东南大学过程控制实验报告二
过程控制实验报告

过程控制实验报告过程控制实验报告引言:过程控制是一种重要的工程控制方法,广泛应用于工业生产、环境保护、交通运输等各个领域。
本实验旨在通过对过程控制的实际操作,理解和掌握过程控制的基本原理和方法。
一、实验目的本实验的主要目的是通过搭建一个简单的过程控制系统,了解过程控制的基本概念和原理,并通过实际操作掌握过程控制的方法和技巧。
二、实验装置和原理实验所用的装置是一个温度控制系统,由温度传感器、控制器和执行器组成。
温度传感器负责测量温度,控制器根据测量值与设定值的差异来控制执行器的动作,从而实现温度的控制。
三、实验步骤1. 将温度传感器安装在被控温度区域,并连接到控制器上。
2. 设置控制器的参数,包括设定值、比例系数、积分时间和微分时间等。
3. 打开控制器,开始实验。
观察温度的变化过程,并记录实验数据。
4. 根据实验数据分析控制效果,并对控制器的参数进行调整,以达到更好的控制效果。
5. 重复步骤3和4,直到达到满意的控制效果。
四、实验结果与分析在实验过程中,我们观察到温度的变化过程,并记录了实验数据。
通过对实验数据的分析,我们可以评估控制效果的好坏,并对控制器的参数进行调整。
五、实验总结与体会通过本次实验,我们深入了解了过程控制的基本原理和方法。
实践操作使我们更加熟悉了过程控制的过程和技巧。
同时,我们也体会到了过程控制在工程实践中的重要性和应用价值。
六、实验改进与展望本次实验中,我们采用了简单的温度控制系统进行实验。
未来可以进一步扩展实验内容,涉及到其他参数的控制,如压力、流量等,以更全面地了解过程控制的应用。
结语:过程控制是一门重要的工程学科,对于提高生产效率、保护环境、提升产品质量等方面具有重要意义。
通过本次实验,我们对过程控制的原理和方法有了更深入的理解,为今后的工程实践打下了坚实的基础。
希望通过不断学习和实践,我们能够在工程领域中运用过程控制的知识,为社会发展做出更大的贡献。
过程控制实验报告

过程控制实验报告1. 实验目的本次实验的目的是学习和掌握过程控制的基本原理和操作方法,了解过程控制系统的组成和结构,掌握过程控制系统的基本调试方法和过程控制的自动化程度。
2. 实验原理过程控制是指对一组物理过程进行控制的技术和方法。
过程控制的目的是使被控制的物理过程在一定的条件下,达到预期的目标,如稳定、精度、速度、延迟、可靠性、安全性、经济性等等。
过程控制系统由传感器、执行元件、控制器和执行器构成,其中传感器用于检测被控制物理过程的状态,控制器根据传感器获取的信息进行决策,并通过执行元件控制执行器实现对被控制物理过程的控制。
3. 实验步骤本次实验的过程控制系统由一台工业控制计算机、一台工业控制器和一组执行器构成。
实验的具体步骤如下:(1) 将传感器与控制器连接,并将控制器与计算机连接。
(2) 在计算机上启动控制软件,在软件中设置控制器和传感器的参数。
(3) 将执行器与控制器连接,并调试执行器的控制参数。
(4) 在控制软件中设置控制策略和控制目标,并启动控制器。
(5) 监测被控制物理过程的状态,并记录相关数据。
(6) 对控制策略和控制参数进行调整,直到被控制物理过程达到预期目标。
4. 实验结果经过多次实验,我们成功地控制了被控制的物理过程,并达到了预期目标。
实验结果表明,过程控制技术可以有效地控制物理过程,并提高物理过程的稳定性、精确性和可靠性。
5. 实验总结本次实验使我们深入了解了过程控制的原理和操作方法,掌握了过程控制系统的基本调试方法和过程控制的自动化程度。
通过实验,我们发现过程控制技术在许多工业领域都具有广泛的应用前景,是提高生产效率和质量的重要手段。
在今后的学习和工作中,我们将继续深入学习和研究过程控制技术,为推动工业自动化和智能化发展做出贡献。
过程控制工程实验报告

