信号的调理与显示记录PPT课件
合集下载
第三章测试信号调理电路PPT课件

图4-5 相敏检波解调工作原理
(a)相敏检波器 (b),(c)ui 、ux 的极性相同 (d),(e) ui 、ux 的极性相反
+ U+
的为反相输入端(输出电压的
相位与该输入电压的相位相反)
当集成运放工作在线性放大区时的条件是:
(1) U U (2) I I 0
注:(1)即:同相输入端与反相输入端的电位 相等,但不是短路。我们把满足这个条件称为 "虚短"
(2)即:理想运放的输入电阻为∞,因此集 成运放输入端不取电流。
第五章 信号调理,处理与记录
被测量经传感器转换为电量后,最终要送到 处理或显示设备以便输出测试结果。然而有些传 感器输出的电量可能过于微弱,且变化缓慢不易 传输及无法驱动处理和显示设备;有些传感器输 出的电量特别容易受到外界的干扰,为了能有效 的解决这这些问题,需对传感器输出的信号进行 技术处理即调理,以及将被测量不失真地传给处 理器或显示设备。
将式(4-2)代入(4-1)得:
F[x(t)z(t)] 0.5X ( f ) ( f f0 ) 0.5X ( f ) ( f f0 )
(4-3)
图4-2是式(4-3)的图形表示,调制信号x(t)与载波z(t)的乘积在频域上相
当于将x(t)在原点处的频谱图形移至载波频率处,但幅值减小了一半。调幅
第一节 电桥
电桥电路的作用就是 将传感器转换元件输 出的电参量的变化转 换成电压量的变化
直流电桥
交流电桥
B
A
R4
D
C RL
R3
E
1.直流电桥的平衡条件及测量连接方式
若在输出端B,D两点之间的负载为无穷大,即接 入的仪表或放大器的输入阻抗较大时。可以视为 开路,这时有电桥的电流为:
(a)相敏检波器 (b),(c)ui 、ux 的极性相同 (d),(e) ui 、ux 的极性相反
+ U+
的为反相输入端(输出电压的
相位与该输入电压的相位相反)
当集成运放工作在线性放大区时的条件是:
(1) U U (2) I I 0
注:(1)即:同相输入端与反相输入端的电位 相等,但不是短路。我们把满足这个条件称为 "虚短"
(2)即:理想运放的输入电阻为∞,因此集 成运放输入端不取电流。
第五章 信号调理,处理与记录
被测量经传感器转换为电量后,最终要送到 处理或显示设备以便输出测试结果。然而有些传 感器输出的电量可能过于微弱,且变化缓慢不易 传输及无法驱动处理和显示设备;有些传感器输 出的电量特别容易受到外界的干扰,为了能有效 的解决这这些问题,需对传感器输出的信号进行 技术处理即调理,以及将被测量不失真地传给处 理器或显示设备。
将式(4-2)代入(4-1)得:
F[x(t)z(t)] 0.5X ( f ) ( f f0 ) 0.5X ( f ) ( f f0 )
(4-3)
图4-2是式(4-3)的图形表示,调制信号x(t)与载波z(t)的乘积在频域上相
当于将x(t)在原点处的频谱图形移至载波频率处,但幅值减小了一半。调幅
第一节 电桥
电桥电路的作用就是 将传感器转换元件输 出的电参量的变化转 换成电压量的变化
直流电桥
交流电桥
B
A
R4
D
C RL
R3
E
1.直流电桥的平衡条件及测量连接方式
若在输出端B,D两点之间的负载为无穷大,即接 入的仪表或放大器的输入阻抗较大时。可以视为 开路,这时有电桥的电流为:
【学习】第五章信号调理电路

一般采用音频交流电压(5~10kHZ)作为电桥电源。 这时,电桥输出将为调制波,外界工频干扰不易从线路 中引入,并且后接交流放大电路简单无零漂。
采用交流电桥时,必须注意影响测量误差的一些因素。
如:电桥中元件之间的互感影响;无感电阻的残余阻抗; 邻近交流电路对电桥的感应作用;泄漏电阻以及元件之间、 元件与地之间的分布电容等。
整理课件
33
整理课件
34
§2 调频与解调
(1)调频
调频(频率调制)是利用信号电 压的幅值控制一个振荡器,振荡 器输出的是等幅波,但其振荡频 率偏移量和信号电压成正比。
当信号电压为零时,调频波的频率等于中心频率(载波频 率);信号电压为正值时频率提高,负值时则降低。所以调 频波是随信号而变化的疏密不等的等幅波。
