流体机械特性曲线的定义与分类
第一章叶片式流体机械概况

第一章:叶片式流体机械概述§ 1-1叶片式流体机械的工作过程叶片式流体机械中的能量转换,是在带有叶片的转子及连续绕流叶片的流体介质之间进行的。
叶片与介质间的作用力是惯性力。
该力作用在转动的叶片上,因而产生了功(正或负视力矩和叶轮运动方向而定)。
一、叶片式流体机械的组成元件「吸入部分(直锥形,环形,半螺旋形)1•引流部分<蜗壳(导水机构)图卜皿辱水机构的推耶亦is闻式b)斜氏式讨釉向式1叶轮2•做功部分(转子)彳转轮•涡轮町J)图1-20水轮机转辂姑构d握流式b>轴撼式小斜施式d)级击式「蜗壳(导流器,导叶)3•出流部分耳〔尾水管以风扇或泵为例说明特点特点:①具有一个带有叶片的转子②工作时介质对叶片连续绕流③介质作用于叶片的力是惯性力④部分流体机械有一个静止的叶栅。
以轴流式流体机械为例说明工作过程在上述例子中,转子叶片在自由空间转动,经过叶轮的介质,由于叶片力矩的作用,而有一个圆周方向的速度分量。
依动量矩定理流出叶轮的液体有一个圆周方向的分速度,在叶轮后,由于该分速度引起附加的能量损失,为了消除这个损失故在叶轮后增加一个静止的导叶(叶栅)用来消除介质的圆周分速度。
这种流体就有一个静止的叶栅,简称导叶。
我们主要研究的也是这种机械。
在轴流式原动机中(T),介质沿轴线方向先进入导叶,导叶的作用是使得介质速度的大小及方向发生了变化,切一部分压力能转换为圆周方向速度所对应的动能。
然后介质进入转轮,由于转轮叶片的作用,使介质的速度方向又变为轴线方向。
与速度的方向发生改变时由于惯性作用引起作用于叶片的力矩使转轮旋转。
转轮带动轴旋转,轴带动发电机或其他机械旋转,从而使流体的能量转换为电能或机械能。
为了最大限度利用流体的能量,理论上从转轮流出的介质不再有圆周方向的运动。
(压力为最小,此压力是多少?)相反,作为工作机(P),介质及叶片转动的方向和原动机刚好相反,介质从轴向进入叶轮,从叶轮中流出的介质具有圆周方向的速度分量,然后在导叶作用下消除圆周运动又回到轴向。
第一章流体机械的定义及分类习题

第⼀章流体机械的定义及分类习题第⼀章流体机械的定义及分类习题1、流体具有的能量主要包括哪⼏个⽅⾯?2、什么是流体机械?根据什么将流体机械分为叶⽚式流体机械和容积式流体机械?3、什么是往复式流体机械和回转式流体机械?试分别列举⼏种型式。
第⼆章叶⽚式流体机械概述习题1、⽔轮机和⽔泵的基本⼯作参数有哪些?各是如何定义的?2、什么是流体机械?根据什么将流体机械分为叶⽚式流体机械和容积式流体机械?3、什么是往复式流体机械和回转式流体机械?试分别列举⼏种型式。
4、往复式泵的⼯作原理是什么?5、齿轮泵的⼯作过程是什么?齿轮泵的容积效率怎样计算?6、反击型⽔轮机的主要过流部件名称及作⽤是什么?试以混流式为例绘出其单线图。
7、根据⽔轮机利⽤⽔流能量⽅式的不同将⽔轮机分为哪两⼤类?⼜根据转轮区域⽔流流动⽅向特征的不同将反击式⽔轮机分为了⼏种?试分别说出各⾃的特点和使⽤范围。
8、反击式⽔轮机由哪四⼤部件组成?试分别说出它们的作⽤。
9、试说明液⼒变矩器的组成和⼯作原理。
10、什么是⽓压传动?以剪切机为例,说明⽓压传动的⼯作原理。
11、试推导往复泵吸⽔、压⽔过程中活塞上压强的表达式。
12、试证明:单作⽤往复泵安装空⽓室活塞克服管路摩擦所作的功,与不装空⽓室活塞克服管路摩擦所作的功之⽐为。
假定摩擦系数不随速度变化。
第三章叶⽚式流体机械中的能量转化习题1、总扬程为25m,流量为3m3/min,泄漏量为流量的3%的离⼼泵以1450rpm的转速运转时,泵的轴功率为14.76kw,机械效率取,试求下列值:(1)泵的有效功率;(2)泵的效率;(3)容积效率;(4)⽔⼒效率。
