正反比例常用数量关系
2020云南省考行测技巧:数量关系之正反比

2020云南省考行测技巧:数量关系之正反比
一、正反比-基础题目
正反比:题干中包含M=A×B关系,且存在不变量,如:S=V×t;W=P×t;总价钱=单价×数量等。
(1)当A/B一定时,M与B/A成正比;
(2)当M一定时,A与B成反比。
各位考生一定要注意,三量关系中需要保证其中有不变量才可以应用,先一起来看两道基础题目。
【例1】列车经技术改进,A、B两城间列车的运行速度由150千米/小时提升到250千米/小时,行车时间因此缩短了48分钟,则A、B两城间的距离为多少千米?
A.300
B.291
C.310
D.320
【例2】某鞋业公司的旅游鞋加工车间要完成一出口订单,如果每天加工50双,要比原计划晚3天完成,如果每天加工60双,则要比原计划提前2天完成,这一订单共需要加工多少双旅游鞋?
A.1200
B.1300
C.1400
D.1500
二、正反比-进阶题目。
正反比例及正反比例的应用

正反比例及正反比例的应用1、正比例及正比例的应用正比例以商(比值)的形式表现,被除数大,除数大,被除数变小,除数跟着变小。
商(比值)一定。
正比例在应用题中的运用:审题方法:(1)、根据应用题判断属于哪类数量关系试;(2)、根据题中所出现的量,判断与之相对应的数量关系试中的数量。
(如:工作量、工作时间、工作效率)(3)、判断所出现的两个量之间的关系,是商、还是积。
(4)、根据题设找定量。
常用等量关系中的正比例:(正比例)时间路程=速度(一定)(正比例)工作效率工作量=工作时间(一定)(正比例)工作时间工作量=工作效率(一定)2、反比例及反比例的应用反比例以积的形式表现,一个因数数大,另一个因数小,一个因数小,另一个因数大。
积一定。
反比例在应用题中的运用:审题方法:(1)、根据应用题判断属于哪类数量关系试;(2)、根据题中所出现的量,判断与之相对应的数量关系试中的数量。
(如:工作量、工作时间、工作效率)(3)、判断所出现的两个量之间的关系,是商、还是积。
(4)、根据题设找定量。
(如常见的照这样计算等)常用等量关系中的反比例:(反比例)单价×数量=总价(一定)(反比例)速度×时间=路程(一定)(反比例)工作时间×工作效率=工作量(一定)面积:三角形面积=底×高÷2 长方形面积=长×宽正方形=边长×边长圆柱侧面积=侧面积=底面周长×高表面正方形表面积=边长×边长×6长方形表面积=(长×宽+长×高+宽×高)×2 圆柱表面积=侧面积+底面积×2侧面积=底面周长×高底面周长=3.14×直径底面积=3.14×半径2强调:1、当给长方体、圆柱体形状的水窖、沼气池等的底面和内壁贴砖或抹水泥的面积时,须减去长方体圆柱体形状的上底面的面积。
2、求通风管、道洪管、烟囱、水管等的表面积实际是求它们的侧面积。
六年级数学正反比例讲解