过程控制工程实验报告实验名称:对象特性测试班级:组员:实验二 对象特性测试1.本实验的基本原理、方法和特点,明确适用范围;基本原理:通过给被测对象施加一个阶跃测试信号,让被控参数在输入作用下产生“自由运动”,从而获得被控对象在输入作用下的自身变化的过程—响应曲线方法和特点; 通过改变执行机构—控制阀的信号,影响进入水箱的流量,观测水箱液位的变化过程,即开环测试。
特点:适于现场应用,测试时间短,数据处理简单;缺点是精度不高,易受干扰和仅适用于自衡对象适用范围:适用于现场应用的自衡对象2.实验曲线MV 由60%变为50%曲线图t/3sm v /%10152025303540455055MV 由50%变为40%的曲线图t/3sM V /%MV 由40%变为50%曲线图t/3sM V /%1520253035404550556065MV 由50%变为605曲线图t/3sM V /%t/3sM V /%MV 往返变化曲线图有图像可以看出由高到低的起始值大于由低到高的终止值,这是由于系统内有机械损失使其达不到初始值。
3.所以,K = 2;T = 44.75;一阶系统的传递函数G(s) = 2/(44.75s+1)二阶系统等价为G(S)=1.97*e-0.788t/(183S+1)4.所以二阶系统传递函数为G(s)=1.97/(18.3s+1)(57.7s+1);5. 正向输入和负向输入的测试结果有一定出入,这可能是系统误差、外界干扰等造成的,参数选取的好,控制效果好。
在生产过程中往往有几个参数可作为控制参数,选择不同的控制参数,就相当于选择不同的过程特性,而过程的动态、静态特性直接影响着控制系统的稳态性能、动态性能和暂态性能。
控制通道的静态放大系数K0越大,表示控制作用越灵敏,克服扰动的能力越强,控制效果越显著。
时间常数T0的大小反映了控制作用的强弱,反映了控制器的校正作用克服扰动对被控参数影响的快慢。
若控制通道时间常数T0太大,则控制作用太弱,被控参数变化缓慢,控制不能及时,系统过渡过程时间长,控制质量下降,所以希望T0要小一些。
过程控制实验报告

过程控制实验报告1. 背景过程控制是一种控制技术,用于监测和调整工业过程中的变量,以确保产品的质量和效率。
在工业生产中,过程控制对于提高产品质量、降低生产成本和提高生产效率起着至关重要的作用。
本实验旨在通过模拟一个简单的工业过程,了解过程控制的基本原理和方法。
通过对过程中的变量进行监测和调整,我们可以在不同条件下优化过程,并得出相应的结论和建议。
2. 实验设备和方法2.1 实验设备•控制器:使用PID控制器进行过程控制。
•传感器:使用温度传感器、压力传感器和流量传感器等监测过程中的变量。
•执行器:使用阀门、电机等对过程进行调整。
2.2 实验方法1.设定控制目标:根据实验要求,确定需要控制的变量和目标值。
2.连接传感器和执行器:将传感器和执行器与控制器连接,确保数据的传输和命令的执行。
3.数据采集和处理:通过传感器获取过程中的数据,并将其输入到控制器中进行处理。
4.控制策略选择:选择合适的控制策略,如比例控制、积分控制、微分控制等。
5.调整参数:根据实际情况,调整控制器的参数,以达到控制目标。
6.系统监测和优化:实时监测过程中的变量,并根据实验结果进行系统优化。
3. 实验结果经过实验,我们获得了以下结果:•利用PID控制器进行温度控制实验,成功将温度稳定在目标温度范围内,并保持稳定不变。
•利用PID控制器进行压力控制实验,成功将压力稳定在目标压力范围内,并保持稳定不变。
•利用PID控制器进行流量控制实验,成功将流量控制在目标流量范围内,并保持稳定不变。
通过数据分析和结果对比,我们得出以下结论:•PID控制器具有较好的控制性能,能够实现对温度、压力和流量等变量的精确控制。
•过程控制的关键在于选择合适的控制策略和参数调整,通过不断优化可以实现更好的控制效果。
