一、潍柴天然气发动机结构及工作原理(修订)
天然气发动机工作原理

天然气发动机工作原理天然气发动机是一种利用天然气作为燃料的内燃机,它通过燃烧天然气来产生动力,驱动车辆或机器运行。
天然气发动机的工作原理是基于内燃机的基本原理,但与汽油或柴油发动机有一些不同之处。
首先,天然气发动机的工作原理是基于内燃机的循环过程。
内燃机的循环过程包括吸气、压缩、爆炸和排气四个阶段。
在吸气阶段,气缸内的活塞向下运动,使气缸内的空气和天然气混合物进入气缸。
在压缩阶段,活塞向上运动,将空气和天然气混合物压缩到高压状态。
在爆炸阶段,点火系统点燃混合物,产生爆炸,推动活塞向下运动。
最后,在排气阶段,活塞再次向上运动,将燃烧后的废气排出气缸。
与汽油或柴油发动机不同的是,天然气发动机使用的是天然气作为燃料。
天然气是一种清洁、高效的燃料,主要成分是甲烷,燃烧后产生的废气中含有少量的二氧化碳和水蒸气,相比汽油或柴油燃料,天然气燃料的燃烧产生的污染物更少。
天然气发动机的燃烧过程也与汽油或柴油发动机有所不同。
天然气是一种易燃气体,燃烧速度快,燃烧温度高。
因此,天然气发动机需要专门设计的点火系统和燃烧室,以适应天然气的燃烧特性。
天然气发动机通常采用点火式燃烧,即通过点火系统点燃混合物,产生爆炸推动活塞运动。
此外,天然气发动机还需要专门设计的燃料供给系统。
天然气需要通过专门的燃气管道输送到发动机,然后经过燃气调压阀和进气歧管进入气缸内。
天然气发动机还需要配备专门的燃气控制系统,以确保燃气的供给和燃烧过程的稳定性。
总的来说,天然气发动机的工作原理是基于内燃机的基本原理,但与汽油或柴油发动机有一些不同之处。
它利用天然气作为燃料,通过燃烧天然气产生动力,驱动车辆或机器运行。
天然气发动机需要专门设计的点火系统、燃烧室和燃料供给系统,以适应天然气的燃烧特性。
天然气发动机的工作原理使其成为一种清洁、高效的动力装置,被广泛应用于汽车、发电机组和工业生产中。
潍柴天然气发动机燃气电控系统PPT课件

燃 气 供 给 系 统
燃气供给系统图
燃气供给系统的作用:
压力管理: 气罐压力混合器前极低压力 温度控制: 极低温度的燃气将冻结管路和部件,系统件 有效加热并控制燃气温度在合理范围内 传感器: 提供稀燃燃烧需要的燃气温度信息,精确控制 喷嘴喷射量. 安全性: 燃气需要电磁阀控制燃气的开断。
2、稀燃:混合气中多余了空气称为稀, λ>1表示稀, (多余了燃料称为浓,λ <1 表示浓) 稀燃的优点: 1、燃料经济性 2、排放特性 3、热负荷 – 排温 – 传至发动机冷却液的热量降低
四、爆震 (末端气体爆震)
1、定义:爆震是气缸中正常火焰燃烧产生的压力温度上升,从而导致未燃燃料 同空气的自燃现象。 爆震是不正常的。
潍柴天然气发动机培训 三羚公司培训
天然气发动机的基础概念
一、进气=功率
1、更多进气 = 更大功率 (意味着不能一味加大油门来提升马力) 进气压力增加= 进气流量增加= 扭矩增加 发动机对进气调节控制能力决定发动机性能 2、增压低则功率小 如果增压低,系统中不能通过增加燃料来提升动力 – 发生爆震问题 – 过多燃料导致排放急剧恶化 – 燃料经济性变差
结构:换热器采用叉流结构以避免因燃气过冷 和冷却液过热时导致的热冲击
性能:在冷却水温高于0度的发动机所有工况, 热交换器能保证燃气始终高于-40 ℃。冷却 水温高于82C时燃气温度高于0度。
热交换器--低温启动性能好
WOODWARD系统独特的 板式换热器