六年级数学正反比例讲解正反比例是六年级数学中的重要内容,在实际的生活中也有很多的应用,对六年级学生来说,要深入理解正反比例的概念和其在实际中的应用,对学生的成长和发展都有很大的帮助。
正反比例是一种数量关系,指两个变量之间的数量变化和另一个变量数量变化成正比或反比。
可以用图形、等式或一般公式来表示,如y=ax/b。
这里a和b是正常系数,a表示变量y和x之间的正比,b表示变量y和x之间的反比。
y和x之间的变化是正比关系或反比关系,它取决于系数a和b的符号。
正比关系是指变化的同时,x和y的比率保持不变,可以用一条直线或曲线表示,如y=kx,这里的k是一个固定的常数,表示两个变量的相对变化,比如“每加1个x,y就加k个”。
例如,每一小时跑15公里,我们可以得出y=15x,这里的x表示小时数,y表示距离,15是一个固定的系数,表示每一小时跑多少公里。
反比关系是指两个变量x和y的增减成反比,可以用一条直线或曲线表示,如y=k/x。
这里的k也是一个固定的常数,表示两个变量的相对变化,比如“每加1个x,y减少k”。
例如,每增加1元钱,人们就减少0.2元钱,我们可以得出y=0.2/x,这里的x表示增加的钱数,y表示减少的钱数,0.2是一个固定的系数,表示每加一元,就减少0.2元。
正反比例在社会、商业和科学研究中都有很多的应用。
例如,公路车速限制,比如在某个高速公路上,限制车速为90公里/小时,这可以用正比关系来表示,y=90x,其中x表示小时数,y表示距离,90表示每小时跑多少公里。
购物时的折扣率,可以用反比关系来表示,例如当买物满50元时,享受折扣后,总价y=50-5/x,表示折扣率为5%,x表示买的物品数量,y表示总价格。
正反比例也有很多的科学应用,例如钙离子浓度Levels和抗酸碱离子的Levels之间的关系,可以表示为y=8.5/x,表示每增加1个x,钙离子浓度就减少8.5。
同时,正反比例也是物理公式的基础,比如动能定律E=1/2mv^2,其中的m和v的变化是对比的,表示动能和动量的变化是正比的。
行测数量关系技巧:比例法解工程问题

行测数量关系技巧:比例法解工程问题行测数量关系技巧:比例法解工程问题公务员考试中,工程问题是近年来的热门考题,考察频率也比拟高。
广阔考生在解工程问题的时候,几乎都能想到方程法和特值法,但是对于比例法,很多考生并不容易想到。
在这里教大家利用比例法解决工程问题。
一、工程问题中的正反比例当工作总量W一定时,效率P和时间t成反比例;当效率P一定时,时间t与工作总量W成正比例;当时间t一定时,效率P与工作总量W成正比例。
工程问题当中的正反比例法是指:当工作总量一定时,工作效率与工作时间成反比,工作效率比可得到工作时间之比,再根据实际提早的天数或推延的天数采用比例法进展求解。
或者,工作时间之比可得到工作效率之比,在根据前后效率只差采用比例法进展求解。
例1:对某批零件进展加工,原方案要18小时完成,改良工作效率后只需12小时就能完成,后来每小时比原方案每小时多加工8个零件,问这批零件共有多少个?【解析】288。
先后时间之比=18:12=3:2,可得先后效率之比=2:3,那么由题意可得1份=8个零件,2份就是16零件,所以零件总数=16×18=288(个)。
例2:某工程由小张、小王两人合作刚好可在规定的时间内完成。
假如小张的工作效率进步20%,那么两人只需用规定时间的就可完成工程;假如小王的工作效率降低25%,那么两人就需延迟2.5小时完成工程。
问规定的时间是多少?A.20 hB.24 hC.26 hD.30 h【解析】答案:A。
“小张的工作效率进步20%”,可设特值为由5进步到6,“两人只需用规定时间的”,根据工作总量不变,效率与时间成反比,得出两人的效率之和由9进步到10,那么小王的效率为4。
“小王的工作效率降低25%”,就是由4降低到3,那么两人的效率之和由9降低到8,还是根据工作总量不变,效率与时间成反比,时间由8份变成9份,“延迟2.5小时”就是9-8=1份,由此推出规定时间8份是2.5×8=20(小时)。
六年级数学下册正比例和反比例知识点

六年级数学下册正比例和反比例知识点六年级数学下册正比例和反比例知识点上学期间,大家都背过各种知识点吧?知识点也可以通俗的理解为重要的内容。
相信很多人都在为知识点发愁,以下是店铺为大家收集的六年级数学下册正比例和反比例知识点,希望对大家有所帮助。
一、变化的量。
生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。
二、正比例。
1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:y/x=k(一定)。
2.应用正比例的意义判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。
三、画一画。
正比例的图像是一条直线。
四、反比例。
1.反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的`关系叫做反比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:xy=k(一定)。
2.判断两个量是不是成反比例:要先想这两个量是不是相关联的量;再运用数量关系式进行判断,看这两个量的积是否一定;最后作出结论。
五、观察与探究。
当两个变量成反比例关系时,所绘成的图像是一条光滑曲线。
六、图形的放缩。
一幅图放大或缩小,只有按照相同的比来画,画的图才像。
七、比例尺。
1.比例尺:图上距离与实际距离的比,叫做这幅图的比例尺。
图上距离=实际距离×比例尺实际距离=图上距离÷比例尺2.比例尺的分类:比例尺根据实际距离是缩小还是扩大,分为缩小比例尺和放大比例尺。
根据表现形式的不同,比例尺还可分为线段比例尺和数值比例尺。
人教版六年级数学下册讲义-正比例和反比例(含答案)