•实时监测对于控制系统的稳定性和可靠性具有至关重要的作用,可以及时发现问题并进行修正。
4. 建议根据实验结果和分析,我们提出以下建议:1.在实际工业生产中,可以采用PID控制器对关键的工艺变量进行控制,以提高产品质量和生产效率。
过程控制 实验报告

过程控制实验报告过程控制实验报告引言:过程控制是一种通过监测和调节系统中的变量,以保持系统稳定运行的技术。
在工业生产中,过程控制对于提高生产效率、降低成本、确保产品质量至关重要。
本实验旨在通过对一个简单的过程控制系统进行实验,探索过程控制的基本原理和应用。
实验目的:1. 理解过程控制的基本原理和方法;2. 学习使用控制器进行过程调节;3. 掌握过程控制系统的参数调节方法。
实验器材和材料:1. 过程控制实验装置;2. 控制器;3. 传感器;4. 计算机。
实验步骤:1. 搭建过程控制实验装置:将传感器与被控对象连接,将控制器与传感器连接,将计算机与控制器连接。
2. 设置控制器参数:根据实验要求,设置控制器的比例、积分和微分参数。
3. 开始实验:启动实验装置,并记录被控对象的初始状态。
4. 监测和调节:通过传感器实时监测被控对象的状态,并将数据传输给控制器。
控制器根据设定的参数,计算出相应的控制信号,通过执行器对被控对象进行调节。
5. 数据记录和分析:记录实验过程中的数据,并分析控制效果。
6. 结束实验:实验结束后,关闭实验装置并整理实验数据。
实验结果:通过实验,我们观察到被控对象在开始时处于不稳定状态,随着控制器的调节,被控对象逐渐趋于稳定。
我们还发现,不同的控制器参数会对控制效果产生不同的影响。
比例参数的增大可加速系统的响应速度,但可能引起过冲;积分参数的增大可减小稳态误差,但可能引起系统的超调;微分参数的增大可提高系统的稳定性,但可能引起系统的震荡。
因此,在实际应用中,需要根据具体的要求和系统特性来选择合适的控制器参数。
实验总结:通过本次实验,我们深入了解了过程控制的基本原理和方法。
过程控制在工业生产中起着至关重要的作用,能够提高生产效率、降低成本,并确保产品质量。
在实际应用中,我们需要根据具体的系统要求和特性来选择合适的控制器和参数,以实现系统的稳定运行。
实验的局限性:本实验是基于一个简单的过程控制系统进行的,实际应用中的过程控制系统可能更加复杂。
第四次实验东南大学控制专业技术与系统实验报告

当继电器M8028置1时,定时器T0-T31认为100ms时标,而T32-T55时标变为10ms。
定时器的指令格式如下图1-29
当X0合上,T0开始定时,当定时到T50时(5s),T0触发点输出为1,T0于Y0接通,Y0有输出。
第四次实验东南大学-控制技术与系统实验报告
———————————————————————————————— 作者:
———————————————————————————————— 日期:
东南大学
控制技术与系统
可编程控制器实验
姓名:张子龙组员:焦越
学号:指导教师:朱利丰
实验日期:2016年11月30日
1、掌握定时器指令的格式、功能和编程方法。
2、掌握计数器指令的格式、功能和编程方法。
3、熟悉实验步骤原理,内容及步骤。
第二章应用试验
实验一、交通信号灯自动控制实验
一、实验目的Leabharlann 1、掌握实用PLC控制十字路口交通灯的程序设计方法
2、进一步熟悉PLC指令的使用
二、实验器材
1、可编程序控制器试验箱
2、交通信号灯演示装置
2)实验步骤二
输入执行上面程序
观察结果输出。
当X0合上,Y0每隔0.1s闪烁一次。当X0断开,Y0每隔1s闪烁一次。说明M8028控制T32-T55的定时时基脉冲。
2、计数器指令实验
1)如图1-31
2)实验步骤三
X0、X1接试验箱模拟开关0#、1#
输入执行上面程序
观察结果输出。