2、⽔轮机效率实验时在某⼀导叶开度下测得下列数据:蜗壳进⼝处压⼒表读数P=22.6×104p a,压⼒表中⼼⾼程Hm=88.5m,压⼒表所在钢管直径D=3.35m,电站下游⽔位?=85m,流量q v=33m3/s,发电机功率P g =7410Kw,发电机效率ηg=0.966,试求机组效率及⽔轮机效率。
离心泵特性曲线

2.2.1 离心泵的工作原理
1.离心泵的构造:
1、叶轮: 2、泵壳: 3、泵轴及轴封装置:
气缚现象:泵壳和吸入管路内没有充满液体, 泵 内有空气,由于空气密度远小于液体的 密度,叶轮旋转对其产生的离心力很小,叶 轮中心处所形成的低压不足以形成吸上液体 所需要的真空度,泵就无法工作。
(3) 导轮
思考4: 为什么导轮的弯曲方向与叶 片弯曲方向相反?
(4). 轴封装置
旋转的泵轴与 固定的泵壳之 间的密封。 作用:防止高 压液体沿轴漏 出或外界空气 漏入。
填料密封 机械密封
离心泵的理论压头和实际压头
压头:单位重量液体所获得的能量称为泵的压头,用 H表示,单位m。 理论压头:理想情况下单位重量液体所获得的能量称 为理论压头,用HT表示。
离心泵:靠高速旋转的叶轮,液体在离心力作用下 获得能量,以提高压强。 往复泵:利用活塞的往复运动,将能量传给液体, 以完成输送任务。 旋转泵:靠泵内一个或一个以上的转子旋转来吸入 和排出液体。 旋涡泵:一种特殊类型的离心泵。
气体输送机械:据出口气体压强可分为通风机, 鼓风机,压缩机,真空泵
压缩比=出口压力/进口压力
1. 理论压头表达式的推导
w2 液体在高速旋转的叶轮中的运动分为2种: 2 2 2 c2 u2
周向运动:
u r
w1 1 1 c1
与叶片的相对运动:
处处与叶片相切
u1
在 1 与 2 之间列机械能衡算方程式,得:
2 2 p 2 p1 c 2 c 1 HT g 2g
(1)
转速
n
流量 qV,泵单位时间实际输出的液体量,m3/s或m3/h。 可测量 压头 He,又称扬程,泵对单位重量流体提供的有效能量,m。 可测量
牛顿流体与非牛顿流体全解

(6)汤姆孙减阻效应 1948 年,汤姆(TOMS)在第1 届国际流变学会议上宣布了他 的减阻实验。将少量的聚甲基丙烯酸加入管内一氯代苯低分子 溶液的湍流中,在一定流量下,管内流动的摩擦阻力显著下降 ,这一现象称为减阻现象。由下图可以看出,当流动由层流转 变为湍流时,流线变密,流量增加,出现减阻现象。湍流减阻 可以使流量增大,对传热、传质有利。
1Pa s 1000 mPa s
3、流变方程中反映流体流变特性的参数只有一个 。对牛顿 流体来说,其流变方程只有一种形式。 4、典型的牛顿流体:水、甘油、低分子量的成品油,空气。 5、牛顿流体内部结构特点:单相流体、分散相浓度很低的假 均匀多相混合物流体。
(三)牛顿流体曲线:
剪切应力/剪切速率= tanα =恒定值, 由于牛顿流体的流动曲线是通过座标原点的直线,因此在 (即粘度 )均为恒定值。如前所述 任一剪切速率下求得的 / ,牛顿流体可通过求任意剪切速率下的剪切应力而求粘度。反 之,若已知粘度值,则可知该直线与横座标的夹角(tanα= )即 斜率,因此该流体的流动性就充分得到了说明。