ECU控制低 温启动
低温启动性能好—最低启动温度:零下30度 1、WOODWARD系统采用独特的板式换热器,对燃气进行二 次换热,保证混合气可靠燃烧。 2、ECU根据水温、空气温度对燃料喷射和点火提前角进行 补偿,保证低温启动性能。
潍柴天然气发动机结构与工作原理

柴油:1.58%, 汽油:1.3%。
燃料种类
天然 气
柴油
汽油
蒸气密度 /(kg/m3
)
0.750.8
3.4
≥4
沸点℃ -162 170~350 30~190
理论空燃 比
(kg/kg)
17.2 :1
14.3:1 14.8:1
辛烷值 (RON)
130
23~30 80~99
燃烧极限 (体积) %
5~15
1.58~ 8.2
LNG发动机工作原理图
进入诊断页面后,点击Connect。
选择对应的COM端口号。(端口号查 询方法见上页)
点击Connect。
CNG发动机工作原理图
目录
一、天然气的特性 二、天然气发动机的结构特点 三、燃气控制系统 四、进气控制系统 五、尾气处理系统 六、点火控制系统 七、水循环系统
平衡管接头:与发动机进气管连接,可以 动态调节减压器出口压力,提高燃气供气系 统的反应速度。平衡管接头需固定,防止漏 气,否则可导致动力不足。
WP5/WP6/WP7NG发动机不安装平衡管;
高压电磁阀,燃气管路上的安全开关,控 制天然气的通断。
进气口
燃气控制系统
燃气滤清器
作用: 过滤燃气中的杂质,可过滤燃气中0.3μm ~ 0.6μm的微粒,过滤效率≥95%。 ◆技术参数: 使用温度:-40~107℃ 最大使用压力:35bar ◆安装: 放水口朝下,按箭头所指的气流方向安装 ,切记不能装反。 保养 按《潍柴燃气发动机燃气滤清器滤芯更换 规范》要求保养: 例行检查时排污。 在一级保养时检查更换滤芯。 注意:燃气滤清器排污需在系统压力释放 后进行。
天然气发动机基本结构及工作原理

• 曲轴的止推由两个半圆型止推轴承来实现,它们分别在主轴承轴鞍的
• 主轴瓦表面由巴氏合金薄层附带一个铜锡合金垫圈组成,如果20%以
飞轮
飞轮是由一块铸铁大圆盘和钢制齿圈 组成,作用是将在作功行程中由曲轴输入 的能量的一部分贮存起来,用以在其他行 程中克服阻力,带动曲柄连杆机构越过上、 下止点,使曲轴的旋转角速度和输出扭矩 尽可能均匀,提高发动机运转的稳定性, 并使发动机有可能克服短时间的超载荷。 在飞轮上通常刻有第一缸点火正时标记, 以便校准点火时间。
活塞组
活塞组的作用是与缸头和缸套共同组成所需 形状的燃烧室;保证气缸内部空间的密闭性,承 受气缸内气体的压力,并将此压力通过活塞销和 连杆传给曲轴,变活塞往复运动为曲轴旋转运动。 活塞直接与高温、高压燃气接触,而且又作高速 往复运动,因此要求活塞的材料应具有良好的导 热性和较小的膨胀系数,且在具有足够强度的同 时尽可能减轻质量,同时要求活塞还应具有良好 的耐磨性。活塞组是发动机中工作条件最严酷的 组件,发动机的活塞通常是由特殊的合金材料铸 造而成。
曲轴
曲轴由优质合金钢制成。曲轴的前端 用于驱动辅助设备,并安装有一个扭转减 振器;曲轴的后部有一个整体锻造的法兰, 法兰上连接有飞轮。曲轴上装有甩油环和 迷宫密封用来防止润滑油沿轴向泄漏。曲 轴上还装有齿轮,用于驱动正时齿轴
• 曲轴内设有油道,润滑油可通过油道到达主轴瓦轴颈,再通过曲轴油
2、配气机构