当X1为0时,X0合上10次,Y0有输出,再按下X1一次,Y0无输出,再X0合上10次,Y0有输出。
东南大学控制技术和系统实验报告可编程控制器

东南大学控制技术与系统可编程控制器实验姓名:组员:学号:指导教师:实验日期:第一章基本实验实验一基本操作与基本指令实验一、实验目的1.熟悉可编程控制器的外部结构2.熟悉可编程控制器试验箱的结构和使用方法3.掌握可编程控制器的使用4.了解基本指令的编程二、实验器材1.可编程控制器实验箱2.计算机3.编程电缆4.连接导线三、实验设备及编程软件介绍(略)四、实验内容及步骤1.两层楼道灯PLC控制实验注意:接线前请关闭电源,接完线检查正确后再打开电源;实验结束,拔线前请关闭电源。
按图1-19所示接线。
输入X2、X3分别接实验箱上的按钮0#、1#;输出Y1接线实验箱上的指示灯0#、1#。
输入、执行表1-1中的程序,操作按钮0#、1#,观察输出,并记录结果。
实验结果:当0#和1#按钮状态相同时,灯亮,输出1;当0#和1#按钮状态不相同时,灯灭,输出0。
2.基本指令实验根据下面的梯形图,将输入X0-X3分别连接到试验箱模拟开关0#--3#。
输入、执行程序,分别设定模拟开关为ON或OFF,观察PLC输出结果,并分别填入对应的操作结果表中。
3.组合电路的PLC编程实验有些厂家生产的PLC编程器可采用逻辑控制图编程,如图1-20所示。
Y0、Y1输出分别对应的梯形图及指令表如下:将X0~X5连接到实验箱模拟开关0#~5#。
输入、执行程序,验证下面关系。
①对于Y0输出:若X5为1,不论X0、X1、X2、X3、X4为何值,Y0均为1;若X5为0时,只有X3或X4为1,X0、X1均为1,X2为0 ,Y0才能输出1。
②对于Y1输出:X4为0 ,X0或X1为1,X2为0 或X3为1,Y1才能输出1。
实验结果:完全验证了上面的关系。
实验二、置位、复位及脉冲指令实验一、实验目的1、熟悉SET置位、RST复位、PLS上升脉冲和PLF下降脉冲指令编程和使用。
2、熟悉PLC编程方法。
3、掌握PLC负载电路的接线。
二、实验器材1、可编程试验控制箱。
过程控制实验报告

过程控制实验报告1 简介过程控制,在现代工业生产中占有重要的地位,其为保证生产过程质量和效率的关键因素。
基于这种情况,我们深入研究了自动控制系统和PID控制算法,通过实验来掌握它们的特点,从而能够更好地设计、调节和维护高质量的生产过程。
2 实验原理2.1 自动控制系统自动控制系统是应用控制理论和现代科技手段实现工艺或装置自动化的系统。
它由控制器和执行机构组成,通过传感器采集过程变量和设定值,以调节执行机构的动作来达到自动控制的目的。
自动控制系统有许多种类型,包括反馈控制、前馈控制以及模型预测控制。
2.2 PID控制算法PID控制算法是一种基于连续时间反馈机制的调节方法。
该方法通过对误差、误差积分和误差导数的加权求和,来生成控制器的输出。
PID控制器是最常用的控制器类型,其具备简单、稳定等优点。
3 实验步骤3.1 实验一:提高反馈控制器的稳定性此实验是为了提高反馈控制器的稳定性而设计的,我们首先将作为检测过程变量的传感器连接到实验装置上,接着我们调整了PI控制器的参数,通过改变比例增益和积分时间常数来调节PI控制器。
我们一开始设定了较高的比例增益,随后逐渐减小比例增益,直到控制器的稳定性和系统响应变得相对平缓。
之后,我们在一定范围内改变积分时间常数的值,通过观察控制器响应时间来确定最佳的比例增益和积分时间常数。
最终,我们将系统稳定性调整到了最佳状态并记录了参数值。
3.2 实验二:调整PID控制器在本次实验中,我们将了解如何通过调整PID控制器的参数来优化控制效果。
我们首先将系统的控制模式切换到PID控制,并设定一个范围内的目标值,以提高系统响应时间和减小误差。
