最新概率论与数理统计期末试卷及答案(最新7)

最新概率论与数理统计期末试卷及答案(最新7)
最新概率论与数理统计期末试卷及答案(最新7)

概率论与数理统计期末试卷及答案

一.填空题(每空题2分,共计60分)

1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)(,4.0)A (p ===A B P ,则=)B A (p 0.6 ,

=)B -A (p 0.1 ,)(B A P ?= 0.4 , =)B A (p 0.6。

2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2只,则第一次、

第二次取红色球的概率为: 1/3 。(2)若有放回地任取2只,则第一次、第二次取红色球的概率为: 9/25 。(3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为: 21/55 。 3、设随机变量X 服从B (2,0.5)的二项分布,则{}=≥1X p 0.75, Y 服从二项分布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从 B(100,0.5),E(X+Y)= 50 ,方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、0.15.现从由甲厂、

乙厂的产品分别占60%、40%的一批产品中随机抽取一件。 (1)抽到次品的概率为: 0.12 。

(2)若发现该件是次品,则该次品为甲厂生产的概率为: 0.5 . 5、设二维随机向量),(Y X 的分布律如右,则=a 0.1, =)(X E 0.4,

Y X 与的协方差为: - 0.2 ,

2Y X Z +=的分布律为:

6、若随机变量X ~)4 ,2(N 且8413.0)1(=Φ,9772.0)2(=Φ,则=<<-}42{X P 0.815 ,

(~,12N Y X Y 则+= 5 , 16 )。

7、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:

=-)2(Y X E - 4 ,=-)2(Y X D 6 。

8、设2),(125===Y X Cov Y D X D ,)(,)(,则=+)(Y X D

30 9、设261,,X X 是总体)16,8(N 的容量为26的样本,X 为样本均值,2S 为样本方差。则:~X N

(8 , 8/13 ),

~16252

S )25(2χ,

~5

2/8s X - )25(t 。 二、(6分)已知随机变量X 的密度函数???≤≤=其它 ,

01

0 ,)(2x ax x f

求:(1)常数a , (2))5.15.0(<

解:(1)由

?

+∞

-==3,1)(a dx x f 得 2’

(2) )515.0(?<

?

?==5

..15

.01

5

.02875.03)(dx x dx x f 2’

(3) ??

?

??<≤<≤=x x x 0

x x F 1 , 110 , 0)(3 2’

三、(6分)设随机变量(X ,Y )的联合概率密度为:??

?≤≤≤≤=其它 ,

010,10

,2),(y x y y x f

求:(1)X ,Y 的边缘密度,(2)讨论X 与Y 的独立性。 解:(1) X ,Y 的边缘密度分别为:

?????≤≤===?????≤≤==???∞+∞

-其他,

,其他

010 22)()(

010

12)(1

01

y y ydx dx y x f y f x ydy x f Y X 4’

(2)由(1)可见

()(),(y f x f y x f Y X ?=, 可知: X ,Y 相互独立 2’

一. 填空题(每小题2分,共计60分)

1. 设随机试验E 对应的样本空间为S 。 与其任何事件不相容的事件为 不可能事件, 而与其任何事件相互独立的事件为 必然事件;设E 为等可能型试验,且S 包含10个样本点,则按古典概率的定义其任一基本事件发生的概率为 1/10。

2.3.0)(,4.0)(==B P A P 。若

A 与

B 独立,则=-)(B A P 0。28 ;若已知B A ,中至少有一个事件发

生的概率为6.0,则=-)(B A P 0.3,=)(B A P 1/3 。

3、一个袋子中有大小相同的红球5只黑球3只,从中不放回地任取2只,则取到球颜色不同的概率为: 15/28。

若有放回地回地任取2只,则取到球颜色不同的概率为: 15/32 。

4、1)()(==X D X E 。若X 服从泊松分布,则=≠}0{X P 1

1--e

;若

X 服从均匀分布,则=≠}0{X P 0 。

5、设),(~2

σμN X ,且3.0}42{ },2{}2{=<<≥=

2 ;=>}0{X P 0.8 。

6、某体育彩票设有两个等级的奖励,一等奖为4元,二等奖2元,假设中一、二等奖的概率分别为0.3和0.5, 且每张彩票卖2元。是否买此彩票的明智选择为: 买 (买,不买或无所谓)。

7、若随机变量X )5,1(~U ,则{

}=40〈〈X p 0.75 ;=+)12(X E __7___, =+)13(X D 12 .

8、设

44

.1)(,4.2)(),,(~==X D X E p n b X ,则

=

=}{n X P 3

4.0,并简化计算

=???

? ??-=∑k k k k k 66

02

6.04.062.7)4.06(6.04.062

=?+??。 9、随机变量X 、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=-)2(Y X E

-4 ,=-)2(Y X D 6 。

10、设161,,X X 是总体)4,20(N 的容量为16的样本,X 为样本均值,2

S 为样本方差。

则:~X

N (20, 1/4 )

,{}

120>-X p = 0.0556 , ~16152

S )15(2χ,~5

1/20s X - t(15)。 此题中9772.0)2(=Φ。

11、随机变量X 的概率密度???≤>=-0

,00 ,)(x x e x f x λλ ,则称X 服从指数分布,=)(X E λ1。

13、设二维随机向量),(Y X 的分布律是: 则X 的方差=)(X D 0.21 ;

Y X 与的相关系数为:=XY ρ 3/7 。

二、 (7分)甲、乙、丙三个工厂生产同一种零件,设甲厂、乙厂、丙厂的次品率分别为0.2,0.1,0.3.现从

由甲厂、乙厂、丙厂的产品分别占15%,80%,5%的一批产品中随机抽取一件,发现是次品,求该次品为甲厂生产的概率.

解:设321A ,A ,A 分别表示产品取自甲、乙、丙厂, 有:

%5)P(A 80%,)A (P %,15)p(A 321=== 2’

B 表示取到次品,3.0)A B P(0.1,)A B (P ,2.0)A p(B

321===, 2’

由贝叶斯公式:)B A (p 1=

24.0)()(/)()(3

1

11=??∑=k k k A B P A p A B P A p ( 4’

三、(7分)已知随机变量X 的密度函数?

