《有理数及其运算》有理数的重点和难点_题型归纳

合集下载

初一上册第二章-有理数及其计算

初一上册第二章-有理数及其计算

有理数及其运算§2.1有理数【教学目标】1.有理数的概念和意义。

2.把给出的有理数按要求分类。

3.说出数0在有理数分类中的作用。

【教学重难点】重点:有理数包括哪些数。

难点:有理数的分类。

【教学过程】最近我遇到了一个麻烦事儿,有个同学问我有理数是啥子,我想了半天,不知道怎么回答,这就把我难到了的嘛,哎,你们知道吗?有理数的概念:整数可以看作分母为1的分数。

正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

那那些数是有理数呢? 有理数的分类:1) 按正数、负数与0的关系分类:2) 按整数、分数的关系分类:例题:把下列各数分别填入下列括号里: 5,-21,-0.3,0.21,-3.14,28,-100,131,-87,0,-8,102.正整数集合{ }负分数集合{ } 正有理数集合{ } 负整数集合{ }找练习题做【探究提高】例:某大米加工厂加工了10批大米,没批质量统计如下(单位:吨):198,201,199,204,196,197,200,201,198,203.请问:这10批大米总共多少吨?平均每批大米多少吨?观察这10个数据最接近的数是200,重新统计为-2,+1,-1,+4,-4,-3,0,+1,-2,+3.【课后练习】1整数和分数统称为_______________;整数包括___________________、_________________和零,分数包括________________和__________________。

2把下列各数填入相应集合的持号内:-3,4,-0.5,0,8.6,-7整数集合{}ΛΛ,分数集合{}ΛΛ正有理数集合{}ΛΛ,负分数集合{}ΛΛ3选择题:-100不是()A.有理数;B.自然数;C.整数;D.负有理数。

4 如果正午记作0时,上午8时记作-4时,那么午后3时可用正数记作_________。

5 如果水位下降3m记作-3m,那么水位上升4m记作___________。

第二章 有理数及其运算(知识归纳+题型突破)(解析版)

第二章 有理数及其运算(知识归纳+题型突破)(解析版)

第二章有理数1.了解具有相反意义的量,正负数的概念;2.理解有理数、相反数、绝对值、倒数的概念,能正确解题;3.理解数轴的概念,并能正确画出数轴,,在数轴上表示数;4.理解有理数加法、减法、乘法、除法法则、;5.理解有理数乘方定义及运算;6.能掌握加法、减法的运算定律和运算技巧,熟练计算;能掌握乘法的运算定律和运算技巧,熟练计算;7.通过将减法转化成加法和将除法转化成乘法,初步培养学生数学的归一思想8.进一步掌握有理数的五则混合运算;9.理解科学记数法,了解近似数;10.能运用科学记数法表示较大的数.知识点1 正数和负数1.概念正数:大于0的数叫做正数。

负数:在正数前面加上负号“—”的数叫做负数。

注:0既不是正数也不是负数,是正数和负数的分界线,是整数,自然数,有理数。

(不是带“—”号的数都是负数,而是在正数前加“—”的数。

)2.意义:在同一个问题上,用正数和负数表示具有相反意义的量。

知识点2:有理数1.概念整数:正整数、0、负整数统称为整数。

分数:正分数、负分数统称分数。

(有限小数与无限循环小数都是有理数。

)注:正数和零统称为非负数,负数和零统称为非正数,正整数和零统称为非负整数,负整数和零统称为非正整数。

2.分类:两种⑴按正、负性质分类:⑵按整数、分数分类:正有理数正整数正整数有理数正分数整数0零有理数负整数负有理数负整数分数正分数负分数负分数知识点3:数轴1.概念:规定了原点、正方向、单位长度的直线叫做数轴。

三要素:原点、正方向、单位长度2.对应关系:数轴上的点和有理数是一一对应的。

比较大小:在数轴上,右边的数总比左边的数大。

3.应用求两点之间的距离:两点在原点的同侧作减法,在原点的两侧作加法。

(注意不带“+”“—”号)知识点3 :相反数1.概念代数:只有符号不同的两个数叫做相反数。

(0的相反数是0)几何:在数轴上,离原点的距离相等的两个点所表示的数叫做相反数。

2.性质:若a与b互为相反数,则a+b=0,即a=-b;反之,若a+b=0,则a与b互为相反数。

(五四制)六年级上册数学第二章有理数及其运算知识点

(五四制)六年级上册数学第二章有理数及其运算知识点

六年级上册数学期末复习知识梳理第二章有理数及其运算2.1 有理数重点:有理数的意义,用正负数表示相反数意义的量难点:按不同的标准对有理数进行分类解题技巧在用正数和负数表示一对具有相反意义的量时,“正”和“负”是相对而言的,用“正”来表示其中的一个量,就用“负”来表示另一个与之意义相反的量,但我们一般把“增加”“上涨”“盈利”“高于”等记为“正”,把与它们有相反意义的量记为“负”此外,在用正负数表示一对具有相反意义的量时,不要少了后面的单位。

