系也在十七世纪被明确,并在十九世纪得到了更深入的研究。
函数的发展进一步推动了数学的发展,在现代数学中得到了广泛的应用。
1. Boyer, C. B. (1991). A history of mathematics (2nd ed.). New York: Wiley.2. Edwards, C. H. (2003). The historical development of the calculus. New York: Springer.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数概念的发展简史
1、函数概念的萌芽时期(自然函数、代数函数时期)[1]
函数思想是随着数学开始研究事物的运动变化而出现的。
而事实上,早期的数学是不研究事物的运动变化的。
古希腊科学家亚里士多德曾经认为,数学研究的是抽象的概念,而抽象的概念来自事物静止不动的属性。
例如,数学中的数、线、形等数学对象都不包括运动,运动变化是物理学研究的对象等等。
受其影响,直至14世纪,数学家们才逐渐开始研究物体的运动问题。
到了16世纪,由于实践的需要,自然科学开始转向对运动的研究,自然中各种变化和各种变化着的物理量之间的关系也就成为数学家关注的对象。
伽利略就是最早开展这方面研究的科学家之一,在他的著作里多处使用比例的语言表达了量与量之间的依赖关系。
例如,从静止状态自由下落的物体所经过的距离与所用时间的平方成正比,这正是函数概念所表达的思想意义。
16世纪法国数学家笛卡尔在研究曲线问题时,发现了量的变化及量与量之间的依赖关系,并在数学中引进了变量思想,在他的《几何学》中指出:所谓变量是指:“不知的和未定的量”,成为数学发展的里程碑,也为函数概念的产生奠定了思想基础。
直到17世纪下半期,牛顿—莱布尼兹的微积分问世时,数学上还没有明确的函数概念。
把“函数”(function)一词最早用作数学术语的是莱布尼兹,当时,莱布尼兹用“函数”(function)一词表示幂,如都叫函数。
后来又用函数表示任何一个随着曲线上的点变动而变动的量。
例如曲线上的点的横坐标、纵坐标、切线的长度、垂线的长度等等。
从这个定义看出,莱布尼兹利用几何概念,在几何的范围内揭示了某些量之间的依存关系。
可以说出现了函数概念的一点端倪,但函数的一般定义仍没有诞生。
原因在于:数学家们一直在同具体的函数打交道,对具体函数或求导,或积分,讨论各种各样的具体问题,并没有感到有定义一般函数概念的需要。
\
2、函数概念的初步形成(解析函数时期)[2] 18世纪微积分的发展促进了函数概念“解析定义”的发展。
瑞士著名数学家约翰·贝努利在研究积分计算问题时,提出:积分工作的目的是在给定变量的微分中,找出变量本身之间的关系。
而在对待“找出变量本身之间的关系”的表示上,显然用莱布尼兹定义的函数表示是很困难的。
于是,在1718年约翰·贝努利从解析的角度,把函数定义为:“变量的函数就是由某个变量及任意一个常数结合而成的量。
”意思是凡变量和常量构成的式子都叫做的函数。
贝努利所强调的函数要用公式来表示。
后来,数学家觉得不应该把函数概念局限在只能用公式来表达上,只要一些变量变化,另一些变量能随之而变化就可以,至于这两个变量的关系是否要用公式来表示,则不作为判别函数的标准18世纪,瑞士数学家欧拉在他的《无穷小分析引论》中进一步推广了他老师约翰·贝努利的定义:“一个变量的函数是由变量和一些数或常量以任何一种方式构造的解析式”。
并且早在1734年欧拉就已经用表示的函数,这个函数符号至今仍在沿用。
1755年,欧拉又在他的《微积分原理》的序言中把函数定义为:“如果某些变量以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。
”在欧拉的这个定义中,已经不强调函数要用公式表示了。
由于函数不一定用公式来表示,欧拉曾把画在坐标系上的曲线也叫函数。
他认为:“函数是随意画出的一条曲线。
”欧拉用“解析表达式”代替了约翰的“任意形式”,明确地表达了变量之间相互依赖的变化关系,这促进我们对函数概念的认识在严密性上前进了一大步。
但是,当时有些数学家对于不用公式来表示函数感到很不习惯,有的数学家甚至抱着怀疑的态度。
他们把能用公式表示的函数叫“真函数”,把不能用公式表示的函数叫“假函数”。
3、函数概念的确立(变量函数)[3]
在对前人函数概念的认识与发展的基础上,1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其它变数的值也可以随着确定时,则将最初的变数叫做自变量,其它各变数叫做函数”。
在柯西的函数定义中,首先引入了“自变量”一词。
按照这个定义,只要有自变量的一个值可以确定的相应值,则就是的函数。
显然,这个函数定义比以往的要广泛的多。
1834年,德国数学家罗巴切夫斯基进一步提出函数定义:“x的函数是这样一个数,它对于每一个x都有确定的值并且随着x一起变化。
函数值可以由解析式给出,也可以由一个条件给出,这个条件提
供了一种寻求全部对应值的方法。
函数的这种依赖关系可以存在,但仍然是未知的。
”这个定义指出了对应关系的必要性,利用这个关系可以求出每一个的对应值。
后来,德国数学家狄利克雷也注意到,重要的不是“自变”所引起的因变,应该是变量之间的“对应”关系。
1837年,狄利克雷给出了意义更为广泛的函数概念:“如果对于的每一个x值,总有一个完全确定的y值与之对应,则是的函数。
”这个定义成功的引进了“单值对应”这个概念,巧妙地避免了过去函数定义中的不确定的“依赖关系”的描述,以清晰完美的方式表达了变量间的依赖关系,被19世纪的数学家普遍接受,成为传统函数定义的原型。
4、函数概念的再次发展(集合、映射函数)
19世纪末20世纪初,把函数看作一种对应或者映射的思想已经成形。
如果说前面两个世纪的人们把注意力更多的投放在函数的解析式上,那么20世纪的数学家开始关注自变量的取值范围,这不仅仅是因为实际问题给数学提出了相应的课题,更主要的是德国数学家康托尔开创了一个全新的数学分支——集合论。
由此,集合论的思想与方法很快就渗透到了数学的各个领域,著名数学家庞加莱曾经说过:“由于有了集合论,现在我们可以说,数学的完全严格性已经达到了。
”所以,用集合的语言重新叙述函数的定义,成了进一步严格函数概念的最好途径。
20世纪,美国数学家使用集合与对应的语言这样定义函数:“在变量的集合与另一个变量的集合之间,如果存在着对于x的每一个值,有确定的值y与之对应这样的关系,那么,变量y就叫做变量x的函数”。
这个函数概念就是现在高中课本所采用的了。
[4]。