正比例和反比例的课堂讲义教材导入:1.两种相关联的量:一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
总价和数量是成正比例的量,总价与数量成正比例关系。
2.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的乘积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
高度和底面积是成反比例的量,高度与底面积成反比例关系。
(一)正比例的意义例1 一列火车行驶的时间和所行的路程如下表:填空:1、表中有和两种量,当时间是1小时,路程是当时间是2小时,路程是,这说明时间这种量变化了,路程这种量也。
2、观察表格:我们从左往右观察,时间扩大2倍,对应的路程也倍,时间扩大3倍,对应的路程也倍……从右往左观察,时间缩小8倍,对应的路程也;时间缩小7倍,对应的路程也……通过观察,我们发现路程是随着的变化而变化的。
时间扩大路程也扩大,时间缩小路程也。
它们扩大、缩小的规律是。
3、比值60,实际上是火车的:将这些式子所表示的意义写成一个关系式:路程=速度(—定)。
时间4、小结:通过刚才的观察和分析.我们知道路程和时间是两种 的量。
(两种相关联的量。
)路程和时间这两种量的变化规律是 。
(路程和时间的比的比值(速度)总是一定的。
)【规律方法】理解成正比例的意义。
判断两种量是不是成正比例,分三步:一看它们是不是相关联的两种量;二是看一种量变化,另一种量是不是也随着变化;满足了前面两个条件,再看它们的比值是否一定。
不要省去任何一步。
如果用字母x和y分别表示两种相关联的量,用k表示它们的比值,正比例关系可以用这样的式子来表示:xy= K (一定)。
【变式训练1】【难度分级】 A1、下面各题中哪两种量成正比例?为什么? ①笔记本单价一定,数量和总价。
②汽车行驶速度一定,行驶的路程和时间。
③工作效率一定,工作时间和工作总量。
数量关系:正反比

数量关系:正反比一、知识铺垫两个量相乘为定值,这两个量成反比;两个量相除为定值,这两个量成正比。
因此所谓正反比,是指在乘除关系里面,即存在M=A×B时,当M一定时,A与B成反比;当A一定,M与B成正比;当B一定,M与A成正比。
例如行程问题中,路程=速度×时间。
当路程一定,速度与时间成反比;当速度一定,路程与时间成正比;当时间一定,路程与速度成正比二、例题展示【例题1】A城市每立方米水的水费是B城市的1.25倍,同样交水费20元,在B城市比在A城市可多用2立方米水,那么A城市每立方米水的水费是( )元。
A.2B.2.5C.3D.3.5【答案】B【解析】根据题意,总水费一定,每立方米水的水费与用水量成反比关系,A、B两城市每立方米水的水费之比为5∶4,则用水量之比为4∶5。
相差1份,对应实际量2立方米,则A城市用水量8,每立方米水费2.5元。
【例题2】某车间加工一批零件,原计划每天加工100个,刚好如期完成,后改进技术,每天多加工10个,结果提前2天完成,这批零件有( )个。
A.1800B.2000C.2200D.2600【答案】C【解析】根据题意,工作总量是个定值,因此效率和时间成反比。
改进技术后每天加工100+10=110个零件,因此原计划和改进技术后的效率之比为100∶110=10∶11,同样的工作,原先和现在完成的时间之比为效率的反比,即11∶10,时间差1份,对应2天,因此原计划完成任务需要11×2=22天,则这批零件有22×100=2200个。
【例题3】甲乙两辆车从A地驶往90公里外的B地,两辆车的速度比为5:6。
甲车于上午10点半出发,乙车于10点40分出发,最终乙车比甲车早2分钟到达B地。
问两车的时速相差多少千米/小时 ?A.10B.12C.12.5D.15【答案】D【解析】根据题意,两辆车行驶路程相等,速度与时间成反比,从A到B甲乙两车的速度比为5:6,因此时间比为6:5。
(完整版)正比例反比例