??≤≤=其它 , 010

,)(x ax x f

求:(1)常数a , (2))5.00(<

+∞

-==2,1)(a dx x f 得 2’

(2)

)51.0(?<

.005

.0025.02)(xdx dx x f 3’

(3) ??

???<≤<≤=x x x 0

x x F 1 , 110 , 0)(2

2’

四、(7分)设随机变量(X ,Y )的联合概率密度为:

??

?≤≤≤≤=其它 ,

010,10

,4),(y x xy y x f 求:(1)X ,Y 的边缘密度,(2)由(1)判断X ,Y 的独立性。 解:(1) X ,Y 的边缘密度分别为:

????

?≤≤===?????≤≤===????∞+∞-+∞∞

-其他,

,其他,

010 24)()(

010 24)()(1

01

0y y xydx dx y x f y f x x ydy x dy y x f x f Y X 5’

(2)由(1)可见

()(),(y f x f y x f Y X ?=, 可知: X ,Y 相互独立 2’

七、(5分)某人寿保险公司每年有10000人投保,每人每年付12元的保费,如果该年内投保人死亡,保险公司应付1000元的赔偿费,已知一个人一年内死亡的概率为0.0064。用中心极限定理近似计算该保险公司一年内的利润不少于48000元的概率。已知8413.0)1(=φ,9772.0)2(=φ。 解:设X 为该保险公司一年内的投保人死亡人数,则X ∽B(10000,0.0064)。 该保险公司的利润函数为:X L ?-=1000120000。 2‘

所以}72{}480001000120000{}48000{≤=≥?-=≥X P X P L P

}996

.764

729936

.00064.01000064

{

-≤

??-=X P 用中心极限定理

8413.0)1(=?φ 3‘

答:该保险公司一年内的利润不少于48000元的概率为0。8413

二. 填空题(每小题2分,共计60分)

1、A 、B 是两个随机事件,已知0.3)B (p ,5.0)A (p ==,则

a) 若B A ,互斥,则=)B -A (p 0.5 ; b) 若B A ,独立,则=)B A (p 0.65 ; c) 若2.0)(=?B A p ,则=)B A (p 3/7 . 2、袋子中有大小相同的红球7只,黑球3只,

(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 7/15 。 (2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 21/50 。

(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 21/55 .

3、设随机变量X 服从泊松分布}8{}7{),(===X P X p λπ,则{}=X

E 8 .

4、设随机变量X 服从B (2,0. 8)的二项分布,则{}==2X p 0.64 , Y 服从B (8,0. 8)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P =1- 0.210,=+)(Y X E 8 。

5 设某学校外语统考学生成绩X 服从正态分布N (75,25),则该学校学生的及格率为 0.9987 ,成绩超过85分的学生占比}85{≥X P 为 0.0228 。

其中标准正态分布函数值9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ.

6、设二维随机向量),(Y X 的分布律是有

则=a _0.1_,X 的数学期望=)(X E ___0.4_______,Y

X 与的相关系数

=xy ρ___-0.25______。

7、设161,...,X X 及81,...,Y Y 分别是总体

)16,8(N 的容量为

16,8的两个独立样

本,Y X ,分别为样本均值,2

22

1,S S 分别为样本方差。 则:~X

N(8,1) ,~Y X - N(0,1.5) ,{}

5.12>-Y X p = 0.0456 ,

~161521S )15(2

χ,~22

21S S F(15,7) 。

此题中9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ 8、设321,,.X X X 是总体

X 的样本,下列的统计量中,A ,B ,C 是)(X E 的无偏统计量,)(X E 的无偏统

计量中统计量 C 最有效。

A. 321X X X -+

B. 312X X -

C.

)(3

1

321X X X -+ D. 21X X + 9. 设某商店一天的客流量X 是随机变量,服从泊松分布)(λπ,71,...,X X 为总体X 的样本,)(X E 的矩估计量为X ,160,168,152,153,159,167,161为样本观测值,则)(X E 的矩估计值为 160

10、在假设检验中,容易犯两类错误,第一类错误是指: H 0 成立的条件下拒绝H 0 的错误 ,也称为弃真错误。

二、(6分)已知随机变量X 的密度函数??

???+∞<≤=其它 , 02

,)(2x x a

x f

求:(1)常数a , (2))45.0(<

?

+∞

-==2,1)(a dx x f 得 2’

(2) )45.0(<

?

?

==4

5

.04

2

2

5.02

)(dx x dx x f 2’ (3) ???

??+∞<≤≤=x x

x x F 2 2-12

0)( 2’

三、(6分)设随机变量X ,Y 的概率密度分别为:=)(x f X ?

??≤-其它 , 0,

0 ,x e x

=)(y f Y ???≤≤其它 ,

0,10

,1y ,且随机变量X ,Y 相互独立。

(1)求(X ,Y )的联合概率密度为:),(y x f (2)计算概率值{}X Y p 2≥。

解:(1)

X ,Y 相互独立,可见(X ,Y )的联合概率密度为

()(),(y f x f y x f Y X ?=, ?

??≤≤≤=-其它 , 01

0,0 ,),(y x e y x f x 2’

(2)????-≥==

≥10

1

22),()2(x

x x

y dy e dx dxdy Y x f X Y P 3’

=131--e

八、(6分)某工厂要求供货商提供的元件一级品率为90%以上,现有一供应商有一大批元件,经随机抽取100件,经检验发现有84件为一级品,试以5%的显著性水平下,检验这个供应商提供的元件的一级品率是否达到该厂方的的要求。(已知645.105.0=Z ,提示用中心极限定理) 解 总体X 服从

p 为参数的0-1分布,

9.0: ,9.0:0100=<=≥p p H p p H 2’ 1001,...,X X 为总体X 的样本,在0H 成立条件下,选择统计量

n

p p p X Z )

1(000--=

,由 中心极限定理,z 近似服从标准正态分布,则拒绝域为05.0z z -<

经计算该体05.02z z -<-=,即得 Z 在拒绝域内,故拒绝0H , 认为这个供应商提供的元件的一级品率没有达到该厂方的的要求

1、A 、B 是两个随机事件,已知0.125P(AB)

0.5,)B (p ,52.0)A (p ===,则

=)B -A (p 0.125 ;=)B A (p 0.875 ;=)B A (p 0.5 .

