数字逻辑课后答案
数字逻辑课后题答案

习题一1.1 把下列不同进制数写成按权xx:⑴ (4517.239)10=4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶ (325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷ (785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2 完成下列二进制表达式的运算:1.3 将下列二进制数转换成十进制数、八进制数和十六进制数:⑴ (1110101)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10⑶ (10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4 将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:⑴ (29)10=(1D)16=(11101)2=(35)8⑵ (0.207)10=(0.34FDF)16=(0.001101)2=(0.15176)8⑶ (33.333)10=(21.553F7)16=(100001.010101)2=(41.25237)81.5 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解: 一个二进制正整数被(2)10除时,小数点向左移动一位, 被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时, 二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除.1.6 写出下列各数的原码、反码和补码:⑴ 0.1011[0.1011]原=0.1011; [0.1011]反=0.1011; [0.1011]补=0.1011⑵ 0.0000[0.000]原=0.0000; [0.0000]反=0.0000; [0.0000]补=0.0000⑶ -10110[-10110]原=110110; [-10110]反=101001; [-10110]补=1010101.7 已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得: [N]反=[N]补-1=1.0101, [N]原=1.1010,N=-0.10101.8 用原码、反码和补码完成如下运算:⑴ 0000101-0011010[0000101-0011010]原=10010101;∴0000101-0011010=-0010101。
数字逻辑课后习题答案

第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制491100016153110101651271111111177635100111101111737.493111.11117.7479.4310011001.0110111231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010101211110161751011100921340.100110.593750.4610111147570110113153.将下列十进制数转换成8421BCD码1997=000110011001011165.312=01100101.0011000100103.1416=0011.00010100000101100.9475=0.10010100011101014.列出真值表,写出X的真值表达式A B C X00000010010001111000101111011111X=A BC+A B C+AB C+ABC5.求下列函数的值当A,B,C为0,1,0时:A B+BC=1(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,1,0时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,0,1时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=06.用真值表证明下列恒等式(1)(A⊕B)⊕C=A⊕(B⊕C)A B C(A⊕B)⊕C A⊕(B⊕C)0000000111010110110010011101001100011111所以由真值表得证。
(2)A⊕B⊕C=A⊕B⊕CA B C A⊕B⊕C A⊕B⊕C00011001000100001111100001011111011111007.证明下列等式(1)A+A B=A+B 证明:左边=A+A B=A(B+B )+A B =AB+A B +A B =AB+A B +AB+A B =A+B =右边(2)ABC+A B C+AB C =AB+AC 证明:左边=ABC+A B C+AB C=ABC+A B C+AB C +ABC =AC(B+B )+AB(C+C )=AB+AC =右边(3)E D C CD A C B A A )(++++=A+CD+E证明:左边=ED C CD A C B A A )(++++=A+CD+A B C +CDE =A+CD+CD E =A+CD+E =右边(4)C B A C B A B A ++=CB C A B A ++证明:左边=CB AC B A B A ++=C B A C AB C B A B A +++)(=C B C A B A ++=右边8.用布尔代数化简下列各逻辑函数表达式(1)F=A+ABC+A C B +CB+C B =A+BC+C B (2)F=(A+B+C )(A+B+C)=(A+B)+C C =A+B (3)F=ABC D +ABD+BC D +ABCD+B C =AB+BC+BD (4)F=C AB C B BC A AC +++=BC(5)F=)()()()(B A B A B A B A ++++=B A 9.将下列函数展开为最小项表达式(1)F(A,B,C)=Σ(1,4,5,6,7)(2)F(A,B,C,D)=Σ(4,5,6,7,9,12,14)10.用卡诺图化简下列各式(1)CAB C B BC A AC F +++=0 ABC00 01 11 1011111化简得F=C(2)CB A D A B A DC AB CD B A F++++=111111AB CD 00 01 11 1000011110化简得F=DA B A +(3)F(A,B,C,D)=∑m (0,1,2,5,6,7,8,9,13,14)1111111111ABCD 00 01 11 1000011110化简得F=DBC D C A BC A C B D C ++++(4)F(A,B,C,D)=∑m (0,13,14,15)+∑ϕ(1,2,3,9,10,11)Φ1ΦΦ1ΦΦ1Φ1AB CD 00 01 11 1000011110化简得F=ACAD B A ++11.利用与非门实现下列函数,并画出逻辑图。
数字逻辑第四版课后练习题含答案