大多数高分子溶液和乳状液具有明显的假塑性。 (3)剪切稠化流体:也称胀塑性流体,与假塑性流体相反 ,膨胀流体的表观粘度随切变速率增加而增大,这种现象称为 剪切增稠现象。 一些浓稠悬浮体、蛋白质及某些高分子溶液可表现出切力 增稠现象。 2、时变性非牛顿流体 这类流体的粘度函数不仅与应变速率有关,而且还与剪切 持续时间有关。大致可分为两类: (1)触变性和流凝性流体:随着切应力作用时间的延长, 表观粘度越来越小的流体叫做触变性流体;随着切应力作用时 间的延长,表观粘度越来越大的流体叫做流凝性流体,这种流 体在实际中非常少见。然而,在实际中我们遇到的触变性体系 较多,例如:某些粘土悬浮液、陈胶、溶胶及高聚合物可表现 出触变性。
化工原理流体知识点总结

化工原理流体知识点总结一、流体的基本性质1. 流体的定义流体是指在受到作用力的情况下,能够流动的物质,包括液体和气体。
2. 流体的分类(1)牛顿流体:满足牛顿流体定律的流体,即剪切应力与剪切速率成正比。
(2)非牛顿流体:不满足牛顿流体定律的流体,如塑料、胶体等。
3. 流体的性质(1)密度:单位体积流体的质量,通常用ρ表示,单位kg/m³。
(2)粘度:流体流动时的内部摩擦阻力,通常用η表示,单位Pa·s或mPa·s。
(3)表观黏度:流体在管道中流动时表现出的粘度,通常用μ表示,单位Pa·s或mPa·s。
(4)流变性:流体在外力作用下的形变特性,包括剪切流变和延伸流变。
4. 流体的运动(1)层流:流体呈层状流动,流线平行且不交叉。
(2)湍流:流体呈旋涡形式混合流动,流线交叉且无规律。
二、流态力学1. 流体静压(1)静压力:流体在容器中受到的压力,通常用P表示,单位Pa。
(2)流体的压强:P = ρgh,其中ρ为流体密度,g为重力加速度,h为液面高度。
(3)帕斯卡定律:在静止流体中,内部任意一点的压力均相等。
2. 流体动压(1)动压力:流体在流动状态下受到的压力。
(2)动压公式:P = 0.5ρv²,其中ρ为流体密度,v为流体的流速。
3. 流体的质量守恒(1)连续方程:描述流体在流动中的质量守恒关系。
(2)连续方程公式:ρ1A1v1 = ρ2A2v2,其中ρ为流体密度,A为管道横截面积,v为流速。
4. 流体的动量守恒(1)牛顿第二定律:描述流体在流动中的动量守恒关系。
(2)牛顿第二定律公式:F = ρQ(v2 - v1),其中F为管道上流体受到的合力,Q为流体流量,v为流速。
三、流体的运动1. 流体的流动类型(1)层流:小阻力、流速较慢。
(2)湍流:大阻力、流速较快。
2. 流体的流动参数(1)雷诺数:描述流体流动状态的无量纲参数,Re = ρvD/η,其中D为管道直径。
水轮机原理(复习题)

一、名词解释水轮机的分类(1)水轮机:把水能转换为机械能的水利机械蓄能泵:把机械能转换成水能的水利机械水泵水轮机:既可作水泵运行又可作水轮机运行的水利机械反击式水轮机:通过转轮利用水流压能为主的水能做功的水轮机冲击式水轮机:在喷嘴出口处将可利用的水能全部转化为动能的水轮机,并依靠一个或多个喷嘴调节流量混流式水轮机:轴面水流接近于径向进入转轮,在固定的转轮叶片上逐渐变向,至转轮出口处接近于轴向的反击式水轮机轴流式水轮机:转轮叶片上的轴面流动近乎为轴向的水轮机斜流式水轮机:水流径向或斜向流过导叶,斜向流入转轮的反击式水轮机贯流式水轮机:水流轴向或斜向流过导叶的轴流式水轮机轴流定浆式水轮机:导叶可调,转轮叶片固定的单调式水轮机轴流式转浆式水轮机:导叶和转轮叶片均可调的双调式水轮机(2)水轮机的工作参数:水头(扬程)H、流量Q、出力P、效率η、转速n、NPSH水头:单位重量的流体所具有的能量,通常以液柱高度表示扬程:是指单位重量流体经泵所获得的能量,水泵扬程是指水泵能够扬水的高度毛水头:水电站上下游水位的高程差净水头(工作水头属于净水头):水轮机进口与出口测量断面的总水头差,即水轮机做功用的有效水头,用H n表示设计水头:水轮机在最高效率点运行时的净水头,用H