高一数学二次函数
高一数学(二次函数的三种表示方式)学案

2、二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:1.一般式:y=ax2+bx+c(a≠0);2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k).二次函数y=a(x+h)2+k(a≠0)中,a决定了二次函数图象的开口大小及方向;h决定了二次函数图象的左右平移,而且“h正左移,h负右移”;k决定了二次函数图象的上下平移,而且“k正上移,k负下移”.除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数.当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.①并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac存在下列关系:(1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立.(2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立.(3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0),则x1,x2是方程ax2+bx +c=0的两根,所以x1+x2=ba-,x1x2=ca,即ba=-(x1+x2),ca=x1x2.所以,y=ax2+bx+c=a(2b cx xa a++) = a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论:若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x -x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法:3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.例1 已知某二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),求二次函数的解析式.例2 已知二次函数的图象过点(-3,0),(1,0),且顶点到x轴的距离等于2,求此二次函数的表达式。
高一数学二次函数的性质和图像

⑤.对称于原点的两点:
A(x,y)
x
y=x2 y= - x2 ...
... ...
-2 -1.5 4 2.25 -4 -2.25
-1 -0.5 1
0
0.5 0.25 -0.25
1 1 -1
1.5 2.25
2
...
0.25 0 -1 -0.25 0
4 -2.25 -4
... ...
函数图象画法
描点法
二次函数y=ax2的图象和性质
y
x
一. 平面直角坐标系: 1. 有关概念: 2. 平面内点的坐标: 3. 坐标平面内的点与有序 实数对是: 一一对应.
P (a,b)
第二象限
y(纵轴)
b
第一象限
a
第三象限
o
x(横轴)
第四象限
坐标平面内的任意一点M,都有唯一一对有序实数(x,y)与它对应; 任意一对有序实数(x,y),在坐标平面内都有唯一的点M与它对应.
注意:列表时自变量 2 取值要均匀和对称。 y x
画出下列函数的图象。
y x2
1 y x
列表 描点
1 2 (1) y x 2 (2) y 2 x 2 2 2 (3) y x 3
连线
y x2
用光滑曲线连结时要 用光滑曲线连结时要 用光滑曲线连结时要 用光滑曲线连结时要 自左向右顺次连结 用光滑曲线连结时要 用光滑曲线连结时要 用光滑曲线连结时要 用光滑曲线连结时要 自左向右顺次连结 自左向右顺次连结 自左向右顺次连结 自左向右顺次连结 自左向右顺次连结 自左向右顺次连结 自左向右顺次连结
( 3,6)与( 3,6)
3
3
( 3,6) y=-2x2
高一数学-1-8一次函数二次函数和复合函数

解析:由题意可知,f(a)=1-4 a=2,解之得 a=-1.
答案:-1
二次函数
[例 2] (2010·四川高考)函数 f(x)=x2+mx+1 的图象
关于直线 x=1 对称的充要条件是( )
A.m=-2
B.m=2
C.m=-1
D.m=1
解析:由-m2 =1 得,m=-2.
答案:A
函数 f(x)=4x2-mx+5 在区间[-2,+∞)上是增
二、二次函数的图象和性质
二次函数 y=ax2+bx+c(a、b、c 为常数,a≠0)
a>0
a<0
图 象
二次函数 y=ax2+bx+c(a、b、c 为常数,a≠0)
抛物线对称轴是 x=-2ba,顶点是-2ba,4ac4-a b2
抛物线开口向上,且向上 抛物线开口向下,且向下无限伸展
性 无限伸展
又 f(0)=-1,∴2a+h=-1,∴a=12,h=-2, ∴f(x)=12x2+ 2x-1.
答案:f(x)=12x2+ 2x-1
与二次函数有关的综合问题
[例 5] (2010·福建省宁德质检)若二次函数 f(x)=ax2 +bx+c(a≠0)满足 f(x+1)-f(x)=2x,且 f(0)=1.