-fm
fm
-f0
f0
时域分析
频域分析
由脉冲函数的卷积性质知:一个函数与单位脉冲函数卷积的结
果,就是将其以坐标原点为中心的频谱平移到该脉冲函数处。
即调制后的结果就相当于把原信号的频谱图形由原点平移至
载波频率 f 0 处,幅值减半。
整理课件
24
从调幅原理看,载波频率 f 0 必须高于原 信号中的最高频率 f m 才能使已调波仍 保持原信号的频谱图形,不致重叠。
整理课件
27
g(t)1 2x(t)1 2x(t)co4sf0t
据傅里叶变换性质可得:
G (f) 1 2X (f) 1 4X (f 2 f0 ) 1 4X (f 2 f0 )
若用一个低通滤波器滤去中心
频率为 2 f 0 的高频成分,那
么将可以复现原信号的频谱 (幅值减小为一半),若用放 大处理来补偿幅值减小,可得 到原调制信号。
信号处理精品PPT课件

第11章 信号处理
11.1 波形调理
波形调理主要用于对信号进行数字滤波和加窗处理。波形调理VI节点位于 “函数选板”→“信号处理”→“波形调理”子选板中,
波形调理子选板
11.1.1 数字FIR滤波器
数字FIR滤波器可以对单波形和多波形进行滤波。如果对多波形进行滤波, 则VI将对每一个波形进行相同的滤波。信号输入端和FIR滤波器规范输入端 的数据类型决定了使用哪一个VI多态实例。
Express VI用于通过滤波器和窗对信号进行处理。在“函数选板 ”→“Express”→“信号分析”子选板中也包含该VI。
滤波器
配置滤波器窗口
11.1.5 课堂练习——对正弦信号进行仿真滤波
演示滤波器Express VI的使用。
前面板
滤波器的配置
程序框图
11.2 波形测量
使用波形测量选板中的VI进行最基本的时域和频域测量,例如直流,平均值, 单频频率/幅值/相位测量,谐波失真测量、信噪比及FFT测量等。波形测量VI在 “函数选板”→“信号处理”→“波形测量”子选板中
幅值和电平测量Express VI
配置幅值和电平测量
11.3 信号处理
使用信号运算选板中的VI进行信号的运算处理。信号运算VI在“函数选 板”→“信号处理”→“信号运算”子选板中。
信号运算选板上的VI节点的端口定义都比较简单,因此使用方法也比较简 单,下面只对该选板中包含的两个Express VI 进行介绍。
11.5 滤波器
使用滤波器VI进行IIR、FIR和非线性滤波。滤 波器选板上的VI可以返回一个通用LabVIEW错误 代码或一个特定的信号处理代码。滤波器VI在“ 函数选板”→“信号处理”→“滤波器”子选板 中。
11.6 谱分析
11.1 波形调理
波形调理主要用于对信号进行数字滤波和加窗处理。波形调理VI节点位于 “函数选板”→“信号处理”→“波形调理”子选板中,
波形调理子选板
11.1.1 数字FIR滤波器
数字FIR滤波器可以对单波形和多波形进行滤波。如果对多波形进行滤波, 则VI将对每一个波形进行相同的滤波。信号输入端和FIR滤波器规范输入端 的数据类型决定了使用哪一个VI多态实例。
Express VI用于通过滤波器和窗对信号进行处理。在“函数选板 ”→“Express”→“信号分析”子选板中也包含该VI。
滤波器
配置滤波器窗口
11.1.5 课堂练习——对正弦信号进行仿真滤波
演示滤波器Express VI的使用。
前面板
滤波器的配置
程序框图
11.2 波形测量
使用波形测量选板中的VI进行最基本的时域和频域测量,例如直流,平均值, 单频频率/幅值/相位测量,谐波失真测量、信噪比及FFT测量等。波形测量VI在 “函数选板”→“信号处理”→“波形测量”子选板中
幅值和电平测量Express VI
配置幅值和电平测量
11.3 信号处理
使用信号运算选板中的VI进行信号的运算处理。信号运算VI在“函数选 板”→“信号处理”→“信号运算”子选板中。
信号运算选板上的VI节点的端口定义都比较简单,因此使用方法也比较简 单,下面只对该选板中包含的两个Express VI 进行介绍。
11.5 滤波器