d表示最大水头:在运行范围内,水轮机净水头的最大值,用H max表示最小水头:在运行范围内,水轮机净水头的最小值H min表示加权平均水头:在电站运行范围内,考虑不同负荷下运行时间的水头的加权平均值设计流量:在设计水头下,水轮机以额定转速、额定出力运行时所对应的水流量水轮机飞逸转速:水轮机处于失控状态,轴端负荷力矩为零时的最高转速,用n run表示比转速:水轮机输入功率:水轮机进口水流所具有的的水力功率,用P in表示水轮机输出功率(出力):水轮机主轴输出的机械功率,用P out表示水轮机额定输出功率:在额定水头和额定转速下,水轮机连续发出的功率,用P r表示转轮输出功率:水轮机转轮传给主轴的功率叶轮输出功率:泵叶轮进口到出口由叶轮传递给水流的水力功率转轮输入功率:水流从水轮机转轮进口至出口传递给转轮的水力功率叶轮输入功率:泵主轴传递给叶轮的功率效率:水轮机输出功率与输入功率之比水轮机机械效率:水轮机输出功率与转轮输出功率之比水轮机水力效率:水轮机转轮输出功率与水轮机输入功率之比最优效率:最优工况下的效率,即最高效率点加权平均效率:在规定运行范围内,效率的加权平均值(3)叶片:反击式水轮机转轮或水泵叶轮进行能量转换,具有型线的部件。
第八章 流体机械的性能曲线和运行调节

流体机械原理、设计及应用
第一节 流体机械的性能曲线
泵或风机的主要性能参数有流量qV、扬程H(或全 压PtF)、功率P和效率η 。这些参数之间有着一定的相
互联系,反映这些性能参数间变化关系的曲线,称为 泵与风机的特性曲线。
常用的特性曲线有以下三种:
扬程与流量之间的关系曲线
功率与流量之间的关系曲线
效率与流量之间的关系曲线
qV
O
qV
同性能泵串联运行
不同性能泵串联运行
5、串联运行时应注意的问题
1 宜适场合:Hc-qV 较陡,H-qV 较平坦。 2 安全性:经常串联运行的泵, 应由qVmaxHg(或Hd) 防 止汽蚀;对于离心泵和轴流泵, 应按Pshmax Pgr 驱动电机不 致过载。
一、管路系统性能曲线
p”
流量计
压强表
调阀
HZ
真空计
泵
p’
阀门
泵的系统装置
对于泵 H cH zp '' gp' hwH stqv 2
Hst--称为管路系统的静能头;
对于风机
p 'q2
c
V
即,管路系统的静能头为零。
Hc
H st
流体机械原理、设计及 应用
HHq2
c
st
V
Pc
q2 V p" p' g
Hz
离心式泵与风机的H-qV 曲线 比较平坦,而混流式、轴流式泵 与风机的H-qV曲线比较陡。因此, 前者适用于流量变化时要求能头 变化不大的场合,而后者宜用于 当能头变化大② P-qV 性能曲线的比较
离心式和轴流式泵与风机的P-qV 曲线随着流量的增加其变化趋势刚好 相反,前者呈上升趋势,而后者则急 剧下降。因此,为了减小原动机容量 和避免启动电流过大,启动时,轴流 式泵与风机阀门应处于全开状态,而 离心式泵与风机阀门则原则上应处于 关闭状态。
过程流体机械整理资料(中国矿业大学过程装备与控制工程专业用)

过程流体机械:过程工业生产中,以流体为工质进行能量转换、处理与输送的机械吸、排气温度:缩机首级汽缸工作腔进气法兰和末级汽缸工作腔排气法兰接管处测得的气体温度称为压缩机的吸排气温度。
工况:压缩机进行所在的进、排气压力和近期温度状态参数称为压缩机的工况,压缩机铭牌上所表的参数工况称为“额定工况”。
吸、排气压力:压缩机首级汽缸工作腔进气法兰和末级汽缸工作腔排气法兰接管处测得的压力称为压缩机的吸排气压力。
压缩机排气量:排气量是指在所要求的排气压力下,压缩机最后一级单位时间内排出的气体体积折算到第一级进口压力和温度时的容积值容积式压缩机定义:依靠改变工作腔容积的大小来提高气体的压力。