性 =-2ba时,y 有最小 时,y 有最大值,y 最大=
质
值,y 最小=4ac4-a b2
4ac-b2 4a
三、三个二次(二次方程 ax2+bx+c=0,二次函数 y =ax2+bx+c,二次不等式 ax2+bx+c>0(a≠0)(或<0))的 关系
Δ=b2-4ac
Δ>0
分类
a>0 a<0
Δ=0 a>0 a<0
高一数学必修二所有公式

高一数学必修二所有公式在高中数学中,数学必修二是一门重要的课程,它涵盖了许多重要的数学概念和公式。
以下是高一数学必修二中的一些重要公式:1. 二次函数的顶点坐标公式:对于二次函数 y = ax^2 + bx + c,它的顶点坐标可以由公式 x = -b/2a 和 y = f(x) = -D/4a 计算得出,其中 D = b^2 - 4ac 是判别式。
2. 两点间距离公式:如果给定两个点 P1(x1, y1) 和 P2(x2, y2),它们之间的距离可以通过公式 d = √((x2 - x1)^2 + (y2 - y1)^2) 计算得出。
3. 直线的斜率公式:如果给定直线上两个点 P1(x1, y1) 和 P2(x2, y2),直线的斜率可以通过公式 k = (y2 - y1) / (x2 - x1) 计算得出。
4. 三角形面积公式:对于已知三角形的三边长度 a、b、c,可以使用海伦公式来计算三角形的面积 S = √(s(s-a)(s-b)(s-c)),其中 s = (a + b + c) / 2 是半周长。
5. 三角函数的基本关系式:对于任意角θ,三角函数的基本关系式包括正弦函数 sin(θ) = y/r,余弦函数 cos(θ) = x/r,正切函数 tan(θ) = y/x,其中 r 是点 (x, y) 到原点的距离。
6. 三角函数的诱导公式:三角函数的诱导公式包括和差公式、倍角公式、半角公式等,它们是解决三角函数的复杂问题时非常有用的工具。
这些公式只是高一数学必修二中的一小部分,但它们在解决各种数学问题时非常常用。
通过熟练掌握这些公式,并能够在适当的情况下应用它们,学生将能够更好地理解和应用数学知识。
除了这些公式,高一数学必修二还包括了其他重要的概念和定理,如函数的性质、三角函数的图像与性质、直线与圆的位置关系等。
通过全面学习这些知识,学生将能够建立坚实的数学基础,并为进一步学习更高级的数学课程打下基础。
人教版高一数学下册二次函数知识点讲解

人教版高一数学下册二次函数知识点讲解二次函数(quadratic function)的基本表示形式为y=ax2+bx+c(a≠0)。
二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。
那么同学们赶快一起来看看二次函数知识点!定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c 为常数,a0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-bb^2-4ac)/2a二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a0时,抛物线向上开口;当a0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y 轴右。
5.常数项c决定抛物线与y轴交点。
高一数学知识点梳理:二次函数与一元二次方程_知识点总结

高一数学知识点梳理:二次函数与一元二次方程_知识点总结亲爱的同学们,大家好!在度过一个平安、愉快的暑假之后,我们满怀新的希望,迎来了生机勃勃的新学期!现在请跟着我,一起熟悉高一数学知识点梳理。
二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:解析式顶点坐标对称轴y=ax^2(0,0)x=0y=a(x-h)^2(h,0)x=hy=a(x-h)^2+k(h,k)x=hy=ax^2+bx+c(-b/2a,[4ac-b^2]/4a)x=-b/2a当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;当h>0,k当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;当h因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x?-x?|当△=0.图象与x轴只有一个交点;当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a5.抛物线y=ax^2+bx+c的最值:如果a>0(a顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax^2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。