使用滤波器VI进行IIR、FIR和非线性滤波。滤 波器选板上的VI可以返回一个通用LabVIEW错误 代码或一个特定的信号处理代码。滤波器VI在“ 函数选板”→“信号处理”→“滤波器”子选板 中。
11.6 谱分析
传感器与信号调理电路完整 ppt课件

连续增大ui的幅值,记录出现饱 和现象时输入、输出信号的峰峰 值。
uip-p(V) uop-p(V) 0.4 0.8 1.2 1.8 2.5
uop-pR1R +1R2uip-p11uip-p
临界饱和时:
uˆ ip -p
; uˆ o p -p
。
03.09.2020
西安交通大学工程训练中心
25
传感器与信号调理电路完整
03.09.2020
西安交通大学工程训练中心
30
传感器与信号调理电路完整
“放大”的含义及工作特性曲线 Vo
V-
E+ -
E+-0.3
Vi
线性放大区
V+
面包板的插孔间距、集成电路封装
软尺寸与硬尺寸
软引线尺寸:元器件安装到面包板或印制电路板上时,元器件对 焊盘间距要求不是很严格,如:普通电阻、电容、小功率三极管、 二极管等;
硬引线尺寸:元器件对安装尺寸有严格要求,如:大功率三极管、 继电器、电位器、集成电路。
DIP封装:双列直插封装,一般管脚数小于100
9
传感器与信号调理电路完整
“放大”的含义及工作特性曲线 Vo
V-
E+ -
E+
Vi
线性放大区
V+
+
Vo
E-
0
V oA V i A (V +-V -)
反向截止
E“放大”的含义
正向饱和
Vi
Vo∈( E- , E+ )
运放的工作特性曲线
03.09.2020
西安交通大学工程训练中心
10
传感器与信号调理电路完整
6
uip-p(V) uop-p(V) 0.4 0.8 1.2 1.8 2.5
uop-pR1R +1R2uip-p11uip-p
临界饱和时:
uˆ ip -p
; uˆ o p -p
。
03.09.2020
西安交通大学工程训练中心
25
传感器与信号调理电路完整
03.09.2020
西安交通大学工程训练中心
30
传感器与信号调理电路完整
“放大”的含义及工作特性曲线 Vo
V-
E+ -
E+-0.3
Vi
线性放大区
V+
面包板的插孔间距、集成电路封装
软尺寸与硬尺寸
软引线尺寸:元器件安装到面包板或印制电路板上时,元器件对 焊盘间距要求不是很严格,如:普通电阻、电容、小功率三极管、 二极管等;
硬引线尺寸:元器件对安装尺寸有严格要求,如:大功率三极管、 继电器、电位器、集成电路。
DIP封装:双列直插封装,一般管脚数小于100
9
传感器与信号调理电路完整
“放大”的含义及工作特性曲线 Vo
V-
E+ -
E+
Vi
线性放大区
V+
+
Vo
E-
0
V oA V i A (V +-V -)
反向截止
E“放大”的含义
正向饱和
Vi
Vo∈( E- , E+ )
运放的工作特性曲线
03.09.2020
西安交通大学工程训练中心
10
传感器与信号调理电路完整
6
chapter4 信号调理和记录new

Z1 Z 3 Z 2 Z 4
把各阻抗代入平衡条件式,得:
Z 01 Z 03 e
j ( 1 3 )
Z 02 Z 04 e
j ( 2 4 )
若此式成立,必须同时满足下列两等式:
兰州理工大学机电工程学院
Z 01 Z 03 Z 02 Z 04 1 3 2 4
一、 直流电桥
a
●平衡条件
R1
R1R3 R2 R4
b
R4 E
d
V
R3
c
R2
R1 R3 R2 R4 V E ( R1 R2 )(R3 R4 )
不平衡条件
兰州理工大学机电工程学院
如果电桥的4个电阻中任一个或者多个 电阻阻值发生变化,将打破平衡条件,使得 输出电压发生变化。 测量电桥正是利用这一特点。
相对臂阻抗模之积相等 相对臂阻抗角之和相等
为满足上述条件,交流电桥各臂可有不同的组合。常用 的电容、电感电桥,其相邻两臂接入电阻
(例如 Z R , Z R
02 2 03
3
2 3 0
)
而另外两个桥臂接入相同性质的阻抗,例如都是电容或 者都是电感,保持 1 4 。
兰州理工大学机电工程学院
兰州理工大学机电工程学院
第四章 信号的调理与记录