2、袋子中有大小相同的5只白球, 4只红球, 3只黑球, 在其中任取4只

(1)4只中恰有2只白球1只红球1只黑球的概率为:4

121

3

1425C C C C . (2) 4只中至少有2只白球的概率为:4

12

4

814381C C C C +-. (3) 4只中没有白球的概率为:412

4

7C C

3、设随机变量X 服从泊松分布}6{}5{),(===X P X p λπ,则{}=X

E 6 .

4、设随机变量X 服从B (2,0. 6)的二项分布,则{}==2X p 0.36 , Y 服从B (8,0. 6)的二项分布, 且X 与Y 相互独立,则}1{≥+Y X P = 1-0.410 ,=+)(Y X E 6 。

5 设某学校外语统考学生成绩X 服从正态分布N (70,16),则该学校学生的及格率为 0.9938 ,成绩超过74分的学生占比}74{≥X P 为 0.1587 。

其中标准正态分布函数值9938.0)5.2(,9772.0)2(,8413.0)1(=Φ=Φ=Φ.

6、有甲乙两台设备生产相同的产品,甲生产的产品占60%,次品率为10%;乙生产的产品占40%,次品率为20%。(1) 若

随机地从这批产品中抽出一件,抽到次品的概率为 0.14 ;(2)若随机地从这批产品中抽出一件,检验出为次品,则该产品是甲设备生产的概率是 3/7 .

7、设101,...,X X 及151,...,Y Y 分别是总体)6,20(N 的容量为10,15的两个独立样本,Y X ,分别为样本均

值,2

22

1,S S 分别为样本方差。

则:~X N(20,3/5) ,~Y X - N(0,1) ,{}

1>-Y X p = 0.3174 ,

~2321S )9(2

χ,~22

21S S F(9,14) 。 此题中8413.0)1(=Φ。此题中9987.0)3(,9772.0)2(,8413.0)1(=Φ=Φ=Φ 8、设321,,.X X X 是总体X 的样本,下列的)(X E 统计量中, C 最有效。 A. 321X X X -+ B. 312X X - C.

)(3

1

321X X X -+ 9. 设某商店一天的客流量X 是随机变量,服从泊松分布)(λπ,71,...,X X 为总体X 的样本,)(X E 的矩估计量为X ,15,16,18,14,16,17,16为样本观测值,则)(X E 的矩估计值为 16

10、在假设检验中,往往发生两类错误,第一类错误是指 H 0 成立的条件下拒绝H 0 的错误 ,第二类错误是指 H 1 成立的条件下拒绝H 1 的错误 ,显著水平α是指控制第一类错误的概率 小于

α .

二、(6分)已知随机变量X 的密度函数??

?

??+∞<≤+=其它 , 00 ,1)(2x x a

x f

求:(1)常数a , (2))31(<

<-X p (3)X 的分布函数F (X )。

解:(1)由

?

+∞

-=

2

,1)(a dx x f 得 2’

(2) )31(<<-X p =??

-=+=31

3

23

2

112

)(dx x dx x f π 2’

(3) ???

??+∞<≤≤=x x x F 0 arctanx 2

0)(π 2’

第 2页共 5 页

三、(6分)设随机变量X ,Y 的概率密度分别为:=)(x f X ?????≤≤其它 , 0,20

,2x x

=)(y f Y ???≤≤其它 ,

0,10

,2y y ,且随机变量X ,Y 相互独立。

(1)求(X ,Y )的联合概率密度为:),(y x f (2)计算概率值{}2

X

Y p ≥。

解:(1)X ,Y 相互独立,可见(X ,Y )的联合概率密度为

()(),(y f x f y x f Y X ?=, ?

?

?≤≤≤≤=其它 , 010,20

,),(y x xy y x f 2’ (2)????==

≥≥1012

2

2),()(x x

y xydy dx dxdy Y x f X Y P =61

3’ u X n E u

E k n

k ==∑=)1()?(1

, 它为u 的无偏估计量. 2’

.

996.244.295.07.0155.0)1(2

2

222

>=?=-=s n χ 2’

八、(6分)某工厂要求供货商提供的元件一级品率为90%以上,现有一供应商有一大批元件,经随机抽取

100件,经检验发现有84件为一级品,试以5%的显著性水平下,检验这个供应商提供的元件的一级品率是否达到该厂方的的要求。(已知645.105.0=Z ,提示用中心极限定理)

解 总体

X 服从p 为参数的0-1分布,

9.0: ,9.0:0100=<=≥p p H p p H 2’ 1001,...,X X 为总体X

的样本,在0H 成立条件下,选择统计量

n

p p p X Z )1(000--=

,由 中心极限定理,z 近似服从标准正态分布,则拒绝域为05.0z z

-<

经计算该体05.02z z

-<-=,即得 Z 在拒绝域内,故拒绝0H ,

认为这个供应商提供的元件的一级品率没有达到该厂方的的要求

三.

四. 填空题(每空题3分,共计60分)

1、A 、B 是两个随机事件,已知0.3p(AB)

0.5,)B (p ,6.0)A (p ===,则

=)B A (p 0.8 、=)B A (p 0.6 ,事件A,B 的相互独立性为: 相互独立 。

2、一个袋子中有大小相同的红球6只、黑球3只、白球1只,

(1)从中不放回地任取2只,则第一、二次取到红球的概率为: 1/3 。

(2)若有放回地任取2只,则第一、二次取到红球的概率为: 9/25 。

(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到红球的概率为: 21/55 .