列:压缩机中,把一个连杆对应的一组汽缸及相应的动静部件称为一列。
一列可能对应一个汽缸,也可能对应串在一起的多个汽缸。
压缩机的循环:活塞往复运动一次,在气缸中进行的吸气、压缩、排气等过程的总和。
气体经过一个工作循环,也称为一级。
多级压缩定义:多级压缩是将气体的压缩过程分在若干级中进行,并在每级压缩之后将气体导入中间冷却器进行冷却。
级的等温指示效率:级的理论等温循环指示功与实际循环指示功之比,即:轴功:压缩机的轴功包括指示功与摩擦功两部分。
指示功是压缩机直接用于压缩气体所消耗的功摩擦功:是压缩机用于克服摩擦所消耗的功。
轴功率:单位时间所消耗的轴功称为轴功率。
机械效率:指示功率与轴功率之比。
影响机械效率的因素很多,如:轴承的形式、摩擦副的材料、润滑方式等。
临界转速:转子旋转的角速度与转子弯曲振动的固有圆周频率相重合,则转子会发生强烈的共振导致转子的破坏,转子与此相应的转速称为临界转速。
扬程H:单位重量液体从泵入口到泵出口处能量的增值。
即1N液体通过泵获得的有效能量,m。
又称有效能量头。
功率N:原动机传到泵轴上的轴功率,W或kW;有效功率Ne:单位时间内从泵中输送出去液体在泵中获得的有效能量沉降:混合物在某种装置中,由于两相在力场中所受到的力的大小不同而分层,轻相在上层形成澄清液,重相在下层形成沉淀物过滤:混合物在多层材料层装置中,由于受力场的作用,液体通过多孔材料层流出形成滤液固体被留在材料层上形成滤渣而实现分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
④ H ~ qv
由H ~ qvT曲线扣除泄漏流量 q
“三创”教育工作座谈会·张澍
WUHAN UNIVERSITY
WUHAN UNIVERSITY
“三创”教育工作座谈会·张澍
WUHAN UNIVERSITY
WUHAN UNIVERSITY
“三创”教育工作座谈会·张澍
§7-1流体机械特性曲线的定义与分类
WUHAN UNIVERSITY
WUHAN
UNIVERSITY
“三创”教育工作座谈会·张澍
§7-1流体机械特性曲线的定义与分类
以后弯式叶片为例:
WUHAN UNIVERSITY
② H T ~ qvT
2 u2 q vT 0时,H T K g H T KH T H 0时,q u 2D2 b2 T vT ctg 2 y
WUHAN
UNIVERSITY
“三创”教育工作座谈会·张澍
§7-1流体机械特性曲线的定义与分类
4、工作特性曲线的讨论 2)P ~ qv 曲线
WUHAN UNIVERSITY
功率随流量的增加而增加。在 qv 0 时,功率P有最小值。因而离 心泵一般要关阀启动。 3) ~ qv 曲线 效率随流量的增加而增加,到最高效率点后,效率随流量的增加而 减小。在最高效率点两侧变化较平缓,高效区较宽。
UNIVERSITY
机械损失几乎与流量无关 “三创”教育工作座谈会·张澍
轴功率 P PT PM
PM
③ P ~ qv
§7-1流体机械特性曲线的定义与分类
WUHAN UNIVERSITY
WUHAN UNIVERSITY
“三创”教育工作座谈会·张澍
§7-1流体机械特性曲线的定义与分类
WUHAN UNIVERSITY
WUHAN
UNIVERSITY
“三创”教育工作座谈会·张澍
§7-1流体机械特性曲线的定义与分类
②轴流式泵与风机 1) H ~ qv 曲线
WUHAN UNIVERSITY
qv (40 %~ 60%) qvd 随流量的增加,扬程总的趋势是下降,且 下 降 较 快 。在 时,出现拐点。此处性能为马鞍型。拐点的左边为不稳定区。