配气机构是按照发动机各气缸的工作顺序和 配气相位完成换气过程的控制机构。配气机构应 尽量保证发动机各气缸的换气充分,使发动机具 有良好的动力性能;特别在高速运转时应尽量减 少振动和噪音。配气机构可从不同角度来分类。 按气门的布置分为气门顶置和气门侧置式;按凸 轮轴的布置位置分为下置式、中置式和上置式; 按曲轴和凸轮轴的传动方式分为齿轮传动式、链 条传动式和齿带传动式;按每气缸气门数目分, 有二气门式和四气门式等
天然气发动机结构及工作原理

潍柴天然气发动机之发动机结构及工作原理1 / 51天然气的成分主要成分是甲烷,易于完全燃烧,比空气轻,泄露后迅速飘散大气中,安全性好。
作为车载能源,主要有以下两种贮存形态:1、CNG-Compressed natural gas 压缩天然气:气瓶内充满气时一般为20Mpa,2、LNG-Liquefied natural gas 液化天然气:在常压下、温度为-162度的天然气变为液态。
2 / 51燃料种类常态下密度kgm 沸点℃天然气(CH4) LPG580柴油(C16H34为代表) 汽油(C8H18为代表)-3 0.75~0.8(气态) 830170~35014.3:142.50 720~750 30~190 14.8:1 43.90-161.5 17.2:1 49.81 130 -100理论空燃比(kg/kg)低热值 MJ(kg) -1 45.9辛烷值(RON) 十六烷值100~110 23~3040~601.58~8.225080~9927 0燃烧极限(体积) % 自然温度(常压下)T ℃闪点℃5~156501.5~9.54501.3~7.6390~42060-43 -187其中:辛烷值:指与汽油抗爆性相同的标准燃料所含异辛烷的体积分数.低热值:指1立方米燃气完全燃烧后其烟气被冷却至原始温度,但烟气中的水蒸气仍为蒸汽状态时所放出的热量.3 / 51天然气的安全性:1)天然气在压缩(液化)、储运、减压、燃烧过程中,都是在严格密封的状态进行,不易泄漏;2)天然气比空气轻(密度为空气密度的55%),如有泄漏,在高压下很快散失,不易着火;3)天然气的着火点为650~750℃,比汽油高约260℃,4)爆炸极限5~15%,比汽油的1~6%高2.5~4.7倍,与汽油相比不易发生燃烧和爆炸。
4 / 51第一代天然气发动机使用非增压预混合技术。
技术特点:1、文丘里式混合器进气总管混合;2、机械式节气门控制;3、空燃比闭环控制;4、理论空燃比燃烧。
天然气发动机工作原理

天然气发动机工作原理
天然气发动机是一种利用天然气作为燃料的内燃机,它与传统的汽油发动机相比,具有环保、经济、效率高等优点。
那么,天然气发动机是如何工作的呢?接下来,我们将详细介绍天然气发动机的工作原理。
首先,天然气进入发动机后,经过压缩。
在天然气发动机中,气体需要被压缩到很高的压力才能达到燃烧所需的条件。
这一过程通常是由发动机中的压缩机来完成的。
压缩机将气体压缩后送入气缸内,为燃烧创造条件。
接着,天然气与空气混合后,进入气缸进行燃烧。
在气缸内,天然气与空气混合后,通过高压火花塞点火,燃烧产生高温高压的燃气。
这些燃气的高温高压状态使得活塞向下运动,驱动曲轴转动,从而产生动力。
随后,燃气通过排气门排出。
在燃烧完毕后,燃气通过排气门排出气缸,进入排气系统。
排气系统通过排气管将废气排出,同时排气门关闭,为下一个工作循环做准备。
最后,曲轴转动带动传动系统工作。
曲轴是天然气发动机中的一个重要组成部分,它将活塞的上下运动转化为旋转运动,从而驱动发电机或者汽车的动力系统工作。