3、设随机变量X 服从参数为100的泊松分布,则==)(X D X E )( 100 ,利用“3σ” 法则,可以认为X 的取值大多集中在 70 ---130 范围。

4、设随机变量X 服从N (500,1600)的正态分布,则{}=≥580X p 0.0228 , Y 服从N (500,

900)的二项分布, 且X 与Y 相互独立,则Y X +服从 N (1000,2500) 分布;若

{}==≥+a a Y X p 则,05.0 1082.5 。8413.0)1(=Φ;9772.0)2(=Φ,95.0)645.1(=Φ

5.已知随机变量X 的密度函数??

?≤≤=其它 ,

010

,2)(x x x f

则:(1))515.0(?<

(2)X 的分布函数F (x )= ??

???<≤<≤=x x x 0x x F 1 , 110

, 0)(2

。 6、设随机变量(X,Y)具有4)(,9)(==Y D X D ,6/1-=XY ρ,则)(Y X D += 11 ,)43(+-Y X D = 51 。 7、两个可靠性为p>0的电子元件独立工作,

(1)若把它们串联成一个系统,则系统的可靠性为:2

p ;

(2)若把它们并联成一个系统,则系统的可靠性为:2

)1(1p --;

8、若随机变量X )3,0(~U ,则{}=-21〈〈

X p 2/3;=)(X E _1.5 , =+)12(X D 3 .

二、(6分)计算机中心有三台打字机A,B,C ,程序交与各打字机打字的概率依次为0.6, 0.3, 0.1,打字机发生故障的概率依次为0.01, 0.05, 0.04。已知一程序因打字机发生故障而被破坏了,求该程序是在A,B,C 上打字的概率分别为多少?

解:设“程序因打字机发生故障而被破坏”记为事件M ,“程序在A,B,C 三台打字机上打字”分别记为事件

321,,N N N 。则根据全概率公式有

025.004.01.005.03.001.06.0)|()()(3

1

=?+?+?==

∑=i i

i

N M P N P M P ,

根据Bayes 公式,该程序是在A,B,C 上打字的概率分别为

24.0025.001

.06.0)()|()()|(111=?==

M P N M P N P M N P ,

60.0025

.005

.03.0)()|()()|(222=?==

M P N M P N P M N P ,

16.0025

.004

.01.0)()|()()|(333=?==

M P N M P N P M N P 。

三、(6分)设随机变量X ,Y 的概率密度分别为:=)(x f X ?

??≤-其它 , 0,

0 ,x e x ,

=)(y f Y ???≤≤其它 ,

0,10

,2y y ,且随机变量X ,Y 相互独立。

(1)求(X ,Y )的联合概率密度为:),(y x f (2)计算概率值{}X Y p 2≤。

解:(1)

X ,Y 相互独立,可见(X ,Y )的联合概率密度为

()(),(y f x f y x f Y X ?=, ?

??≤≤≤=-其它 , 01

0,0 ,2),(y x y e y x f x 3’

????∞

--<-===

<10

2

2/1222),()2(y x x

y e ydx e dy dxdy Y x f X Y P 3‘

概率论与数理统计期末复习资料(学生)

概率论与数理统计期末复习资料 一 填空 1.设A ,B 为两个随机事件,若A 发生必然导致B 发生,且P (A )=0.6,则P (AB ) =______. 2.设随机事件A 与B 相互独立,且P (A )=0.7,P (A -B )=0.3,则P (B ) = ______. 3.己知10件产品中有2件次品,从该产品中任意取3件,则恰好取到一件次品的概率等于______. 4.已知某地区的人群吸烟的概率是0.2,不吸烟的概率是0.8,若吸烟使人患某种疾病的概率为0.008,不吸烟使人患该种疾病的概率是0.001,则该人群患这种疾病的概率等于______. 5.设连续型随机变量X 的概率密度为? ??≤≤=,,0; 10,1)(其他x x f 则当10≤≤x 时,X 的分布函数F (x )= ______. 6.设随机变量X ~N (1,32 ),则P{-2≤ X ≤4}=______.(附:)1(Φ=0.8413) 7.设二维随机变量(X ,Y )的分布律为 则P {X <1,Y 2≤}=______. 8.设随机变量X 的期望E (X )=2,方差D (X )=4,随机变量Y 的期望E (Y )=4,方差D (Y )=9,又E (XY )=10,则X ,Y 的相关系数ρ= ______. 9.设随机变量X 服从二项分布)3 1,3(B ,则E (X 2 )= ______. 10.中心极限定理证明了在很一般条件下,无论随机变量Xi 服从什么分布,当n →∞时,∑=n i i X 1 的极限分布是 _________________ 11.设总体X ~N (1,4),x 1,x 2,…,x 10为来自该总体的样本,∑== 10 110 1 i i x x ,则)(x D = ______.· 12.设总体X ~N (0,1),x 1,x 2,…,x 5为来自该总体的样本,则 ∑=5 1 2i i x 服从自由度为______ 的2χ分布. 15.对假设检验问题H 0:μ=μ0,H 1:μ≠μ0,若给定显著水平0.05,则该检验犯第一类错误的概率为______. 16.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A B )=__________. 17.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的 概率为_________. 18.设随机变量X 的概率密度?? ???≤≤=,,0; 10 ,A )(2其他x x x f 则常数A=_________.

概率论与数理统计第4章作业题解

第四章作业题解 4.1 甲、乙两台机床生产同一种零件, 在一天内生产的次品数分别记为 X 和 Y . 已知 ,X Y 的概率分布如下表所示: 如果两台机床的产量相同, 问哪台机床生产的零件的质量较好? 解: 11.032.023.014.00)(=?+?+?+?=X E 9.0032.025.013.00)(=?+?+?+?=Y E 因为 )()(Y E X E >,即乙机床的平均次品数比甲机床少,所以乙机床生产的零件质量较好。 4.2 袋中有 5 个球, 编号为1,2,3,4,5, 现从中任意抽取3 个球, 用X 表示取出的3 个球中的 最大编号,求E (X ). 解:X 的可能取值为3,4,5. 因为1.01011)3(35 == = =C X P ;3.010 3)4(35 2 3== = =C C X P ; 6.010 6)5(3 5 24=== =C C X P 所以 5.46.053.041.03)(=?+?+?=X E 4.3 设随机变量X 的概率分布1 {}(0,1,2,),(1) k k a P X k k a +===+ 其中0a >是个常 数,求()E X 解: 1 1 2 1 1 1 ()(1) (1) (1) k k k k k k a a a E X k k a a a -∞ ∞ +-=== = +++∑∑ ,下面求幂级数11 k k k x ∞ -=∑的和函数, 易知幂级数的收敛半径为1=R ,于是有 1 2 1 1 1()( ),1,1(1) k k k k x k x x x x x ∞ ∞ -==''=== <--∑ ∑