知识点拨。

③相反意义的量包含两个要素:一是它们的意义要相反;二是它们都是数量。

④意义相反的量中的两个量必须是同类量,如节约汽油3t与浪费1t水就不是具有相反意义的量。

2.2 数轴重点:用数轴表示有理数难点:利用数轴表示有理数的大小解题方法1.在数轴上表示有理数的方法:在数轴上,对于不为零的有理数,可以先由这个数的符号确定它在数轴上原点的哪一边,再在相应的方向上确定它与原点相距几个单位长度,然后标上相应的点。

2.找出数轴上的点对应的有理数的步骤:(1)确定点与原点的位置关系(负左正右);(2)确定点与原点的距离。

知识方法要点:1.数轴上表示的两个数,右边的总是比左边大。

2.正数大于0,负数小于0,正数大于负数。

2.3 绝对值重点:相反数和绝对值的概念及应用。

难点:利用绝对值的概念比较两个负数的大小。

a (a>0)|a| 0 (a=0)互为相反数的两个数绝对值等于0a (a<0)解题方法1.利用数轴确定一个数的绝对值时,首先确定这个数在数轴上表示的点,然后确定这个点到原点的距离即可。

2.对于绝对值的计算,首先要判断这个数是正数、零,还是负数.如果绝对值里面的数是非负数,那么这个数的绝对值就是它本身;如果绝对值里面的数是负数,那么这个数的绝对值就是它的相反数。

知识点拨比较两个负数的大小,可以运用绝对值法,根据“两个负数,绝对值大的反而小”来比较大小;也可以运用数轴法,把要比较大小的两个负数在数轴上表示出来,右边的数总大于左边的数”来判断。

七年级数学上册 第二章 有理数及其运算 (知识归纳+考点攻略+方法技巧)复习课件(新版)北师大版

七年级数学上册 第二章 有理数及其运算 (知识归纳+考点攻略+方法技巧)复习课件(新版)北师大版
A.高于正常水位 3 米记作+3 米 B.低于正常水位 5 米记作-5 米 C.+6 米表示水深为 6 米 D.-1 米表示比正常水位低 1 米
2最0新19北/11师/8大版初中数学精品
数学8·课标版(BS)
第二章复习
方法技巧 用正数和负数表示具有相反意义的量,关键是看规定 哪种意义的量为正,则与之相反意义的量为负.
2最0新19北/11师/8大版初中数学精品
数学1·6 课标版(BS)
第二章复习 ►考点五 有理数的大小比较
用“>”或“<”填空:
(1)9___>_____-16; (2)-175___<_____-125;(3)0___>_____-7.
[解析] 因为正数大于负数,所以 9>-16;因为在数轴
7
2
数学5·课标版(BS)
第二章复习
(4) 运 算 律 : ① 交 换 律 : a·b = _____ ; ② 结 合 律 : (a·b)·c =
__a_·(_b_8(·1_.c))_法有则;理一③数:乘的两法除数对法相加除法,的同分号配得律_:_b_·a_a(,b+异c号)=得_a__b___+___,_a_c并__把. 绝对
2最0新19北/11师/8大版初中数学精品
数学2·1 课标版(BS)
第二章复习
易错警示
(1)-22 与(-2)2 不同,-22 的底数是 2,(-2)2 的底数
是-2;
(2)在计算 12÷

12―13―14时,要清楚除法没有分配律;
(3)有理数的混合运算一定要按照顺序进行,同时要注
意每一步运算的符号.

底数
指数
2019/11/8
最新北师大版初中数学精品
6数学·课标版(BS)

第二章有理数及其运算回顾与思考(教案)

