晶闸管电路及其应用

合集下载

晶闸管相控整流电路

晶闸管相控整流电路
整流电路中二极管损坏、电容 器漏电或电阻器阻值异常,导 致输出电压异常。
电源故障
输入电源缺相、电压过高或过 低,影响整流电路的正常运行

பைடு நூலகம்
故障诊断方法与步骤
外观检查
观察整流电路的外观,检查是否有明显的烧 毁、断裂等故障现象。
电阻测量
使用万用表测量整流电路中各元件的电阻值, 判断是否正常。
电压测量
测量整流电路的输入和输出电压,判断是否 在正常范围内。
的电压和电流。
电路优化方法
降低损耗 选择低阻抗的元件,以减小电路的导通电阻和漏电流。 采用合理的散热设计,确保元件温度不超过额定范围。
电路优化方法
提高效率
1
2
优化电路布局,减小线路损耗。
3
选择适当的触发延迟角,以平衡输出电压和电流, 提高转换效率。
电路优化方法
01
增强稳定性
02
加入适当的反馈控制,如电压反馈或电流反馈,以提高电 路的稳定性。
稳定性
确保电路在各种工况下都能稳定运行 。
设计原则与步骤
• 可靠性:选用可靠的元件,确保电路的长 期稳定运行。
设计原则与步骤
1. 明确设计要求
确定输出电压、电流的规格以及电路 的效率要求。
2. 选择合适的元件
根据设计要求选择合适的晶闸管、二 极管、电容、电感等元件。
设计原则与步骤
3. 设计主电路
03
优化元件参数匹配,减小参数失配对电路稳定性的影响。
06
晶闸管相控整流电路的 故障诊断与维护
常见故障类型与原因
晶闸管损坏
由于电流过大、电压过高或散 热不良等原因,导致晶闸管烧
毁或击穿。
触发电路故障

可控硅-晶闸管的几种典型应用电路

可控硅-晶闸管的几种典型应用电路

可控硅-晶闸管的几种典型应用电路描述:SCR半波整流稳压电源。

如图4电路,是一种输出电压为+12V的稳压电源。

该电路的特点是变压器B将220V的电压变换为低压(16~20V),采用单向可控硅SCR半波整流。

SCR的门极G从R1、D1和D2的回路中的C点取出约13.4V的电压作为SCR门阴间的偏置电压。

电容器C1起滤波和储能作用。

在输出CD端可获得约+12V的稳压。

晶闸管,又称可控硅(单向SCR、双向BCR)是一种4层的(PNPN)三端器件。

在电子技术和工业控制中,被派作整流和电子开关等用场。

在这里,笔者介绍它们的基本特性和几种典型应用电路。

1.锁存器电路。

图1是一种由继电器J、电源(+12V)、开关K1和微动开关K2组成的锁存器电路。

当电源开关K1闭合时,因J回路中的开关K2和其触点J-1是断开的,继电器J不工作,其触点J-2也未闭合,所以电珠L不亮。

一旦人工触动一下K2,J得电激活,对应的触点J-1、J-2闭合,L点亮。

此时微动开关K2不再起作用(已自锁)。

要使电珠L熄灭,只有断开电源开关K1使继电器释放,电珠L才会熄灭。

所以该电路具有锁存器(J-1自锁)的功能。

图2电路是用单向可控硅SCR代替图1中的继电器J,仍可完成图1的锁存器功能,即开关K1闭合时,电路不工作,电珠L不亮。

当触动一下微动开关K2时,SCR因电源电压通过R1对门极加电而被触发导通且自锁,L点亮,此时K2不再起作用,要使L熄灭,只有断开K1。

由此可见,图2电路也具有锁存器的功能。

图2与图1虽然都具有锁存器功能,但它们的工作条件仍有区别:(1)图1的锁存功能是利用继电器触点的闭合维持其J线圈和L的电流,但图2中,是利用SCR自身导通完成锁存功能。

(2)图1的J与控制器件L完全处于隔离状态,但图2中的SCR与L不能隔离。

所以在实际应用电路中,常把图1和图2电路混合使用,完成所需的锁存器功能。

2.单向可控硅SCR振荡器。

图3电路是利用SCR的锁存性制作的低频振荡器电路。

单片机在晶闸管触发电路中设计及应用

单片机在晶闸管触发电路中设计及应用

单片机在晶闸管触发电路中设计及应用在电力拖动系统、电炉控制系统中现已大量采用可控硅(晶闸管)元件作为可调电源向电动机或电炉供电,这种由晶闸管组成的控制系统,主要是利用改变可控硅的控制角θ来调节供电电压。