知识要点一、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。
二、正比例(正比例好脾气,同缩同扩好兄弟,比值永远不变异)1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量,用字母k表示它们的比值(一定),正比例关系可以表示为:yx=k(一定)。
2.判断两种量是否成正比例:(1)两种量相关联。
(2)它们的比值一定。
备注:可以将两个量的关系写成yx=k(一定)的形式,再进行判断。
三、反比例1. 反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们的乘积,反比例的关系式可以表示为:x·y=k(一定)。
2.判断两个量是不是成反比例:(1)两种量相关联。
(2)它们的乘积一定。
经典例题1例题1 判断两种量是否成正比例的方法判断下面各题中的两种量是否成正比例比例,并说明理由。
(1)每袋大米的质量一定,大米的总质量和袋数。
(2)一个人的身高和年龄。
(3)宽一定,长方形的周长与长。
解答:(1)每袋大米的质量一定,大米的总质量和袋数成正比例。
理由:大米的总质量随袋数的变化而变化,它们是相关联的量。
大米的总质量/袋数=每袋大米的质量(一定),所以它们成正比例。
(2)一个人的身高和年龄不成正比例。
理由:一个人的身高随年龄的增长而增高,但身高在不同年龄段增长幅度不同,且到了一定年龄后便不再增长,即两种量的比值不固定,所以它们不成正比例。
(3)宽一定,长方形的周长与长不成正比例,理由:宽一定,长方形的周长随着长的增减变化而变化,但长方形的周长是由两个长和两个宽组成的,即周长=(长十宽)×2,则周长/2-长=宽(一定),周长和长之间是加减关系,所以它们不成正比例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
速度时间* 路程
单价数量总价*
图上距离* 实际距离* 比例尺*被除数* 除数商*
前项* 后项比值*
分子分母* 分数值*
长宽长方形面积*
底高* 平行四边形面积
底高三角形面积*
油* 菜籽出油率*
正方形周长和边长
正方形面积和边长
圆周长和直径
圆周长和半径
圆面积和半径
正方体表面积和每个面的面积长宽长方形周长(一定)
3a=4b,a和b()
=,M和N()
速度时间* 路程
单价数量总价*
图上距离* 实际距离* 比例尺*被除数* 除数商*
前项* 后项比值*
分子分母* 分数值*
长宽长方形面积*
底高* 平行四边形面积
底高三角形面积*
油* 菜籽出油率*
正方形周长和边长
正方形面积和边长
圆周长和直径
圆周长和半径
圆面积和半径
正方体表面积和每个面的面积长宽长方形周长(一定)
3a=4b,a和b()
=,M和N()
速度时间* 路程
单价数量总价*
图上距离* 实际距离* 比例尺*被除数* 除数商*
前项* 后项比值*
分子分母* 分数值*
长宽长方形面积*
底高* 平行四边形面积
底高三角形面积*
油* 菜籽出油率*
正方形周长和边长
正方形面积和边长
圆周长和直径
圆周长和半径
圆面积和半径
正方体表面积和每个面的面积长宽长方形周长(一定)
3a=4b,a和b()
=,M和N()
速度时间* 路程
单价数量总价*
图上距离* 实际距离* 比例尺*被除数* 除数商*
前项* 后项比值*
分子分母* 分数值*
长宽长方形面积*
底高* 平行四边形面积
底高三角形面积*
油* 菜籽出油率*
正方形周长和边长
正方形面积和边长
圆周长和直径
圆周长和半径
圆面积和半径
正方体表面积和每个面的面积
长宽长方形周长(一定)
3a=4b,a和b()
=,M和N()
给一个会议室铺地砖,用面积16平方分米的地砖要200块。
如果改用面积是25平方分米的地砖,需要多少块?。