本章学习要求:
1.电桥原理与应用 2.信号调制解调原理
3.信号滤波器工作原理
4.模拟信号放大电路原理 5.信号的记录
兰州理工大学机电工程学院
概述
第一节、电桥 第二节、调制与解调
第三节、滤波器
第四节、信号放大
第五节、测试信号的显示与记录
兰州理工大学机电工程学院
第5章信号调理电路PPT课件

2020/11/7
18
5.2.5 程控增益放大电路
是通过数字逻辑电路或计算机编程来改变增益的方法,也称为 可编程增益放大电路,简称PGA 结构形式多种多样,分为单运放、多运放、仪表放大器和单片 集成程控增益放大电路 多路模拟开关
2020/11/7
ቤተ መጻሕፍቲ ባይዱ
A2A1A0为地址选择端,COM为公共端, GND为接地端,当A2A1A0 =000时,开关 S0闭合,通道I0与公共端COM接通,其他 开关断开;当 A2A1A0 =001时,开关S1闭 合,通道I1与公共端COM接通,其他开关 断开;…,依此类推。当禁止端EN=0时, 通道I0~I7均不通。
• 测量精度高,其精度取决于电位器的精度。
• 输出与供桥电源电压无关,可避免由于电源
电压的不稳定而带来的干扰。
2020/11/7
9
5.1.3 交流电桥
交流电桥平衡条件:
即: 幅值平衡
相角平衡
平衡条件 (R3j 1C3)R2(R4j1C4)R1
即 R3R2 R4R1
R2 R1 C3 C4
2020/11/7
信号调理电路
Signal Conditioning Circuit
2020/11/7
1
信号调理电路
电桥 信号的放大电路 信号的转换电路 滤波电路 调制与解调
2020/11/7
2
5.1 电 桥
测量电桥有以下几个特点: (1)能把电阻、电容、电感等电抗参数的变化,变换成 电压或电流的变化,便于信号的放大和处理。 (2)能测量出微弱的阻抗变化量。 (3)可以通过采用对称差动式传感器结构组成差动半桥 或全桥来实现非线性误差的补偿,并提高电桥输出的 灵敏度。
测试技术第4章

U ad I 2 R4
输出电压:
R1 R1 R3 R2 R4 R4 U y U ab U ad U U R R 0 R R 0 ( R R )(R R ) U 0 2 3 4 1 2 3 4 1
直流电桥
直流电桥的平衡条件: R1 R3 R2 R4 常用的电桥连接形式:
t 0 kx t
此时调频信号可表示 x f (t ) A cos 0t k x(t )dt 0
图4-10
调制信号加偏置的调幅波 b)偏置电压不够大
a)偏置电压足够大
相敏检波
为了使信号具有判别信号相位和选频的能力, 需采用相敏检波电路。 要实现正确的解调必须要求参考信号的幅值 远大于调幅信号的幅值,使开关器件的通断 完全由参考信号决定。其中x(t)为原信号; y(t)为载波,xm(t)为调幅波。电路设计使变 压器B二次边的输出电压大于A二次边的输出 电压,即满足参考信号的幅值大于调幅信号 的幅值。
当被控制的量为高频振荡信号的频率时,称为调频(FM); 已调制信号为调频波; 当被控制的量为高频振荡信号的相位时,称为调相(PM); 已调制信号为调相波; 调制与解调的应用: 应用分析:传感器输出的低频微弱信号需要放大。直流放 大,存在零漂和级间耦合,容易失真;交流放大,抗零漂, 故一般先将低频信号调制为高频信号,再交流放大,最后 解调。
2、整流检波和相敏检波 调幅波解调(检波): 从已调制信号中检出调制信号的过程。 有三种方法:同步解调、包络检波、相敏检波。 同步解调:已调制信号Xm(t)与载波y(t)再次相乘, 经低通滤波器,检出调制信号。 整流检波(包络检波): 幅值调制就是让已调信号的幅值随调制信号的值 变化,因此调幅信号的包络线形状与调制信号一 致。只要能检出调幅信号的包络线即能实现解调。 这种方法称为整流检波或包络检波。
第二章_信号分析与处理基础 共101页PPT资料

如下周期方波的时域描述:
x(t)
A
x ( t ) x ( t nT 0 )
x
(t)
A
A
0 t T0 2
T0 t 0
T0
2
应用傅里叶级数展开:
x (t) 4 A (s0 it n 1 3 s3 in 0 t 1 5 s5 in 0 t ...)式中:
21
华南农业大学工程学院
傅立叶级数的三角函数形式还可以改写成:
xta0 (anco n0 stb nsin n0t) n 1
x(t) a0 An cos(n0t n ) n1
周期信号是由一个或几个、乃至无穷多 个不同频率的谐波叠加而成的。式中第 一项a0为周期信号中的常值或直流分量, 从第二项依次向下分别称为信号的基波 或一次谐波、二次谐波、三次谐
3)从信号的能量上 --能量信号与功率信号。
5
华南农业大学工程学院
1) 确定性信号和随机信号 可以用明确数学关系式描述的信号称为确定性信号。 不能用数学关系式描述的信号称为随机信号。
随机信号
6
华南农业大学工程学院
a) (确定性信号)周期信号:经一定时间间隔可重复出现的
信号 b)
x ( t ) = x ( t + nT0 ) (n =1,2,3….)
0
2 T0
将上式改写为:
x(t)4A( 1sint) n1n
式中:
n0
以 为独立变量,得到该周期方波的频域描述。
n1,3,5,...
13
华南农业大学工程学院
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
5
被测量经传感器之后的输出信号一般具有以下特点:
信号比较微弱; 为非电压信号; 携带噪声信号等。
因此,还需进一步调理、放大、滤波等加工处理。
本章主要讨论信号调理和转换中的常用环节:
电桥; 调制与解调; 滤波;
.
6
第四章 信号调理
4.2 信号放大
1 目的
信号放大目的
幅度增加
(1)抗干扰; (2)阻抗匹配
R1=R2=R0,R3=R4=R0‘,又若R0=R0’,则
R
Uy
4R0
2RU0
若ΔR<<R0,则
U
y
R 4 R0
U0
.
17
(2)半桥双臂连接形式:工作时有两个桥臂电阻值随被测 量而变化,即: R1+ΔR1, R2 +ΔR2,则由式(4-1) 可 证 明 , 当 R1=R2=R0 , ΔR1 = - ΔR2 = ΔR , R3=R4=R0 ,则电桥输出
.
1
主要内容
4.1 信号调理的目的 4.2 信号放大 4.3 调制与解调 4.4 滤波 4.5 信号显示与记录
.
2
本章学习重点
测试信号调理的作用和意义; 电桥作用原理及其在信号调理中的
作用;
信号调制与解调的原理及其相关电
路;
基本类型的滤波器的工作原理、相
关电路及其应用;
.
3
4.1 信号调理的目的
传感器输出的电信号,大多数不能直接输送
到显示、记录或分析仪器中去。其主要原因是大 多数传感器输出的电信号很微弱,需要进一步放 大,有的还要进行阻抗变换;有些传感器输出的 是电参量,要转换为电能量;输出信号中混杂有 干扰噪声,需要去掉噪声,提高信噪比;若测试 工作仅对部分频段的信号感兴趣,则有必要从输 出信号中分离出所需的频率成分;因此,传感器 的输出信号要经过适当的调理,使之与后续测试 环节相适应。常用的信号调理环节有:电桥、放 大器、滤波器、调制器与解调器等。
根据输出测量方式的不同: 不平衡电桥 平衡电桥
.
8
第四章 信号调理
一.直流电桥:
R1
R3
EVR4源自R2基本结构:电阻
R1,R2,R3,R4作为四个 桥臂,在a、c两端接入 直流电源ue,在b、d两
端输出电压uo。
工作原理:利用四个
桥臂中的一个或数个的 阻值变化而引起电桥输 出电压的变化 。
.
9
.
13
结论:
➢ 电桥输出电压和各桥臂电阻变化量的代数和成正比,所以电桥 输出电压可以反映被测量引起的电阻值的变化量。如果桥臂电 阻变化由电阻应变片阻值的变化产生,则电桥的输出电压和应 变成线性关系:
➢ 如果相邻桥臂的应变极性一致,即同时为 拉应变或压应变,则输出电压为两者之差; 若相邻两桥臂的应变极性不同,则输出电 压为两者之和。若相对两桥臂应变的极性 一致,输出电压为两者之和;反之为两者 之差——电桥和差特性(加减特性)。
讨论: 若电桥中任一个或数个电阻发生变化,电桥输出电压变
化。测量电桥就是基于上述原理工作。
.