第二章有理数及其运算回顾与思考(教案)
-异号相乘与相除的理解:理解同号得正、异号得负的规则,以及绝对值不等的异号相除结果。
-难点解释:学生容易混淆异号相乘和相除的结果,需要通过具体例子和图形辅助理解。
-乘方与开方的运算:掌握乘方运算的规则,理解开方运算的基本概念。
-难点解释:乘方运算中负数的偶数次幂和奇数次幂结果的符号问题,以及开方运算中负数的处理。
课堂上,我通过提问和案例分析的方式,让学生们积极参与进来,这样可以更好地了解他们的掌握情况。在实践活动和小组讨论中,我发现学生们对于有理数运算的实际应用表现出较高的兴趣,但有些小组在讨论时仍显得拘谨,可能还需要在以后的课堂中多给予鼓励和支持。
让我印象深刻的是,在讲解有理数性质时,我举例解释了负数的奇数次幂和偶数次幂的区别,学生们对此产生了浓厚的兴趣,纷纷提出自己的疑问。这说明他们在思考问题,这是非常好的现象。但在这一部分,我也意识到讲解得可能还不够透彻,今后需要更加注意引导学生发现规律,加深理解。
1.理解有理数及其运算的概念,培养数学抽象思维和逻辑推理能力。
2.掌握有理数运算方法,提高问题解决能力和数学运算技能。
3.分析有理数在实际问题中的应用,培养数学建模和数学应用的意识。
4.通过探讨有理数运算规律,发展数学探究能力和创新意识。
5.培养良好的数学学习习惯,提高自主学习与合作交流的能力。
6.激发学生对数学学科的兴趣,树立正确的数学观念,增强数学美感。
1.讨论主题:学生将围绕“有理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

有理数核心知识点及题型总结

有理数核心知识点及题型总结

有理数核心知识点及题型总结(一)教学目标1 、掌握有理数的分类 , 学会把有理数对应的点画在数轴上;2 、掌握相反数、绝对值、倒数的求法 , 会比较有理数的大小;3 、掌握有理数的大小比较;4 、掌握有理数的加减乘除幂的运算法则,并会灵活解题。

(二)核心知识点一、正数和负数⒈正数和负数的概念负数:比 0 小的数正数:比 0 大的数 0 既不是正数,也不是负数注意:① 字母 a 可以表示任意数,当 a 表示正数时, -a 是负数;当 a 表示负数时, -a 是正数;当 a 表示 0 时, -a 仍是 0 。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如 +a,-a 就不能做出简单判断)②正数有时也可以在前面加“ + ”,有时“ + ”省略不写。

所以省略“ + ”的正数的符号是正号。

2. 具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上 8 ℃表示为: +8 ℃;零下 8 ℃表示为: -8 ℃3.0 表示的意义⑴ 0 表示“ 没有”,如教室里有 0 个人,就是说教室里没有人;⑵ 0 是正数和负数的分界线, 0 既不是正数,也不是负数。

二、有理数1. 有理数的概念⑴正整数、 0 、负整数统称为整数( 0 和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数, 0 ,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像 -2,-4,-6,-8 …也是偶数, -1,-3,-5 …也是奇数。

2. 有理数的分类⑴按有理数的意义分类⑵按正、负来分总结:①正整数、 0 统称为非负整数(也叫自然数)②负整数、 0 统称为非正整数③正有理数、 0 统称为非负有理数④负有理数、 0 统称为非正有理数三、数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

有理数运算和整式运算【重点、难点】

熟练应用有理数的运算法则进行有理数运算和整式运算【问题精讲】1.要理解相反数、绝对值、倒数、平方、立方等概念的意义和它们之间的联系与区别,这样才能正确解决有关这些概念的问题。

例1. 相反数等于本身的数是0;绝对值等于本身的数是正数和零;倒数等于本身的数是1和-1;平方数等于本身的数是0和1;立方数等于本身的数是-1、0和1。

2.数轴是一条规定了原点、正方向和单位长度的直线,有了数轴就使得在数和表示形的最基本元素——点之间建立起了对应关系,为我们利用数形结合的思想解决数学问题奠定了基础。

通过对数轴上的点所在位置的观察和比较,我们可以知道这些点所表示的数的符号性质和大小关系,从而有利于问题的解决。

例2. a、b、c三数在数轴上对应点如图所示,其中|a|=|c|,则化简|b-c|-|a-b|-|a-c+2b|的结果是什么?()解:由图可知:b<0,c<0,a>0,|a|=|c|,|b|>|c|∴b-c<0,a-b>0,a-c+2b=2a+2b<0∴|b-c|-|a-b|-|a-c+2b|=-(b-c)-(a-b)+(a-c+2b)=-b+c-a+b+a-c+2b=2b 化简绝对值的方法是看绝对值符号内的式子的符号,而这一符号则又是通过数轴判断出来的。

3.有理数的运算顺序:(1)在加、减、乘、除和乘方五种运算中,加、减是一级运算,乘、除是二级运算,乘方是三级运算。

在没有括号的算式中,首先进行第三级运算,然后进行第二级运算,最后进行第一级运算。

即先乘方,再乘、除,最后再算加、减。

(2)如有括号,先进行括号内的运算。

(3)如果只有同一级运算,就从左到右依次运算。

(4)根据运算律可以改变上述的运算顺序。

例3,计算:(1) (2)(3)解:(1)原式(2):原式×(-7)×(-7)×7=49(3):原式分析:有理数运算在掌握有理数运算法则的基础上要过两关:一是符号关;二是简便运算关。