1 硬件组成及原理系统硬件组成如图1,只须在8031最小系统上加一块16位的定时/计数器8253和晶振电路,另加一块带一个14位定时/计数器的可编程RAM/IO扩展器8155,即可组成单片机的系统线路。

1.1 θ角定时控制角θ是滞后自然换相点的电角度,在工频条件下,它和时间tθ有如下线性关系:其中T是工频电源周期,θ是控制角。

由上式可知,由电角度θ就知道对应的定时时间tθ,则可利用定时/计数器就能实现对θ角的定时,这种用硬件定时的方法可大大节省CPU的在线工作时间。

8031本身有两个16位的定时/计数器T0和T1,若用它们定时,选用方式1工作,就为16 位的定时/计数器方式。

因为8031单片机一个机器周期由12个振荡周期组成,工作于定时状态,计数频率为振荡频率的1/12,而工作于计数状态,计数频率为振荡频率的1/24,所以当取晶振频率为6MHz,选用方式1定时工作状态时,可得:式中,T为工频周期,T=20ms。

由于16位定时/计数器最大定时时间为65536,故最大定时角为:由此可见,用8031单片机T0、T1定时,移相范围大,而分辨率则受本机机器周期限制,再就是用于三相定时,2个定时/计数器也不够,故最后确定选用NEC8253C-2定时/计数器来实现θ角定时,8253是一个三通道的16位定时/计数器,以减1计数方式工作,三个通道刚好满足三相定时,而计数频率由外部晶振提供,不受系统频率限制,选用计数频率为4MHz,则分辨率和最大定时角分别为:由上可知,分辨率和移相范围都能达到令人满意的结果。

1.2 同步信号输入和触发脉冲输出本系统采用三相同步电路。

三相交流同步电源取自同步变压器的副绕组,经RC移相后使其过零点正好都对准六个自然换相点,再经三个电压比较器输出周期为 20ms的三相方波同步信号,送至单片机P1的P1.3~P1.5,由于同步信号跳变即为自然换相点,单片机检测这三位状态字,即可进行软件认相,并作出±A、±B、±C的标志,以供θ角定时和输出(触发)、控制之用。

《晶闸管及其应用》课件

《晶闸管及其应用》课件
感谢观看
《晶闸管及其应用》PPT课件
目 录
• 晶闸管简介 • 晶闸管类型与参数 • 晶闸管应用 • 晶闸管电路设计 • 晶闸管使用注意事项
01
晶闸管简介
晶闸管定义
总结词
晶闸管是一种大功率半导体器件,具有单向导电性。
详细描述
晶闸管是一种由半导体材料制成的电子器件,其工作原理基于半导体的PN结。 它具有单向导电性,即只允许电流在一个方向上流动,而在另一个方向上则截 止。
详细描述
晶闸管作为电力电子器件,在电力系统、工业自动化、新能源等领域发挥着重要作用。通过整流技术,可以将交 流电转换为直流电,满足各种电子设备和电器的需求。逆变技术则将直流电转换为交流电,用于驱动电机、照明 等设备。此外,晶闸管还可以用于开关电路,实现电源的通断控制。
电机控制应用
总结词
晶闸管在电机控制领域应用广泛,可以实现电机的调速和正反转控制。
斩波电路设计
总结词
斩波电路是利用晶闸管快速导通和关断特性 ,将直流电转换为脉冲信号的电路。
详细描述
斩波电路设计主要考虑晶闸管的触发角、关 断角和脉冲宽度等因素,以实现斩波效果。 斩波电路常用于调节电源的输出电压或电流 ,以达到节能或调节系统性能的目的。
05
晶闸管使用注意事项
安全操作注意事项
01 操作前应穿戴好防护用具,确保工作区域 安全。
晶闸管工作原理
总结词
晶闸管由P1、N1、P2、N2四个层构成,利用内部电荷的移 动实现电流的控制。
详细描述
晶闸管由P型半导体和N型半导体交错排列形成P1、N1、P2 、N2四个层。当晶闸管两端加上正向电压时,空穴和电子分 别在P1层和N1层中形成,并形成电流。当晶闸管两端加上反 向电压时,空穴和电子在P2层和N2层中形成,但由于内部电 荷的移动被阻止,电流无法通过。