数字逻辑第四版课后练习题含答案1. 第一章1.1 课后习题1. 将十进制数22转换为二进制数。
答:22 = 101102. 将二进制数1101.11转换为十进制数。
答:1101.11 = 1 x 2^3 + 1 x 2^2 + 0 x 2^1 + 1 x 2^0 + 1 x 2^(-1) + 1 x 2^(-2) = 13.753. 将二进制数1101.01101转换为十进制数。
答:1101.01101 = 1 x 2^3 + 1 x 2^2 + 0 x 2^1 + 1 x 2^0 + 0 x 2^(-1)+ 1 x 2^(-2) + 1 x 2^(-4) + 0 x 2^(-5) + 1 x 2^(-6) = 13.406251.2 实验习题1. 合成与门电路设计一个合成与门电路,使得它的输入A,B和C,只有当A=B=C=1时输出为1,其他情况输出为0。
答:下面是一个合成与门电路的示意图。
合成与门电路示意图其中,S1和S2是两个开关,当它们都被打开时,电路才会输出1。
2. 第二章2.1 课后习题1. 将十进制数168转换为八进制数和二进制数。
答:168 = 2 x 8^3 + 1 x 8^2 + 0 x 8^1 + 0 x 8^0 = 250(八进制)。
168 = 10101000(二进制)。
2. 将八进制数237转换为十进制数和二进制数。
答:237 = 2 x 8^2 + 3 x 8^1 + 7 x 8^0 = 159(十进制)。
237 = 010111111(二进制)。
2.2 实验习题1. 全加器电路设计一个全加器电路,它有三个输入A,B和C_in,两个输出S和C_out。
答:下面是一个全加器电路的示意图。
C_in|/ \\/ \\/ \\/ \\/ \\A|________ \\| | AND Gate______| |B|__| XOR |_| S\\\\ /\\ /\\ /\\ /| | OR Gate| ||_| C_out其中,AND Gate表示与门,XOR Gate表示异或门,OR Gate表示或门。
数字逻辑课本习题答案

习 题 五1. 简述时序逻辑电路与组合逻辑电路的主要区别。
解答组合逻辑电路:若逻辑电路在任何时刻产生的稳定输出值仅仅取决于该时刻各输入值的组合,而与过去的输入值无关,则称为组合逻辑电路。
组合电路具有如下特征:②信号是单向传输的,不存在任何反馈回路。
时序逻辑电路:若逻辑电路在任何时刻产生的稳定输出信号不仅与电路该时刻的输入信号有关,还与电路过去的输入信号有关,则称为时序逻辑电路。
时序逻辑○1○2 电路中包含反馈回路,通过反馈使电路功能与“时序”○3 电路的输出由电路当时的输入和状态(过去的输入)共同决定。
2. 作出与表1所示状态表对应的状态图。
表 1解答根据表1所示状态表可作出对应的状态图如图1所示。
图13.已知状态图如图2所示,输入序列为x=11010010,设初始状态为A,求状态和输出响应序列。
图 2解答状态响应序列:A A B C B B C B输出响应序列:0 0 0 0 1 0 0 14. 分析图3所示逻辑电路。
假定电路初始状态为“00”,说明该电路逻辑功能。
图 3 解答○1根据电路图可写出输出函数和激励函数表达式为 xK x,J ,x K ,xy J y xy Z 1111212=====○2 根据输出函数、激励函数表达式和JK 触发器功能表可作出状态表如表2所示,状态图如图4所示。
表2图4○3由状态图可知,该电路为“111…”序列检测器。
5. 分析图5所示同步时序逻辑电路,说明该电路功能。
图5解答○1根据电路图可写出输出函数和激励函数表达式为 )(D ,x y x D y y x Z 21112121212y x y y y y y x ⊕=+=+=○2 根据输出函数、激励函数表达式和D 触发器功能表可作出状态表如表3所示,状态图如图6所示。
表3图6○3由状态图可知,该电路是一个三进制可逆计数器(又称模3可逆计数器),当x=0时实现加1计数,当x=1时实现减1计数。
6.分析图7所示逻辑电路,说明该电路功能。
数字逻辑+课后答案数字逻辑+课后答案