我们通过改变比例、积分和导数参数的值,来寻找最佳控制参数。
我们发现,随着比例增益的变化,系统响应时间会逐渐减小,但是其过冲幅度则会变大。
我们试图通过调整其他两个参数的值来抵消这种趋势,最终找到了最佳的参数。
3.3 实验三:模型预测控制本实验旨在掌握模型预测控制的基本原理和操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东南大学自动化学院
实验报告
课程名称:过程控制
第二次实验
实验名称:被控过程的建模实验
院(系):自动化专业:自动化
姓名:学号:
同组人员:实验时间:2017 年 5 月13 日评定成绩:审阅教师:一
一、实验目的
1、了解液位,流量,压力和温度系统的组成结构;
2、掌握用阶跃响应法来实验辨识控制系统的数学模型的特性参数 、0T、0K,并以此计算调节器的P、I T、D T参数;
3、熟练掌握实验法获取被控对象特性的设备操作方法。
二、实验内容
1、对象的配管操作
本实验的实验流程图如图2.1所示,按照实验流程图对实验装置进行配管操作。
图2.1 实验流程图
2、仪表的配线操作
本实验的仪表配线图如图2.2所示,对实验控制台上的2#、3#调节器的输入、输出、电源进行插棒连线(6根弱电,4根强电)。
图2.2 液位飞升实验仪表配线图
3、调节器参数的设置;
4、记录曲线,运用力控组态软件中的历史趋势曲线,曲线下方操作按钮的作用参看附录二。
三、实验步骤
1、了解被控过程的自衡和非自衡特性,操作前,将力控组态软件打开到运行系统,选择相应实验,打开到历史趋势曲线;
2、掌握单容过程和多容过程的典型传递函数;按照实验流程图配管,并完成仪表配线;建模连线图如下:
3、掌握飞升曲线的建模方法系统模型的认识;
为了实现对水箱的建模,应该在断开所有的控制器的情况下让水箱获得自然平衡点。
利用P909手动控制电动阀的开度,保持出水阀的开度不变,手动调节进水阀的开度,使得液位逐渐达到平衡点。
在液位到达第一个平衡点之后保持进水阀和出水阀的开度不变,通过P909手动增大电动阀的开度。
(这里之所以实用电动阀来控制输入量是因为电动阀的是线性的,而进水阀是非线性的,从而电动阀的开度该变量是可以量化的)由于开度的增大,进水
量必然会增大,但是由于液位不断升高,出水量也会随之增大,最终进水量与出水量相等从而液位重新达到平衡点。
这个过程的液位-时间曲线称为飞升曲线。
通过飞升曲线可以估计出水箱的模型结构,并且通过分析该曲线的数据可以得到模型的相关参数。
4、按A/M键将控制器2#切换成手动模式,2#、3#按SET键将LEVEL1功能切换成OUTL,按上下三角设定进出水阀的开度,使液位平衡;
5、当液位平衡后,改变进水阀的开度,一般变化10%左右,等待液位再次平衡,并且记录下改变阀位的时刻。
四、实验现象
1、观察液位控制系统给定(SV)和反馈(PV)的变化曲线,改变SV,观察PV的变化。
图3.1 液位给定值与实际值变化曲线
由图3.1可以看出,SV初始值设为1700,一段实践后,液位与设定值基本一致,存在一定的稳态误差。
改变设定值为500,通过PID的调节作用,液位会缓慢下降,最后在设定值附近波动。
2、利用串口助手与P909通讯,读取或写入SV/PV的值。
打开串口助手,设置参数如下:COM6,波特率4800,奇校验位,十六进制发送。
通过学习P909通讯协议可知,若要读取SV的值,应发送:52 04 00 00 00 00 56;如要读取PV的值,应发送:52 04 00 80 00 00 56;如要写入SV的值,应发送:57 04 00 00 00 7B D6(00 7B 为写入的十六进制数据)。
(1)读取SV的值
发送52 04 00 00 00 00 56,接收到07 4D 00 00 00 03 84 D4,其中0384即为读取的值,转换为10进制是900,与实际值一致。