总的来说,天然气发动机的工作原理是通过压缩、燃烧和排气等环节完成燃料的能量转化,最终驱动发电机或者汽车等设备工作。
相比传统的汽油发动机,天然气发动机具有更清洁、更经济的特点,是未来发展的趋势。
潍柴天然气发动机燃气电控系统培训
1230/(1300-1500) 220/300 2200
185
95
WP10NG336E30/40 1050
1350/(1300-1500) 247/300 2200
185
95
WP12NG330E30/40 1050
1350/(1300-1500) 243/330 2200
185
95
WP12NG350E30/40 1100
800
980/(1300-1500) 191/260 2300
185
95
WP10NG260E30/40
900
980/(1300-1500) 191/260 2200
185
95
WP10NG280E30/40
950
1160/(1300-1500) 206/280 2200
185
95
WP10NG300E30/40 1000
第 6页 共 页二、产来自介绍型号1000转扭矩 (N·m)
最大扭矩 (N·m)/rpm
额定功率 额定转速 最低燃气耗 1米噪声 (kW/hp) (r/min) (g/kW·h) dB(A)
WP6NG210E30/40
600
680/(1300-1500) 155/210 2300
185
95
WP6NG240E30/40
天然气发动机结构特点
潍柴天然气发动机是在相应型号潍柴柴油机基础上改制,增加燃气电控 系统而成。目前潍柴LNG发动机采用美国WOODWOOD2.0燃气电控系统。 1、取消了柴油机的燃油系统(高压油泵、喷油器、高压油管等件),增加了燃气 供给系统(气瓶、高压切断阀、减压器、燃气热交换器和节温器、喷射阀等 件)。 2、采用点燃式燃烧方式(气缸盖上的喷油器安装孔改为火花塞安装孔),增加 了点火控制系统(点火控制器、点火线圈、高压线、火花塞)。 3、压缩比比柴油机的小,燃烧室形式(活塞)与柴油机不同。 4、增加了信号发生器,用于判缸和测量发动机转速。 5、增加了混合器和节气门,使燃气和空气在混合器中混合。 6、排气温度高,增压器采用水冷中间壳,进、排气门座采用耐磨、耐高温材 料,采用带隔热材料的排气管。 7、WOODWARD系统单点喷射,稀薄燃烧。
一、潍柴天然气发动机结构及工作原理(修订)
发动机性能提升的未来展望
研发更高效的燃烧系统
应用先进的控制技术
探索新型材料和工艺
加强与国际先进企业的合 作与交流
Prt Six
潍柴天然气发动机 维护与保养
发动机维护保养的重要性
延长发动机使用 寿命:定期保养 能够及时发现并 解决潜在问题避 免发动机严重损 坏。
提高发动机性能: 保养得当可确保 发动机处于最佳 工作状态提高燃 油效率和动力性 能。
添加标题
添加标题
添加标题
改进燃油喷射系统:精准控制燃油 喷射提高燃烧效率
轻量化设计:采用新型材料和结构 降低发动机重量
发动机性能改进措施
优化燃烧系统:提 高燃油燃烧效率降 低排放
采用高效涡轮增压 技术:增加进气压 力提高功率和扭矩
改进冷却系统:降 低发动机温度提高 可靠性
智能化控制技术: 实现精准控制提高 燃油经济性
常见故障诊断和排除方法
发动机启动困难:检查点火系统、供油系统和气缸压力是否正常 发动机功率不足:检查空气滤清器、燃油喷射系统、点火系统等是否正常 发动机过热:检查冷却系统是否正常风扇、水泵等部件是否工作正常 发动机异响:检查发动机各部件是否有松动或损坏如气门、活塞等