【最新】高一数学必修二各章知识点总结
【最新】高一数学必修二各章知识点总结高一数学必修二各章知识点总结如下:第一章:函数与二次函数1. 函数的概念及性质:定义域、值域、奇偶性、单调性等。
2. 二次函数的基本性质:顶点、对称轴、单调性、零点、图像的开口方向。
3. 一次函数与二次函数的比较与关系:求解一次函数与二次函数的交点等。
4. 二次函数的图像与方程:画出给定二次函数的图像,根据图像确定二次函数的方程等。
5. 二次函数与根式、指数、对数的应用。
第二章:三角函数1. 角度制与弧度制的转换。
2. 弧度制下的任意角的三角函数值的计算。
3. 三角函数的简单性质及其关系:同角三角函数的相互关系、倒数三角函数的相互关系等。
4. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像与性质等。
5. 三角函数的应用:三角函数在几何、物理、工程等领域的应用。
第三章:指数与对数函数1. 指数的定义、性质及运算规律:指数与乘法、除法、乘方运算规律等。
2. 对数的定义、性质及运算规律:对数与指数的关系、对数运算法则等。
3. 指数函数与对数函数的简单性质与图像:指数函数与对数函数的基本性质、图像和性质等。
4. 指数函数与对数函数的应用:指数与对数在增长与衰减、微积分、金融等领域的应用。
第四章:数列1. 数列的概念与性质:等差数列、等比数列、通项公式、前n 项和等。
2. 数列的运算:数列的加减乘除等。
3. 等差数列与等差中项:等差数列的通项公式、等差数列的求和公式、等差数列的奇数项和、以及奇数和与偶数和等。
4. 等比数列与等比中项:等比数列的通项公式、等比数列的求和公式、等比数列的前n项和、无穷等比级数等。
5. 等差数列与等差中项的应用:等差数列在等价代换、简化形式、利润计算等方面的应用。
第五章:排列与组合1. 排列与组合的基本概念:排列、组合的定义与计算方法等。
2. 排列与组合的计算:排列与组合的计算公式、乘法原理、加法原理等。
3. 排列与组合的应用:排列与组合在概率、几何、数学问题解法等领域的应用。
高一数学课件一次函数和二次函数
02
二次函数基本概念与性质
二次函数定义及表达式
二次函数定义
形如$f(x) = ax^2 + bx + c$($a neq 0$)的函数称为二次函数。
二次函数表达式
二次函数的一般形式
通过配方,二次函数可以表示为$f(x) = a(x - h)^2 + k$的形式,其中$(h, k)$为顶点坐标。
$f(x) = ax^2 + bx + c$,其中$a$、 $b$、$c$为常数,且$a neq 0$。
截距 $b$
截距表示一次函数与 $y$ 轴交点的纵坐标。当 $b > 0$ 时,交点在 $y$ 轴的 正半轴上;当 $b < 0$ 时,交点在 $y$ 轴的负半轴上;当 $b = 0$ 时,一次 函数过原点。
一次函数图像特征
一次函数的图像是一 条直线。
直线的斜率是 $k$, 截距是 $b$。
当 $k > 0$ 时,直线 从左向右上升;当 $k < 0$ 时,直线从 左向右下降。
转换方法
通过配方或完成平方的方法,可以将二次函数转换为顶点式y=a(x-h)^2+k的形式, 从而更清晰地了解函数的性质。同时,也可以利用求导的方法研究函数的单调性和 极值点。
复合函数类型识别
复合函数定义
设y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于 Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这 种函数称为复合函数。
高一数学课件一数次函数和二次函
目 录
• 一次函数基本概念与性质 • 二次函数基本概念与性质 • 一次函数与二次函数关系 • 典型例题解析与技巧指导 • 拓展延伸:高阶多项式初步认识 • 课堂互动环节与课后作业布置