概率论与数理统计 第七章习题附答案

习题7-1 1. 选择题 (1) 设总体X 的均值μ与方差σ2都存在但未知, 而12,,,n X X X 为来自X 的样本, 则均值μ与方差σ2的矩估计量分别是( ) . (A) X 和S 2 . (B) X 和21 1()n i i X n μ=-∑ . (C) μ和σ2 . (D) X 和 21 1 ()n i i X X n =-∑. 解 选(D). (2) 设[0,]X U θ , 其中θ>0为未知参数, 又12,,,n X X X 为来自总体X 的样本, 则θ的矩估计量是( ) . (A) X . (B) 2X . (C) 1max{}i i n X ≤≤. (D) 1min{}i i n X ≤≤. 解 选(B). 3. 设总体X 的概率密度为 (1),01, (;)0, x x f x θθθ+<<=???其它. 其中θ>-1是未知参数, X 1,X 2,…,X n 是来自X 的容量为n 的简单随机样本, 求: (1) θ的矩估计量; (2) θ的极大似然估计量. 解 总体 X 的数学期望为 1 10 1 ()()d (1)d 2 E X xf x x x x θθθθ+∞ +-∞ +==+= +? ?. 令()E X X =, 即12 X θθ+=+, 得参数θ的矩估计量为 21?1X X θ-=-. 设x 1, x 2,…, x n 是相应于样本X 1, X 2,… , X n 的一组观测值, 则似然函数为 1(1),01,0, n n i i i x x L θθ=?? ?+<0且 ∑=++=n i i x n L 1 ln )1ln(ln θθ, 令 1 d ln ln d 1 n i i L n x θ θ== ++∑=0, 得

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计知识点总结详细

概率论与数理统计知识点 总结详细 Newly compiled on November 23, 2020

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计浙大四版习题答案第七章

第七章 参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σ μ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)???>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==-Λ为未知参数。 解:(1)X θc θθc θc θc θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θn n n i i x x x c θ x f θL Λ 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

概率论与数理统计的发展

数理统计学前沿简介 (陈希孺院士访谈) 一、概率论与数理统计学的产生和发展 记者:陈希孺院士,请你谈谈概率论与数理统计学学科的诞生和发展情况。 陈希孺院士:我们先从数理统计学开始,数理统计学是研究收集数据、分析数据并据以对所研究的问题作出一定的结论的科学和艺术。数理统计学所考察的数据都带有随机性(偶然性)的误差。这给根据这种数据所作出的结论带来了一种不确定性,其量化要借助于概率论的概念和方法。数理统计学与概率论这两个学科的密切联系,正是基于这一点。 统计学起源于收集数据的活动,小至个人的事情,大至治理一个国家,都有必要收集种种有关的数据,如在我国古代典籍中,就有不少关于户口、钱粮、兵役、地震、水灾和旱灾等等的记载。现今各国都设有统计局或相当的机构。当然,单是收集、记录数据这种活动本身并不能等同于统计学这门科学的建立,需要对收集来的数据进行排比、整理,用精炼和醒目的形式表达,在这个基础上对所研究的事物进行定量或定性估计、描述和解释,并预测其在未来可能的发展状况。例如根据人口普查或抽样调查的资料对我国人口状况进行描述,根据适当的抽样调查结果,对受教育年限与收入的关系,对某种生活习惯与嗜好(如吸烟)与健康的关系作定量的评估。根据以往一般时间某项或某些经济指标的变化情况,预测其在未来一般时间的走向等,做这些事情的理论与方法,才能构成一门学问——数理统计学的内容。

这样的统计学始于何时?恐怕难于找到一个明显的、大家公认的起点。一种受到某些著名学者支持的观点认为,英国学者葛朗特在1662年发表的著作《关于死亡公报的自然和政治观察》,标志着这门学科的诞生。中世纪欧洲流行黑死病,死亡的人不少。自1604年起,伦敦教会每周发表一次“死亡公报”,记录该周内死亡的人的姓名、年龄、性别、死因。以后还包括该周的出生情况——依据受洗的人的名单,这基本上可以反映出生的情况。几十年来,积累了很多资料,葛朗特是第一个对这一庞大的资料加以整理和利用的人,他原是一个小店主的儿子,后来子承父业,靠自学成才。他因这一部著作被选入当年成立的英国皇家学会,反映学术界对他这一著作的承认和重视。 这是一本篇幅很小的著作,主要内容为8个表,从今天的观点看,这只是一种例行的数据整理工作,但在当时则是有原创性的科研成果,其中所提出的一些概念,在某种程度上可以说沿用至今,如数据简约(大量的、杂乱无章的数据,须注过整理、约化,才能突出其中所包含的信息)、频率稳定性(一定的事件,如“生男”、“生女”,在较长时期中有一个基本稳定的比率,这是进行统计性推断的基础)、数据纠错、生命表(反映人群中寿命分布的情况,至今仍是保险与精算的基础概念)等。 葛朗特的方法被他同时代的政治经济学家佩蒂引进到社会经济问题的研究中,他提倡在这类问题的研究中不能尚空谈,要让实际数据说话,他的工作总结在他去世后于1690年出版的《政治算术》一书中。 当然,也应当指出,他们的工作还停留在描述性的阶段,不是现代意义下的数理统计学,那时,概率论尚处在萌芽的阶段,不足以给数理统计学的发展提供充分的理论支持,但不能由此否定他们工作的重大意义,作为现代数理统计学发展的几个源头之一,他们以及后续学者在人口、社会、经济等