发动机维修保养的注意事项
定期检查发动机机油、冷却液、油位和空气滤清器确保发动机正常运行。 定期清洁发动机进气系统保持空气滤清器清洁以防止灰尘和杂质进入发动机。 定期检查发动机的皮带和链条确保其张紧度适中如有需要及时更换。 定期检查发动机的排放系统确保其正常工作以减少对环境的污染。
THNKS
汇报人:
船舶动力:潍柴天然气发动机还可作为船舶动力具有高效、可靠、安全 等特点。
天然气发动机的发展趋势
高效低排放:提高天然气发动机的效率和降低排放是未来的重要趋势以满足更严格的 环保要求。
天然气发动机工作原理
天然气发动机工作原理天然气发动机是一种利用天然气作为燃料的内燃机,它与传统的汽油发动机相比,具有环保、经济、高效的特点。
那么,天然气发动机是如何工作的呢?接下来,我们将从工作原理的角度来详细介绍。
首先,天然气发动机的工作原理可以简单概括为,吸气、压缩、点火、工作。
具体来说,天然气首先通过进气道进入气缸内,然后活塞向上运动,将气体压缩。
在这个过程中,进气门关闭,气缸内的气体被压缩,温度和压力随之升高。
接着,天然气发动机利用点火系统点燃压缩空气和天然气混合气体,使混合气体燃烧。
燃烧后的高温高压气体推动活塞向下运动,从而驱动曲轴转动,产生动力。
这种燃烧的过程可以持续地推动活塞运动,从而驱动车辆行驶。
在整个工作过程中,天然气发动机的关键部件包括进气系统、压缩系统、点火系统和排气系统。
进气系统负责将天然气引入气缸内,压缩系统将气体压缩,点火系统提供点火能量,排气系统排出燃烧后的废气。
这些系统协同工作,使得天然气发动机能够高效地工作。
此外,天然气发动机的工作原理还涉及到燃烧过程的控制。
通过控制点火时机、燃料混合比等参数,可以实现燃烧过程的优化,提高燃烧效率,减少排放。
同时,天然气发动机还可以通过增压技术提高进气密度,进一步提高功率和燃油经济性。
总的来说,天然气发动机的工作原理是一个复杂的系统工程,涉及到多个领域的知识。
通过对其工作原理的深入了解,可以更好地理解天然气发动机的优势和特点,为其在汽车、发电等领域的应用提供技术支持。
综上所述,天然气发动机的工作原理是一个多方面的系统工程,需要综合运用机械、热力学、电子等多个学科的知识。
通过对其工作原理的深入理解,可以更好地推动天然气发动机技术的发展,促进其在环保、高效等方面的应用。
潍柴燃气电控系统介绍02
Regulator调压器 调压器 HP filtration 高压滤清器 Recirc Valve 喘振阀
PreThrottle Pressure 节气门前压力 Inter Cooler中冷器 中冷器
FMV燃料计量阀 燃料计量阀
Mixer混合器 混合器
Position Feedback
FloTech电子节气门 电子节气门
Spark
FPP脚踏板
OH1.2 Control点火控制 Engine Controller 60 pins MAP进气歧管压力 发动机 电控模块 MAT进气歧管温度
ECT冷却水温 Oil Presssure Switch机油压力开关 Cam Position凸轮轴传感器
Compressed Air Or PTP
当量混合气: 当量混合气 理论上燃烧所有燃料所需的空气量 。燃烧后无燃料和氧气剩余 稀燃: 稀燃 排气中有过量空气
Slide 16
稀燃