高一数学第五讲 二次函数学生用 人教版 教案
高一数学第五讲 二次函数学生用一、基础知识1.解析式:))((44)2(21222x x x x a ab ac a b x a c bx ax y --=-++=++=(其中a 、b 、c ∈R ,a ≠0,x 1、x 2是此方程的两根(此时△≥0)。
2.二次函数性质:①定义域:二次函数本身的定义域是R ,但在综合、应用问题中出现的二次函数常常会 出现“限制型”的定义域;②值域:a >0时为;44,0),,44[22⎥⎦⎤⎝⎛-∞-<+∞-a b ac a a b ac 时为 (注意:当定义域变化时,值域也发生相应的变化)③奇偶性:当b=0时为偶函数,当b ≠0时既非奇函数也非偶函数;④单调性:⎥⎦⎤ ⎝⎛-∞->a b a 2,,0在时上为减函数,在⎪⎭⎫⎢⎣⎡+∞-,2a b 上为增函数; ⎥⎦⎤ ⎝⎛-∞-<a b a 2,,0在时上为增函数,在⎪⎭⎫⎢⎣⎡+∞-,2a b 上为减函数; ⑤特性:1)对称轴方程为abx 2-=,2)顶点).44,2(2a b ac a b -- 二、例题解析例1(1)函数2([0,))y x bx c x =++∈+∞是单调函数的充要条件是 ( )A 0b ≥ B.0b ≤ C.0b > D.0b <(2)若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是 ( )A.(-∞,2]B.[-2,2]C.(-2,2]D.(-∞,-2)(3)设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为 ( )A.正数B.负数C.非负数D.正数、负数和零都有可能(4)二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)<f (1+2x -x 2),则x 的取值范围是_________.例2.已知集合P={x|x 2-5x+4≤0},Q={x|x 2-2bx+b+2≤0}满足P ⊇Q ,求实数b 的取值范围。
数学高一知识点诱导公式
数学高一知识点诱导公式数学是一门重要而广泛应用的学科,对于高中生来说,数学知识的掌握尤为关键。
在高一的学习中,数学知识点诱导公式是必不可少的一部分。
本文将介绍几个高一数学知识点的诱导公式,帮助同学们更好地理解和掌握这些知识。
一、二次函数知识点诱导公式高一数学中,二次函数是一个重要的知识点。
二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数,a≠0。
对于二次函数,我们可以推导出一些重要的公式。
1. 顶点坐标公式二次函数的顶点坐标可以通过公式计算得出。
顶点的横坐标为x=-b/2a,纵坐标为y=f(-b/2a)。
2. 对称轴公式对称轴是二次函数的一条重要线段,它与函数图像关于纵轴对称。
对称轴的方程为x=-b/2a。
3. 零点公式二次函数的零点即为函数图像与x轴的交点。
零点可以通过求根公式得出,即x1=(-b+√(b^2-4ac))/2a,x2=(-b-√(b^2-4ac))/2a。
二、三角函数知识点诱导公式三角函数是高一数学中重要的概念,它们涉及到角度和边长之间的关系。
在学习三角函数时,我们需要掌握一些重要的公式。
1. 和差角公式和差角公式是计算三角函数和、差的关键公式。
对于任意两个角A和B,有以下公式:sin(A±B) = sinA⋅cosB ± cosA⋅sinBcos(A±B) = cosA⋅cosB ∓ sinA⋅sinBtan(A±B) = (tanA±tanB) / (1∓tanA⋅tanB)2. 二倍角公式二倍角公式是计算三角函数二倍角的常用公式。
对于角A,有以下公式:sin2A = 2⋅sinA⋅cosAcos2A = cos^2A−sin^2A = 2⋅cos^2A−1 = 1−2⋅sin^2Atan2A = (2⋅tanA) / (1−tan^2A)3. 半角公式半角公式是计算三角函数半角的重要公式。
对于角A,有以下公式:sin(A/2) = ±√([1−cosA]/2)cos(A/2) = ±√([(1+cosA]/2)tan(A/2) = ±√([(1−cosA]/[1+cosA])三、概率知识点诱导公式概率是数学中重要的分支,高一学生需要了解一些基本的概率知识。