11
2. 直流电桥的输出特性
考虑右图所示直流电桥
的输出特性,分析输出电 压和各桥臂应变之间的定 量关系。
UBD
UBA
UDA
U0R1 R1 R2
U0R4 R3 R4
R1
R1R3 R2
R2R4
R3 R4
U0
.
12
信号调理的的目的是便于信号的传输与处理。
1.传感器输出的电信号很微弱,大多数不能 直接输送到显示、记录或分析仪器中去,需 要进一步放大,有的还要进行阻抗变换。
2.有些传感器输出的是电信号中混杂有干扰 噪声,需要去掉噪声,提高信噪比。或者提取 感兴趣的频率成分。
.
4
3.某些场合,为便于信号的远距离传输,需要 对传感器测量信进行调制解调处理。
设电桥四臂阻值相等R1=R2=R3=R4=R,且增量分别为ΔR1、 ΔR3、ΔR2 、ΔR4,则电桥的输出为:
U 0(2R R ( R R 1 1 R R 2 2 )( 2 R R 3 R 3 R 4) R 4) 当 Ri R 时可以得到:
组桥时,应变片的灵敏系数K必须一致,上式又可写成
1. 直流电桥平衡条件:
I1
u0 ; R1 R2
I2
u0 R3 R4
U ab
I1R1
R1 R1 R2
u0
U ad
I2R4
R4 R3 R4
u0
uy
U db
U ab
U
ad
( R1 R1 R2
R
3
R4
R
4
)u
0
(
R1
R1
R3 R2
)(
R2 R3
R4 R
4
)
u
0
.
10
平衡条件:对臂电阻乘积相等。即:R1R3=R2R4
.
19
定义电桥的灵敏度为 S Uo R R
则有:
单臂电桥灵敏度
Uo; 4
半桥灵敏度
Uo; 2
全桥灵敏度
U
。
o
结论:电桥接法不同,
灵敏度不同,
全桥接法可以获得最大
灵敏度。
.
20
.
21
4. 温度补偿问题
例2 半桥测量时进行温度补 偿——桥路补偿法
悬臂梁应变仪结构
.
15
3. 直流电桥的连接形式
半桥单臂 半桥双臂 全桥
uo
uo
uo
ue
ue
ue
.
16
(1)半桥单臂连接形式:工作时仅有一个桥臂电阻值随 被测量而变化,设该电阻为R1,变化量为ΔR,则由式 (4-1)可得:
UyR1R 1R 2 RRR3R 4R4U0
设相邻桥臂的阻值相等,亦即:
2 分类
直流放大器
时间域
频率域
幅度增大 低频保留,高频截止
放大器
交流放大器 电荷放大器
幅度增大 高频保留,低频截止 电荷增大
.
7
4.2.1 电 桥
定义:电桥是将电阻、电容、电感等参数的变化转换为电压或电流 输出的一种测量电路。
特点:桥式电路简单可靠,精度和灵敏度很高,应用广泛。 分类:
根据其所采用的激励电源类型: 直流电桥 交流电桥
.
14
➢ 供桥电压越高,输出电压越大,所以提高供桥电压可以提高电 桥的灵敏度。但是当供桥电压增大时,通过应变片的电流也较 大,易引起蠕变和零漂。
➢ 增大电阻应变片的灵敏度可以提高电桥的输出电压。
和差特性应用实例: 悬臂梁作敏感元件测力:为提高灵敏度,常在梁的上, 下表面各贴一片应变片,并将上述两应变片接入电桥 的相邻两桥臂。
R U y 2R0 U 0
.
18
(3)全桥连接法:四个桥臂的阻值均随被测量而变化,即:
R 1 R 1 ,R 2 R 2 ,R 3 R 3 ,R 4 R 4
当R1=R2=R3=R4=R0,且ΔR1=-ΔR2=ΔR3=-ΔR4=ΔR, 输出为:
R U y R0 U 0
结论:电桥的输出电压与激励电压成正比,但比例系数 不同。