7概率论与数理统计试卷及答案

概率论与数理统计试卷 说明:学号依范例填涂,六点连线确定一个数字,需保证规范,清晰,笔直,均匀 先用铅笔连,后用黑笔描,各数字填涂范例: 一、 单项选择(每小题3分,共18分) 1.设随机变量X 的密度函数满足,()()x R f x f x ?∈=-,且 3(||)E X <+∞,则X 与2X 的关系是 ( ) (A) 独立 (B) 不相关 (C) 相关 (D) 不确定 2.已知12,,,n X X X L 是来自2 ~(,)X N μσ的样本,则 ( )2 21 1 n i i X μσ =-∑服从的分布为( ) (A ) (0,1)N (B )2 (,)N μσ (C ) (1)t n - (D )2 ()n χ 3.设A ,B ,C 为三个事件,则A ,B ,C 中不多于两个发生可表示为 ( )(A)C B A ?? (B) B A C B C A ?? (C) C B A ?? (D) BC AC AB ?? 4. 设Y X ,独立同分布,且X 的分布函数为),(x F 则min(,)=Z X Y 的分布函数为 ( ) (A))(2x F (B))()(y F x F (C))](1)][(1[y F x F -- (D)2 )](1[1x F -- 5. 设821,,,X X X Λ和1021,,,Y Y Y Λ分别是来自总体)2,1(2 -N 和)5,2(N 的两个样本,且相 互独立,2 221,S S 分别为这两个样本的方差,则服从)9,7(F 分布的统计量是 ( )(A) 22 122/5S S (B) 22 125/4S S (C)22 214/5S S (D) 22 125/2S S 6、设1234,,,X X X X 是来自指数分布总体X 的样本,()E X θ=,θ未知,下列哪个是θ的无偏估计量 ( )(A ) 34 1263X X X X +++ (B )1234X X X X ++- (C ) 12344X X X X ++- (D )1234 2345 X X X X +++ 题号 一 二 三 四 五 总成绩 得分 评卷人 得分 评卷人 姓名 班 级 学院 专业 版面 学号 填涂

(完整word版)概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( ) (A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( ) 3311() () () ()32 8 168 A B C D (3)),4,(~2 μN X ),5,(~2 μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p > (4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )? - =-a dx x f a F 0 )(1)( (B )?-= -a dx x f a F 0 )(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F (5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记50 11,50i i X X ==∑ 则 50 21 1()4i i X X =-∑服从分布为( ) (A )4(2, )50N (B) 2 (,4)50 N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分) (1) 4.0)(=A P ,3.0)(=B P ,4.0)(=?B A P ,则___________)(=B A P (2) 设随机变量X 有密度? ??<<=其它01 0,4)(3x x x f , 则使)()(a X P a X P <=> 的常数a = (3) 设随机变量),2(~2 σN X ,若3.0}40{=<

概率论与数理统计第四版课后习题答案

概率论与数理统计课后习题答案 第七章参数估计 1.[一] 随机地取8只活塞环,测得它们的直径为(以mm 计) 74.001 74.005 74.003 74.001 74.000 73.998 74.006 74.002 求总体均值μ及方差σ2的矩估计,并求样本方差S 2。 解:μ,σ2 的矩估计是 61 22 106)(1?,002.74?-=?=-===∑n i i x X n X σμ 621086.6-?=S 。 2.[二]设X 1,X 1,…,X n 为准总体的一个样本。求下列各总体的密度函数或分布律中的未知参数的矩估计量。 (1)? ??>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。 (2)?? ???≤≤=-.,01 0,)(1其它x x θx f θ 其中θ>0,θ为未知参数。 (5)()p p m x p p x X P x m x m x ,10,,,2,1,0,)1()(<<=-==- 为未知参数。 解:(1)X c θc θc c θdx x c θdx x xf X E θθc θ θ =--=-== =+-∞+-∞+∞ -? ? 1 ,11)()(1令, 得c X X θ-= (2),1)()(10 += = = ? ? ∞+∞ -θθdx x θdx x xf X E θ 2 )1(,1 X X θX θθ-==+得令 (5)E (X ) = mp 令mp = X , 解得m X p =? 3.[三]求上题中各未知参数的极大似然估计值和估计量。 解:(1)似然函数 1211 )()()(+-=== ∏θn θ n n n i i x x x c θ x f θL 0ln ln )(ln ,ln )1(ln )ln()(ln 1 1 =- +=-++=∑∑ ==n i i n i i x c n n θθ d θL d x θc θn θn θL

概率论与数理统计概率历史的介绍

一、概率定义的发展与分析 1.古典定义的历史脉络 古典定义中的“古典”表明了这种定义起源的古老,它源于赌博.博弈的形式多种多样,但是它们的前提是“公平”,即“机会均等”,而这正是古典定义适用的重要条件:同等可能.16世纪意大利数学家和赌博家卡尔丹(1501—1576)所说的“诚实的骰子”,即道明了这一点.在卡尔丹以后约三百年的时间里,帕斯卡、费马、伯努利等数学家都在古典概率的计算、公式推导和扩大应用等方面做了重要的工作.直到1812年,法国数学家拉普拉斯(1749—1827)在《概率的分析理论》中给出概率的古典定义:事件A的概率等于一次试验中有利于事件A的可能结果数与该事件中所有可能结果数之比. 2.古典定义的简单分析 古典定义通过简单明了的方式定义了事件的概率,并给出了简单可行的算法.它适用的条件有二:(1)可能结果总数有限;(2)每个结果的出现有同等可能.其中第(2)条尤其重要,它是古典概率思想产生的前提. 如何在更多和更复杂的情况下,体现出“同等可能”?伯努利家族成员做了这项工作,他们将排列组合的理论运用到了古典概率中.用排列(组合)体现同等可能的要求,就是将总数为P(n,r)的各种排列(或总数为C(n,r)的各种组合)看成是等可能的,通常用“随意取”来表达这个意思.即使如此,古典定义的方法能应用的范围仍然很窄,