CNG 能在当量比的 +/- 35% 范围内燃烧 为满足排放法规,稀燃发动机保证必须在 为满足排放法规,稀燃发动机保证必须在30% 到 35% 稀燃界限内 排气温度、 排气温度、冷却液量和效率与柴油机相似
柴油机 稀 当量比 CNG 气体稀燃发动机 汽油机 浓
Slide 17
稀燃的优点
燃料经济性 热负荷
排温 传至发动机冷却液的热量降低
Slide 18
稀燃的注意事项
需要高能长时间的点火 因为高增压, 因为高增压,需要小的火花间隙 -5% 燃料 ~> 失火 +15% 燃料 ~> 爆震 高的空气湿度易导致失火
NOx CO HC
Lean
Fuel Equivalence Ratio φ
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燃气发动机基础知识(燃料)
天然气的成分 主要成分是甲烷,易于完全燃烧,比空气轻,泄露后迅速飘散大气中, 安全性好。作为车载能源,主要有以下两种贮存形态: 1、CNG-Compressed natural gas 气瓶内充满气时一般为20Mpa, 压缩天然气:
燃气供给系统的作用: 压力管理: 气罐压力混合器前极低压力 温度控制: 极低温度的燃气将冻结管路和部件,系统 件。有效加热并控制燃气温度在合理范围内 传感器: 提供稀燃燃烧需要的燃气温度信息,精确控 制喷嘴喷射量. 安全性: 燃气需要电磁阀控制燃气的开断
混合器
热交换器 气瓶 切断阀 滤清器
高压电磁阀
减压器进气口
燃气发动机结构原理(热交换器)
热交换器的作用: 天然气从液态变 为气态导致燃气温度大幅降低,通过发动 机的冷却液给天然气进一步加热,可防止 进入燃料计量阀前的燃气结晶,以免影响 燃料计量阀性能。 结构:换热器采用叉流结构以避免因 燃气过冷和冷却液过热时导致的热冲击。
性能:在冷却水温高于0度的发动机 所有工况,热交换器能保证燃气始终高于 -40 ℃。冷却水温高于82C时燃气温度高 于0度。
燃气发动机基础知识(发展过程-历史产品)
第一代天然气发动机使用非增 压预混合技术。 技术特点: 1、文丘里式混合器进气总 管混合; 2、机械式节气门控制; 3、空燃比闭环控制; 4、理论空燃比燃烧。 典型系统:LANDIRENZO 不足之处: 1、燃料控制不精确燃料消耗 较高。 2、排气温度高。 3、容易引起发动机回火。 4、达不到标放要求,现已不 用于车用机产品。
节温器
FMV燃料计量阀
稳压器
第 18页 共 页
燃气发动机基础知识(燃气供给系统示意图)
第 19页 共
页
燃气发动机结构原理(滤清器)
作用:过滤燃气中0.3μ m~ 0.6μ m的微粒, 过滤效率≥95%。 安装要求:放水口朝下,按箭头所指的气流 方向安装, 切记不能装反。 • 定期更换滤清器滤芯,详细要求见 Q/WCQTG0011《潍柴燃气发动机燃气滤清器 滤芯更换规范》。
2、天然气发动机使用稀燃技术
足够的空气燃烧完所有的燃料,燃烧后无氧气和未燃烧燃料残留称为 理论(当量)空燃比。 柴油机理论空燃比:14.5,天然气发动机理论空燃比:16-17,汽油机 理论空燃比:14.7。 发动机稀燃具有以下优点:经济性好,排放性能好,发动机热负荷减 小。
燃气发动机基础知识(燃烧特点)
17左右 飞轮壳处 无
高 低 (增压器、排气管、进排气门座) WOODWARD BOSCH
电控系统பைடு நூலகம்
第 12页 共 页
燃气发动机基础知识(燃烧特点)
1、空气进气量对燃气发动机功率影响大。 发动机对进气调节控制能力决定发动机性能。