图3.2 读取SV 的值
(2)读取PV 的值
发送52 04 00 80 00 00 56,接收到00 4D 00 00 00 04 08 59,其中0408即为读取的值,转换为10进制是1032(由于液位在不停的变化,所以未能及时拍到液位为1032的时刻)。
图3.3 读取PV 的值
(3)写入SV 的值
发送57 04 00 00 00 7B D6,设置SV 为007B (16进制),即123。
图3.4 写入SV的值3、通过力控组态软件监控SV和PV变化曲线。
1) 进入力控开发系统,新建窗口
2) 添加实时趋势,定义变量、设置上下限
3) 添加设备(管道、罐等)、添加文本
4) 连接设备后即可观察PV 和SV 的实时曲线
4、分析获得的飞升曲线,求解出系统数学模型的三大特性参数: 、
0T 、0K ,并以此计算调节器的P 、I T 、D T 参数。
在实验中,电磁阀的开度由30%增大到50%,平衡点的液位高度由58.4mm 增高到64.8mm 。
飞升曲线如图2.2。
图2.2 飞升曲线
由图2.2可以看出水箱的模型为一节惯性系统,其传递函数为
K Ts+1
,
其中,K = 64.8−58.4
50−30
=0.32mm/%,T = 4.6min = 276s
所以水箱的传递函数为
0.32 276s+1
五、思考题
1、通过对HGK-1过程控制实验装置的操作,了解自衡与非自衡的特性;
答:自衡过程,指的是系统中存在着对所关注的变量的变化有固定的负反馈作用,该作用总是力图恢复系统的平衡。
在出现扰动后,过程能靠系统自身的能力达到新的平衡状态的性质称为自平衡特性。
自衡过程具有一定范围内的自平衡。
反之,不存在固有反馈作用的且自身无法恢复平衡的过程,为非平衡过程。
2、试从传递函数的角度说明PID的作用。
说明算法(规律)和参数的作用;
答:比例参数KP的作用是加快系统的响应速度,提高系统的调节精度。
随着KP 的增大系统的响应速度越快,系统的调节精度越高,但是系统易产生超调,系统的稳定性变差,甚至会导致系统不稳定。
KP取值过小,调节精度降低,响应速度变慢,调节时间加长,使系统的动静态性能变坏。
积分作用参数Ti的一个最主要作用是消除系统的稳态误差。
Ti越大系统的稳态误差消除的越快,但Ti也不能过大,否则在响应过程的初期会产生积分饱和现象。
若Ti 过小,系统的稳态误差将难以消除,影响系统的调节精度。
另外在控制系统的前向通道中只要有积分环节总能做到稳态无静差。
从相位的角度来看一个积分环节就有900 的相位延迟,也许会破坏系统的稳定性。
微分作用参数Td的作用是改善系统的动态性能,其主要作用是在响应过程中抑制偏差向任何方向的变化,对偏差变化进行提前预报。
但Ti不能过大,否则会使响应过程提前制动,延长调节时间,并且会降低系统的抗干扰性能。
3、试拟定获取对象固有特性的方案
为了实现对水箱的建模,应该在断开所有的控制器的情况下让水箱获得自然平衡点。
●利用P909手动控制电动阀的开度为20%,保持出水阀的开度不变,手动调节进
水阀的开度,使得液位逐渐达到平衡点;
●在液位到达第一个平衡点之后保持进水阀和出水阀的开度不变,通过P909手动
增大电动阀的开度到40%;(这里之所以实用电动阀来控制输入量是因为电动阀
的是线性的,而进水阀是非线性的,从而电动阀的开度该变量是可以量化的)
●由于开度的增大,进水量必然会增大,但是由于液位不断升高,出水量也会随之
增大,最终进水量与出水量相等从而液位重新达到平衡点;
●变化过程实时记录仪表箱上液位变化值,以及变化时间,直至液位平衡;
●将数据导入力控监控组态软件,自动生成液位-时间变换曲线;
●这个过程的液位-时间曲线称为飞升曲线。
通过飞升曲线可以估计出水箱的模型
结构,并且通过分析该曲线的数据可以得到模型的相关参数。