而且还有数学上的问题. “应用性的狭窄性”促使雅各布?伯努利(1654—1705)“寻找另一条途径找到所期待的结果”,这就是他在研究古典概率时的另一重要成果:伯努利大数定律.这条定律告诉我们“频率具有稳定性”,所以可以“用频率估计概率”,而这也为以后概率的统计定义奠定了思想基础.“古典定义数学上的问题”在贝特朗(1822—1900)悖论中表现得淋漓尽致,它揭示出定义存在的矛盾与含糊之处,这导致了拉普拉斯的古典定义受到猛烈批评. 3.统计定义的历史脉络 概率的古典定义虽然简单直观,但是适用范围有限.正如雅各布?伯努利所说:“……这种方法仅适用于极罕见的现象.”因此,他通过观察来确定结果数目的比例,并且认为“即使是没受过教育和训练的人,凭天生的直觉,也会清楚地知道,可利用的有关观测的次数越多,发生错误的风险就越小”.虽然原理简单,但是其科学证明并不简单,在古典概型下,伯努利证实了这一点,即“当试验次数愈来愈大时,频率接近概率”. 事实上,这不仅对于古典概型适用,人们确信“从现实中观察的频率稳定性”的事实是一个普遍规律.1919年,德国数学家冯?米塞斯(1883—1953)在《概率论基础研究》一书中提出了概率的统计定义:在做大量重复试验时,随着试验次数的增加,某个事件出现的频率总是在一个固定数值的附近摆动,显示出一定的稳定性,把这个固定的数值定义为这一事件的概率.

概率论与数理统计第7章例题

第7章例题 1.的无偏估计下列统计量是总体均值的样本为总体设,,,321X X X X 量的是B 3213 2161 3121. .X X X B X X X A ++++ 3213218 14121.2 12121. X X X D X X X C ++++ 2.的无偏估计下列统计量是总体均值的样本为总体设,,21X X X 量的是 D 2 1.X X A +213121. X X B + 214141.X X C + 212 1 21.X X D + 3.样本()(),则,,来自总体2 21,...,σμ==X D X E X X X X n B A. 的无偏估计是μi n i X ∑ =1 B. 的无偏估计是μX C. ()的无偏估计是2 2 1σn i X i ≤≤ D. 的无偏估计是22 σX 4.设),(21X X 是来自任意总体X 的一个容量为2的样本,则在下列总体均值的无偏估计中,最有效的估计量是 D A. 213132X X + B. 2143 41X X + C. 215352X X + D. )(21 21X X + 5.从总体中抽取样本,,X X 12下面总体均值μ的估计量中哪一个最有效D A. 11X =μ B. 22X =μ C. 2134341X X +=μ D. 2142 1 21X X +=μ 6.从总体中抽取样本32,1, X X X 统计量 6 323211X X X ++=μ) , 4423212X X X ++=μ) 3333213X X X ++=μ) 中更为有效的是C A. 1μ) B. 2μ) C. 3μ) D. 以上均不正确 7.设21,X X 是取自总体()2σμ,N 的样本,已知21175.025.0X X +=μ 和2125.05.0X X +=μ都是μ的无偏估计量,则________更有效 8.设X 1,X 2, X 3, X 4是来自均值为λ的指数分布总体的样本,其中λ未知,设有估计量

概率论与数理统计期末考试卷答案

《概率论与数理统计》 试卷A (考试时间:90分钟; 考试形式:闭卷) (注意:请将答案填写在答题专用纸上,并注明题号。答案填写在试卷和草稿纸上无效) 一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B = U () A 、A B B 、A B C 、A B D 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示( ) A 、A , B , C 中有一个发生 B 、A ,B ,C 中恰有两个发生 C 、A ,B ,C 中不多于一个发生 D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =, 则( )成立 A 、()0.32P A B = B 、()0.2P A B = C 、()0.4P B A -= D 、()0.48P B A = 4、设A ,B 为任二事件,则( ) A 、()()()P A B P A P B -=- B 、()()()P A B P A P B =+U C 、()()()P AB P A P B = D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是() A 、A 与 B 独立 B 、A 与B 独立 C 、()()()P AB P A P B = D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为 其分布函数为()F x ,则(3)F =() A 、0 B 、0.3 C 、0.8 D 、1 7、设离散型随机变量X 的密度函数为4,[0,1] ()0, cx x f x ?∈=??其它 ,则常数c = () A 、 15 B 、1 4 C 、4 D 、5

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件..................................... 2.. §4 等可能概型(古典概型)................................... 3.. §5.条件概率.............................................................. 4.. . §6.独立性.............................................................. 4.. . 第二章随机变量及其分布 (5) §1随机变量.............................................................. 5.. . §2 离散性随机变量及其分布律................................. 5..§3 随机变量的分布函数....................................... 6..§4 连续性随机变量及其概率密度............................... 6..§5 随机变量的函数的分布..................................... 7..第三章多维随机变量. (7) §1 二维随机变量............................................ 7...§2边缘分布................................................ 8...§3条件分布................................................ 8...§4 相互独立的随机变量....................................... 9..§5 两个随机变量的函数的分布................................. 9..第四章随机变量的数字特征.. (10)

概率论与数理统计知识点总结详细

概率论与数理统计知识 点总结详细 Document number:PBGCG-0857-BTDO-0089-PTT1998

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

(完整word版)概率论与数理统计教案(48课时)

《概率论与数理统计》课程教案 第一章 随机事件及其概率 一.本章的教学目标及基本要求 (1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,; (3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。了解概 率的公理化定义。 (5) 理解条件概率、全概率公式、Bayes 公式及其意义。理解事件的独立性。 二.本章的教学内容及学时分配 第一节 随机事件及事件之间的关系 第二节 频率与概率 2学时 第三节 等可能概型(古典概型) 2 学时 第四节 条件概率 第五节 事件的独立性 2 学时 三.本章教学内容的重点和难点 1) 随机事件及随机事件之间的关系; 2) 古典概型及概率计算; 3)概率的性质; 4)条件概率,全概率公式和Bayes 公式 5)独立性、n 重伯努利试验和伯努利定理 四.教学过程中应注意的问题 1) 使学生能正确地描述随机试验的样本空间和各种随机事件; 2) 注意让学生理解事件,,,,,A B A B A B A B AB A ???-=Φ…的具体含义,理解 事件的互斥关系; 3) 让学生掌握事件之间的运算法则和德莫根定律; 4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组 合,复习排列、组合原理; 5) 讲清楚抽样的两种方式——有放回和无放回; 五.思考题和习题 思考题:1. 集合的并运算?和差运算-是否存在消去律?