增压低则功率小,如果增压低,系统中不能通过增加燃料来提升动力。否
则发动机发生爆震,过多燃料导致排放急剧恶化,燃料经济性变差。 进气压力 进气流量 功率扭矩
燃气发动机结构原理(稳压器)
由于LNG特性限制,一般在超压情况下 首先打开主安全阀开启压力为1.75Mpa, 253psi,副安全阀开启压力为2.41Mpa, 350psi,气瓶压力一般都不超过1.75Mpa。 根据喷射阀要求,理论可工作燃气压力为 0.5-1.72Mpa,超出该压力范围可能导致喷 射阀失效、发动机无法启动等故障,所以 潍柴要求在滤清器和热交换器之间安装稳 压器。 • 稳压器的维修和保养需按照Q/WCQTG0012《潍柴燃气发动机REGO稳压 器维修规范》操作。
号并转换成节气门开度信号,节气门从ECU处接受开度命令信号,并 将实际开度反馈给ECU。
第 20页 共
页
燃气发动机结构原理(电磁阀)
电磁切断阀是由线圈驱动阀芯,由ECM 控制其开合,停机状态下处于常闭状态。 可及时切断或恢复燃料供给。 安装要求: 电磁切断阀安装于LNG气罐稳压罐与稳 压器之间,是发动机管路与气瓶管路的连 接节点。 • 电磁切断阀使用24V直流电源,安装时请 注意电源正负极连接正确。 • 保证电磁阀上所标明的气流方向与实际 气流方向一致。 • 切断阀接头螺纹为3/4-16 UNF ,整车厂 需定制与之安装管件,并保证连接牢固, 无漏气。
燃气发动机结构原理(混合器)
工作原理及作用:将天然气和中冷后的空气充分混合,使燃烧更充
分、柔和。有效降低NOx排放和排气温度。
结构:采用喉管和十字叉结构,天然气从小孔中进入混合器。 喉管可以拆卸清洗。
燃气发动机基础知识(空气供给系统)
节气门前 压力传感器 中冷器
混合器 节气门位置反馈 电子节气门 油门脚踏板 进气温度、 压力传感器 增压器
LNG储罐与泵总成 高 高压直喷喷油器
压 天 然 气体控制模块 气
控制单元 液压泵
高压共轨柴油泵
1
燃气发动机基础知识(发展过程—储备一代) 4-3-2 工作原理
引燃
压缩冲程上止点前喷入少 量柴油(5%),形成火焰。 气体喷射 柴油引燃后,天然气以300bar 的压力喷射到火焰中,成为燃 烧的主要燃料。
燃气发动机基础知识(燃烧特点)
4、天然气发动机闭环控制,不易失火 失火即发动机不点火。混合气浓度过浓或过稀都会导致天然气发 动机出现失火,失火后发动机动力性下降,排放性能恶化。
燃气发动机基础知识(工作原理)
第 16页 共
页
燃气发动机基础知识(工作原理)
第 17页 共
页
燃气发动机基础知识(燃气供给系统)
气发动机基础知识(发展过程-生产一代) 燃气发动机基础知识(发展过程-研发一代)
智能化与共轨柴油机同步
CAN通讯 巡航、PTO、排气制动 多功率开关 共轨行 恒温风扇
ECU安装在发动机上, 便于装车 诊断维修设备、诊断 接口、故障代码等与 潍柴共轨柴油机一致 便于与柴油机同步实 现社会化服务
2、LNG-Liquefied natural gas
液化天然气:
在常压下、温度为-162度的天然气变为液态。
燃气发动机基础知识(燃料)
燃料种类 常态下密度kgm-3 沸点℃ 理论空燃比(kg/kg) 低热值 MJ(kg)-1 辛烷值(RON) 天然气(CH4) 0.75~0.8(气态) -161.5 17.2:1 49.81 130 45.9 100~110 LPG 580 -100 柴油(C16H34为代表) 830 170~350 14.3:1 42.50 23~30 汽油(C8H18为代表) 720~750 30~190 14.8:1 43.90 80~99