WUHAN
参数为自变量,其余为 常数 线型特性曲线:取一个 参数为自变量,其余为 常数 综合特性曲线:取二个
UNIVERSITY
一、线型特性曲线 在线型特性曲线中只有一个自变量,选择不同的自变量就得到 不同的特性曲线,如工作特性曲线和转速特性曲线等 “三创”教育工作座谈会·张澍
§7-1流体机械特性曲线的定义与分类
WUHAN
K为滑移系数。 K 1
③ H ~ qvT
2 扣除沿程、局部损失 h K q w 3 v ,过原点的抛物线 由H T ~ qvT曲线 得到H ~ qvT 2 hs (qv qvd ) ,顶点在qvd 处的抛物线 扣除冲击损失
UNIVERSITY
,且可认为在所有工况下保持不变。
WUHAN UNIVERSITY
0101000110010101
流体机械的特性曲线与运行调节 10010101
§7-1流体机械特性曲线的定义与分类
WUHAN UNIVERSITY
流体机械的性能取决于三个基本因素: 几何参数 — 0, 介质的物性参数— ,R,, 运动参数 — n,Q(或q ,q ),P,H (或 p、h),,(或h ) v m 几何参数和物性参数一定时,机器的工况由 n,qv 和H 三个参 数决定,而 P,, 等则是工况的函数。流体机械特性曲线的广 义函数为: P,, f ( 0,,,,n,qv,H ) 一般上式自变量的数目为2-6个?
2 、 P ~ qv 曲线 :
WUHAN UNIVERSITY
① PT ~ qvT
由水功率(流动功率)得 PT qvT H T / 1000 2 qvT ( KA KBqvT ctg 2 y ) AqvT B qvT 1000
WUHAN
② P ~ qvT
升直线 2 y=90,径向式,过原点的上 A 90 ,后弯式,过 ( 0 , 0 ) , ( 0 , )抛物线 2 y B 2 y 90,前弯式,过原点上升 抛物线,功率剧变
ቤተ መጻሕፍቲ ባይዱ
3、 ~ qv 曲线 :
WUHAN q H
v
1000P
4、工作特性曲线的讨论
UNIVERSITY
“三创”教育工作座谈会·张澍
§7-1流体机械特性曲线的定义与分类
WUHAN UNIVERSITY
①离心式泵与风机 H ~ qv 曲线 1) 陡降的型式:具有25~30%斜度。较大的扬程变化对应较小的流量变化。适 于能头变化大而流量变化小的情况,如循环水泵。 平缓的型式:具有8~12%斜度。较小的扬程变化对应较大的流量变化。适 于流量变化大而要求能头变化小的情况,如锅炉给水泵。 驼峰型式:其能头先随流量的增加而增加,到顶点后,随流量的增加而减 小。顶点左边的区域为不稳定工作区,易发生揣振。
H T A BqvT
UNIVERSITY
2 y
来决定。
上式为一直线方程,其斜率由
“三创”教育工作座谈会·张澍
§7-1流体机械特性曲线的定义与分类
2 u2 q vT 0时,H T 当 2 y=90,水平线,径向式, g 2 u2 q vT 0时,H T g 当 2 y 90,下降线,后弯式 H 0时,q u 2D2 b2 T vT ctg 2 y 2 u2 q vT 0时,H T 当 2 y 90,上升线,前弯式, g
(一)泵与风机的工作特性曲线 1、 H ~ q v曲线 ①H ~q T vT
WUHAN UNIVERSITY
H T
WUHAN
1 u 2 c 2u c2u u2 c2m ctg 2 y g
c2 m
qvT D2 b2
H T
2 2 u 2 qvT u2 u2 u2 ctg 2 y A ;B ctg 2 y g gD2 b2 g gD2 b2