2. 怎样理解互斥事件和逆事件? 3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点? 习题: 第二章 随机变量及其分布 一.本章的教学目标及基本要求 (1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续 型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律 或密度函数及性质; 二.本章的教学内容及学时分配 第一节 随机变量 第二节 第二节 离散型随机变量及其分布 离散随机变量及分布律、分布律的特征 第三节 常用的离散型随机变量 常见分布(0-1分布、二项分布、泊松分布) 2学时 第四节 随机变量的分布函数 分布函数的定义和基本性质,公式 第五节 连续型随机变量及其分布 连续随机变量及密度函数、密度函数的性质 2学时 第六节 常用的连续型随机变量 常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时 三.本章教学内容的重点和难点 a) 随机变量的定义、分布函数及性质; b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何 事件的概率; c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布); 四.教学过程中应注意的问题 a) 注意分布函数(){}F x P X x =<的特殊值及左连续性概念的理解; b) 构成离散随机变量X 的分布律的条件,它与分布函数()F x 之间的关系; c) 构成连续随机变量X 的密度函数的条件,它与分布函数()F x 之间的关系; d) 连续型随机变量的分布函数()F x 关于x 处处连续,且()0P X x ==,其中x 为任

《概率论与数理统计》浙江大学第四版课后习题答案

概率论与数理统计习题答案 第四版 盛骤 (浙江大学) 浙大第四版(高等教育出版社) 第一章 概率论的基本概念 1.[一] 写出下列随机试验的样本空间 (1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1) ??? ????=n n n n o S 1001, ,n 表小班人数 (3)生产产品直到得到10件正品,记录生产产品的总件数。([一] 2) S={10,11,12,………,n ,………} (4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。 ([一] (3)) S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1)A 发生,B 与C 不发生。 表示为: C B A 或A - (AB+AC )或A - (B ∪C ) (2)A ,B 都发生,而C 不发生。 表示为: C AB 或AB -ABC 或AB -C

(3)A ,B ,C 中至少有一个发生 表示为:A+B+C (4)A ,B ,C 都发生, 表示为:ABC (5)A ,B ,C 都不发生, 表示为:C B A 或S - (A+B+C)或C B A ?? (6)A ,B ,C 中不多于一个发生,即A ,B ,C 中至少有两个同时不发生 相当于C A C B B A ,,中至少有一个发生。故 表示为:C A C B B A ++。 (7)A ,B ,C 中不多于二个发生。 相当于:C B A ,,中至少有一个发生。故 表示为:ABC C B A 或++ (8)A ,B ,C 中至少有二个发生。 相当于:AB ,BC ,AC 中至少有一个发生。故 表示为:AB +BC +AC 6.[三] 设A ,B 是两事件且P (A )=0.6,P (B )=0. 7. 问(1)在什么条件下P (AB )取到最大值,最大值是多少?(2)在什么条件下P (AB )取到最小值,最小值是多少? 解:由P (A ) = 0.6,P (B ) = 0.7即知AB ≠φ,(否则AB = φ依互斥事件加法定理, P (A ∪B )=P (A )+P (B )=0.6+0.7=1.3>1与P (A ∪B )≤1矛盾). 从而由加法定理得 P (AB )=P (A )+P (B )-P (A ∪B ) (*) (1)从0≤P (AB )≤P (A )知,当AB =A ,即A ∩B 时P (AB )取到最大值,最大值为 P (AB )=P (A )=0.6, (2)从(*)式知,当A ∪B=S 时,P (AB )取最小值,最小值为 P (AB )=0.6+0.7-1=0.3 。 7.[四] 设A ,B ,C 是三事件,且0)()(,4 1 )()()(=== ==BC P AB P C P B P A P ,8 1 )(= AC P . 求A ,B ,C 至少有一个发生的概率。 解:P (A ,B ,C 至少有一个发生)=P (A +B +C )= P (A )+ P (B )+ P (C )-P (AB )-P (BC )

概率论与数理统计浙大版概述

§3.2 二维 r.v.的条件分布 ,2,1,,),(====j i p y Y x X P ij j i 设二维离散型 r.v. ( X ,Y )的分布 若 )(1>===∑∞ =?j ij i i p x X P p 则称 ? = ===i ij i j i p p x X P y Y x X P )(),(为在 X = x i 的条件下, Y 的条件分布律 ,2,1=j ) (i j x X y Y P ===记作 二维离散 r.v.的条件分布律

若 , 0)(1 >===∑∞ =?i ij j j p y Y P p 则称 j ij j j i p p y Y P y Y x X P ?====)(),(为在 Y = y j 的条件下X 的条件分布律 ,2,1=i ) (j i y Y x X P ===记作 类似乘法公式 ) ()(),(i j i j i x X y Y P x X P y Y x X P ======) ()(j i j y Y x X P y Y P ====或 ,2,1,=j i

类似于全概率公式 ) ,()(1 1∑∑∞ =∞======j j i j ij i y Y x X P p x X P ) ()(1 j j j i y Y P y Y x X P ====∑∞ = ,2,1=i ) ,()(1 1∑∑∞ =∞======i j i i ij j y Y x X P p y Y P ) ()(1i i i j x X P x X y Y P ====∑∞ = ,2,1=j

例1把三个球等可能地放入编号为 1, 2, 3 的三个盒子中, 每盒可容球数无限. 记X 为落入 1 号盒的球数, Y 为落入 2 号盒的球数,求 (1) 在Y = 0 的条件下,X 的分布律; (2) 在X = 2 的条件下,Y 的分布律.

相关文档
最新文档