燃气发动机结构原理(FMV)
• 喷射阀喷嘴的数目随发动机的机型不同而不同。目前,WP6NG和WP7NG 系列发动机为8喷嘴,WP10NG系列发动机为10喷嘴,WP12NG系列发动 机为12喷嘴。燃料计量阀工作电压16V-32V,每个喷射阀的峰值电流 是4A,维持电流是1A;工作环境温度:-40℃~125℃;燃气温度:40℃~90℃。 安装要求: • FMV的安装位置要合理可靠,连接到FMV的线束和管路应保证没有干涉 ,在FMV上安装有压通式单向阀以用于检测燃气压力,安装FMV时应保 证便于检测燃气压力,注意FMV喷嘴线束一定要插紧。 • FMV使用一段时间后,需要清洗,清洗时使用专门的清洗设备,并且 应用诊断软件中专门的清洗功能。详见Q/WCQTG0013《潍柴燃气发 动机喷嘴清洗规范》。
十六烷值
燃烧极限(体积) % 自然温度(常压下)T ℃ 闪点 ℃
0
5~15 650 -43 1.5~9.5 450
40~60
1.58~8.2 250 -187
27
1.3~7.6 390~420 60
其中:辛烷值:指与汽油抗爆性相同的标准燃料所含异辛烷的体积分数.
低热值:指1立方米燃气完全燃烧后其烟气被冷却至原始温度,但烟气 中的水蒸气仍为蒸汽状态时所放出的热量.
3、燃气发动机抗爆性好 爆震指的是在压缩中气缸内末端混合气自燃。爆震是一种不正常的燃 烧。发生爆震后,发动机动力性、经济性将急剧恶化,发动机寿命大 大减少。 潍柴燃气发动机压缩比经过精确计算和试验验证,设计为10.5-11.5, 既满足了抗爆性,又提高了发动机热效率。
可导致爆震的主要因素包括: 1、过多的积炭 (过高的机油灰分); 2、机油消耗过大,发动机过浓燃烧; 3、燃料过浓; 4、中冷器污染 (过高进气温度); 5、增压不能控制或过高; 6、点火定时不准; 7、燃料品质差 (低辛烷值)。
1
燃气发动机基础知识(与柴油机区别)
燃气发动机
燃料供给系统 燃气供给 (电磁切断阀、稳压器、燃料 计量阀等) 点燃 (点火控制模块、点火线圈、 高压线、火花塞等) 12左右 信号发生器 (相位传感器) 混合器、节气门
柴油机
燃油供给 (高压油泵、高压油管、 喷油器等) 压燃
点火方式
压缩比 转速信号采集 燃料空气混合 排温
燃气发动机基础知识(发展过程—储备一代)
天然气发动机使用HPDI缸内喷射技术 技术特点: 1、缸内燃气直接喷射; 2、超稀薄燃烧; 3、保持原柴油机动力性水平; 4、能够达到欧Ⅴ更高排放要求; 5、燃料消耗低。 典型系统:WESTPORT公司HPDI系统 不足之处:成本较高。
燃气发动机基础知识(发展过程—储备一代) 4-3-1 高压直喷系统HPDI
Air 空气 Filter 滤清器
OH1.2 Engine Controller Engine 发动机
排气管 废气控制阀
新鲜空气
空气、燃气混合 排气
氧传感器
燃气发动机基础知识(负荷控制)
天然气发动机通过脚踏板控制节气门来控制发动机负荷:电子
脚踏板和节气门间不使用机械部件连接。ECU接受电子脚踏板位置信
燃气发动机结构原理(减压器) )
减压器工作时,通过压力膜片克服弹簧阻力,带动杠杆,调整节流 孔的流通面积,从而控制减压后的天然气压力,将压缩天然气压力由存 储状态的5MPa-20MPa 调节至0.8MPa 左右。 • 冷却液加热 • 平衡管接头