第二章有理数及其运算第三讲有理数的运算法则(教案)

-有理数除法法则:理解除法是乘法的逆运算,掌握除以一个数等于乘以这个数的倒数。
-有理数混合运算:掌握混合运算的顺序和法则,解决实际问题。
举例解释:
-加法重点:强调两个正数或两个负数相加时,结果的符号不变,绝对值为两个数绝对值之和。如:3 + 4 = 7,-3 + (-4) = -7。
-减法重点:强调减法实际上是加上相反数,如:5 - 3 = 5 + (-3)。
第二章有理数及其运算第三讲有理数的运算法则(教案)
一、教学内容
本节课选自教材第二章“有理数及其运算”的第三讲,主题为“有理数的运算法则”。教学内容主要包括以下几点:
1.有理数的加法法则:掌握同号相加、异号相加的规律,理解“正负相抵”的概念。
-同号相加:两个正数或两个负数相加,结果为同号的较大绝对值。
五、教学反思
在今天的教学中,我重点关注了有理数的运算法则这一章节。我尝试通过日常生活中的例子引入新课,希望这样能让学生感受到数学与生活的紧密联系。在理论讲解部分,我尽力将有理数的概念和运算法则阐述清楚,同时用具体的案例帮助学生理解这些抽象的规则。
课堂上,我发现学生在异号相加和乘法符号规律这两个部分有些吃力。我通过反复举例和对比分析,尽量让学生明白这些难点。在实践活动和小组讨论中,我鼓励学生积极思考,提出问题,并尝试解决问题。看到他们认真讨论、动手操作的样子,我觉得他们已经开始体会到数学学习的乐趣。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“有理数的运算法则”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相反意义的量,比如温度上升和下降?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数运算法则的奥秘。

有理数及其运算重点总结

有理数及其运算重点总结
有理数包括正整数、负整数和分数,可以表示为p/q的形式,
其中p和q是整数,q不等于0.
1.有理数的加法和减法
如果两个有理数同号,将它们的绝对值相加(减)并保持符号
不变。

如果两个有理数异号,将它们的绝对值相减并取负号。

有理数的乘法法则是:两个有理数相乘,符号相同为正,符号
不同为负。

有理数的除法法则是:一个有理数除以另一个有理数,可以转
化为乘以这个有理数的倒数。

有理数的绝对值是它与0的距离,用符号|a|表示。

对于正数和0,它们的绝对值就是它们本身;对于负数,绝对值是它的相反数。

比较两个有理数的大小时,可以将它们转化为相同的分子或分母后再比较。

约分是将一个分数化简为最简真分数的过程。

可以通过求分子和分母的最大公因数,然后将分子和分母都除以最大公因数来进行约分。

有理数的四则运算包括加法、减法、乘法和除法。

在进行四则运算时,需要注意运算的顺序和规则,以得到正确的结果。

有理数在现实生活中有很多应用,例如计算金钱、温度、距离等。

以上是对有理数及其运算的重点总结,希望对你有帮助!。

七年级数学上册《有理数及其运算》知识点归纳北师大版

七年级数学上册《有理数及其运算》知识点归纳北师大版1.有理数:有理数=整数+分数整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l负数的概念:数轴上0左边的数,形如-3,-0.2,-100…(负号不能省略).l0既不是正数也不是负数,0是整数也是偶数.①正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;2.数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,大凡规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。

有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3.相反数:(1)只有符号例外的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0的相反数是0;a,b互为相反数a+b=0;(2)求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;(3)大凡地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.4.绝对值:(1)几何定义:大凡地,数轴上表示数a的点与原点的距离叫做数a的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.(3)对于任何有理数a,都有a的绝对值≥0,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;(4)比较两个负数,绝对值大的反而小;5.倒数:(1)乘积为1的两个数互为倒数,所以数a的倒数是1/a,0没有倒数;(2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.(3)用1除以一个非0数,商就是这个数的倒数.6.有理数的四则运算:⑴加法法则:①同号两数相加,符号不变,把绝对值相加;②异号两数相加,绝对值相等时(即互为相反数的两个数)相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加).⑵减法法则:①减去一个数,等于加上这个数的相反数,依据加法法则②加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶乘法法则:①两数相乘,同号得正,异号得负,把绝对值相乘;②任何数同0相乘,得0;(另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.)③几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷除法法则:①两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档