04第四章 晶闸管及其应用

04第四章    晶闸管及其应用

第四章晶闸管及其应用第一节晶闸管的构造、工作原理、特性和参数晶闸管—可控硅,是一种受控硅二极管。

优点:体积小、重量轻、耐压高、容量大、响应速度快、控制灵活、寿命长、使用维护方便。

缺点:大多工作与断续的非线性周期工作状态,产生大量谐波干扰电网;过载能力和抗扰能力较差、控制电路复杂。

(由于技术进步,近年有改善)1.1晶闸管的基本结构:晶闸管是具有三个PN结的四层结构,其外形、结构及符号如图。

1.2晶闸管的工作原理在极短时间内使两个三极管均饱和导通,此过程称触发导通。

晶闸管导通后,去掉EG ,依靠正反馈,仍可维持导通状态。

晶闸管导通必须同时具备两个条件:1. 晶闸管阳极电路(阳极与阴极之间)施加正向电压。

2. 晶闸管控制电路(控制极与阴极之间)加正向电压或正向脉冲(正向触发电压)。

晶闸管导通后,控制极便失去作用。

依靠正反馈,晶闸管仍可维持导通状态。

晶闸管关断的条件:1. 必须使可控硅阳极电流减小,直到正反馈效应不能维持。

2. 将阳极电源断开或者在晶闸管的阳极和阴极间加反向电压。

1.3晶闸管的伏安特性静态特性承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通;承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通;晶闸管一旦导通,门极就失去控制作用;要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。

晶闸管的阳极伏安特性是指晶闸管阳极电流和阳极电压之间的关系曲线,如图3所示。

其中:第I象限的是正向特性;第III象限的是反向特性图3 晶闸管阳极伏安特性I G2>I G1>I GI G=0时,器件两端施加正向电压,正向阻断状态,只有很小的正向漏电流流过,正向电压超过临界极限即正向转折电压U bo,则漏电流急剧增大,器件开通。

这种开通叫“硬开通”,一般不允许硬开通;随着门极电流幅值的增大,正向转折电压降低;导通后的晶闸管特性和二极管的正向特性相仿;晶闸管本身的压降很小,在1V左右;导通期间,如果门极电流为零,并且阳极电流降至接近于零的某一数值I H以下,则晶闸管又回到正向阻断状态。

《晶闸管整流电路》课件

《晶闸管整流电路》课件
实验设备 晶闸管整流电路实验箱
电源
实验设备与测试方法
示波器 万用表
测试方法
实验设备与测试方法
使用示波器观察整流电路的输出波形
记录实验数据和波形,以便后续分析
使用万用表测量各点的电压和电流值
调试步骤与注意事项
调试步骤 1. 检查实验设备是否完好,确保电源、导线等正常工作。
2. 根据实验要求连接电路,确保连接正确无误。
启动条件
需要满足一定的电压和电 流条件,以确保晶闸管能 够正常启动。
正常工作过程
电流流向
工作状态
在正常工作状态下,电流从阳极流向 阴极,同时维持一定的电压和电流值 。
晶闸管整流电路处于稳态工作状态时 ,各参数保持恒定,系统稳定运行。
控制方式
通过调节触发信号的相位角,可以控 制输出电压和电流的大小,从而实现 整流功能。
2. 总结实验中的问题和不足之处,提出改进措施 。
THANKS.
电感器
总结词:特性
详细描述:电感器是一种储能元件,具有隔交通直的特 性。在整流电路中,它能够有效地将交流分量转化为磁 场能储存起来并在需要时释放出来。
03
晶闸管整流电路的
工作过程
启动过程
启动方式
通过在阳极和阴极之间施 加正向电压,使晶闸管从 截止状态进入导通状态。
触发信号
在启动过程中,需要施加 一个触发信号,使晶闸管 内部的电子发生跃迁,从 而导通电流。
设计原则与步骤
电路仿真
利用仿真软件对设计的电路进行模拟,验证其性能和可 靠性。
优化改进
根据仿真结果,对电路进行优化和改进,提高其性能和 可靠性。
元件选择与参数计算
1 2
元件选择
根据电路的工作环境和性能要求,选择合适的元 件型号和规格。

第八章晶闸管及应用电路

第八章晶闸管及应用电路

8.2 晶闸管触发电路
2.其他类型的触发电路 . (1)RC 触发电路 )
特点:简单、成本低。 特点:简单、成本低。
8.2 晶闸管触发电路
(2)晶体管组合触发电路 )
V1、V2:为 NPN 型,只用 C、E 两极。 、 两极。
8.2 晶闸管触发电路
(3)氖管触发电路 )
成本低,氖管可作指示器。 成本低,氖管可作指示器。
(2)导通条件 )
VEE > η VBB + V(VD为 PN 结的正向压降) 结的正向压降) D
8.2 晶闸管触发电路
3.单结晶体管触发电路 . (1)单结晶体管触发脉冲形成电路 ) (2)工作原理 ) 电源接通后, 电源接通后,VBB 通过微调电阻 RP 充电, 和电阻 R1 向电容 C 充电,当单结晶体 管满足导通条件,单结晶体管导通, 管满足导通条件,单结晶体管导通, C 迅速放电, 迅速放电,在电阻 R3 上形成一个很窄 经过一个周期后, 的正脉冲 vb1。 经过一个周期后, 单结 晶体管截止, 晶体管截止,由 VBB 通过微调电阻 RP 充电, 和电阻 R1 向电容 C 充电,重复上述过 程。
8.2 晶闸管触发电路
8.2.1 结单向晶闸管
1.单结晶体管的结构和型号 . (1)结构 ) 三个电极: 三个电极:发射极 E、第一基极、第 、第一基极、 二基极。 二基极。一个 PN 结。 (2)电路符号 ) 发射极箭头指向 B 1 极,表示经 PN 结 的电流只流向 B1 。 (3)外形 )
8.2 晶闸管触发电路
2.双向晶闸管的工作特点 . 特性: 无论加正向电压还是反向电压, 特性:主电极 T1、T2 无论加正向电压还是反向电压, 的触发信号无论是正向还是反向,它都能被“ 其控制极 G 的触发信号无论是正向还是反向,它都能被“触 导通。主电极间电压是交流形式。 发”导通。主电极间电压是交流形式。

晶闸管工作的原理及应用

晶闸管工作的原理及应用

晶闸管工作的原理及应用1. 晶闸管的基本原理晶闸管是一种半导体器件,通过控制晶闸管的阀值电压和触发电流,可以实现对电流的控制。

它具有双向导电性和开关特性,广泛应用于电力控制、调速、变频等领域。

1.1 结构晶闸管由四个半导体材料P-N-P-N组成,形成三个P-N结。

其中,P-N结1和P-N结3称为大型P-N结,P-N结2称为小型P-N结。

晶闸管的主要结构包括P 型层、N型层、门极、触发极和阳极。

1.2 工作原理晶闸管的工作原理可以概括为以下几个过程:1.断态:当晶闸管的阳极电压低于阀值电压时,晶闸管处于断态,没有电流通过。

此时,晶闸管相当于两个二极管反向串联。

2.导通态:当晶闸管的阳极电压高于阀值电压,并且在控制极上施加了足够的正向触发电流时,晶闸管会进入导通态。

此时,晶闸管相当于一个低阻抗导通通道,允许电流从阳极流向阴极。

3.关断态:当晶闸管进入导通态,在没有外部触发信号的情况下,晶闸管会一直保持导通。

要将晶闸管从导通态转变为断态,需要在控制极上施加一个负向脉冲,称为关断触发。

1.3 特性晶闸管具有以下特点:•双向导电性:晶闸管可以实现正向和反向的导通,电流可以在两个方向上流动。

•可控性:通过调整控制极上的触发电流和门极电压,可以实现对晶闸管的导通和关断进行精确控制。

•耐压能力:晶闸管可以承受较高电压,适用于高压、大功率的电力控制系统。

2. 晶闸管的应用领域晶闸管由于其独特的工作原理和特性,在许多领域具有广泛的应用。

2.1 电力控制晶闸管被广泛应用于电力传输和分配系统中。

通过控制晶闸管的导通和关断,可以实现对电力的调控和分配,提高电网的稳定性和效率。

在电力系统中,晶闸管常用于交流调光、电炉控制、电力变换和电压调节等方面。

2.2 调速和变频晶闸管可以用于电机的调速和变频控制。

通过控制晶闸管的导通时间和关断时间,可以实现对电机转速的调节。

这种调速方式简单可靠,可以满足不同负载下的转速要求。

2.3 电子制冷晶闸管在电子制冷领域也得到了广泛应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档