习题解答1-3:(1)(1110101)2=(117)10=(165)8=(75)16 (2)(0.110101.2=(0.828125)10=(0.65)8=(0.D4)16 (3)(10111.01)2=(23.25)10=(27.2)8=(17.4)16 1-7:[N ]原=1.1010;[N ]反=1.0101;N =-0.1010 1-10:(1)(011010000011)8421BCD =(683)10=(1010101011)2 (2)(01000101.1001)8421BCD =(45.9)10=(101101.1110)2 2-4:(1)()();'()()F A C B C F A C B C =++=++(2)()()();'()()()F A B B C A CD F A B B C A CD =+++=+++ (3)[()()];'[()()]F A B C D E F G F A B C D E F G =++++=++++ 2-6:(1)F =A +B (2)F =1 (3)F =A BD +2-7:(1)F (A ,B ,C )=ABC ABC ABC ABC ABC ++++=∑m(0,4,5,6,7);F (A ,B ,C )=()()()A B C A B C A B C ++++++=∏M(1,2,3)(2)F (A ,B ,C ,D )=∑m(4,5,6,7,12,13,14,15);F (A ,B ,C ,D )=∏M(0,1,2,3,8,9,10,11) (3)F (A ,B ,C ,D )=∑m(0,1,2,3,4);F (A ,B ,C ,D )=∏M(5,6,7,8,9,10,11,12,13,14,15) 2-8:(1) F (A ,B ,C )=()A C BC A B C +=+(2)F (A ,B ,C ,D )=()()AB AC BC A B C A B C ++=++++ (3)F (A ,B ,C ,D )=B D B D +=+2-11:(1)F (A ,B ,C ,D )=A BD +, ∑d(1,3,4,5,6,8,10)=0;(2) 123(,,,)(,,,)(,,,)F A B C D BD ABCD ABCD ABDF A B C D BD ABCD ACD A CD F A B C D ABCD ABCD ABC=+++=+++=++,3-1:(1)F (A ,B ,C )=AC BC AC BC +=⋅F (A ,B ,C )=()()A C B C A C B C ++=+++(2)F (A ,B ,C )=∏M(3,6)=B AC AC B AC AC ++=⋅⋅F (A ,B ,C )=∏M(3,6)=()()A B C A B C A B C A B C ++++=+++++(4)F (A ,B ,C ,D )=AB A C BCD AB ++=F (A ,B ,C ,D )=0AB A C BCD A B A B ++=+=++3-3:F (A ,B ,C )=[()()][()()]A B C B C A C B C B C ABC ABC ABC +++⋅+++=++ 3-7:(2)根据真值表,列出逻辑函数表达式,并化简为“与非”式。
在线网课《数字逻辑(山东联盟-烟台大学)》课后章节测试答案全文

可编辑修改精选全文完整版绪论单元测试1【多选题】(5分)计算机的五大组成部分是()、()、()、输入设备和输出设备。
A.控制器B.运算器C.硬盘D.存储器2【判断题】(5分)数字逻辑课程是计算机专业的一门学习硬件电路的专业基础课。
A.错B.对3【判断题】(5分)计算机的运算器是能够完成算术和逻辑运算的部件,逻辑运算比如与运算。
A.错B.对第一章测试1【单选题】(10分)与二进制数1101011.011对应的十六进制数为()A.53.3B.73.3C.6B.3D.6B.62【单选题】(10分)与二进制数101.011等值的十进制数是()A.5.175B.5.375C.3.625D.5.6753【单选题】(10分)(17)10对应的二进制数是()A.10011B.101111C.10110D.100014【判断题】(10分)数字电路中用“1”和“0”分别表示两种状态,二者通常无大小之分A.错B.对5【判断题】(10分)格雷码具有任何相邻码只有一位码元不同的特性A.对B.错6【多选题】(20分)以下代码中为无权码的为()A.余三码B.C.5421BCD码D.8421BCD码7【单选题】(10分)十进制数25用8421BCD码表示为()A.00100101B.11010C.11001D.101018【单选题】(10分)BCD码1001对应的余3BCD码是()A.B.1100C.1000D.10109【单选题】(10分)8421BCD码001001010100转换成十进制数为()A.252B.1250C.1124D.254第二章测试1【单选题】(5分)在何种输入情况下,“或非”运算的结果是逻辑0A.任一输入为0,其他输入为1B.全部输入是0C.全部输入是1D.任一输入为12【单选题】(5分)一个两输入端的门电路,当输入为1和0时,输出不是1的门是()A.或门B.异或门C.与非门D.或非门3【多选题】(10分)求一个逻辑函数F的对偶式,可将F中的()。
数字逻辑课后习题答案

第一章开关理论基础1.将下列十进制数化为二进制数和八进制数十进制二进制八进制491100016153110101651271111111177635100111101111737.493111.11117.7479.4310011001.0110111231.3342.将下列二进制数转换成十进制数和八进制数二进制十进制八进制1010101211110161751011100921340.100110.593750.4610111147570110113153.将下列十进制数转换成8421BCD码1997=000110011001011165.312=01100101.0011000100103.1416=0011.00010100000101100.9475=0.10010100011101014.列出真值表,写出X的真值表达式A B C X00000010010001111000101111011111X=A BC+A B C+AB C+ABC5.求下列函数的值当A,B,C为0,1,0时:A B+BC=1(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,1,0时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=1当A,B,C为1,0,1时:A B+BC=0(A+B+C)(A+B+C)=1(A B+A C)B=06.用真值表证明下列恒等式(1)(A⊕B)⊕C=A⊕(B⊕C)A B C(A⊕B)⊕C A⊕(B⊕C)0000000111010110110010011101001100011111所以由真值表得证。
(2)A⊕B⊕C=A⊕B⊕CA B C A⊕B⊕C A⊕B⊕C00011001000100001111100001011111011111007.证明下列等式(1)A+A B=A+B 证明:左边=A+A B=A(B+B )+A B =AB+A B +A B =AB+A B +AB+A B =A+B =右边(2)ABC+A B C+AB C =AB+AC 证明:左边=ABC+A B C+AB C=ABC+A B C+AB C +ABC =AC(B+B )+AB(C+C )=AB+AC =右边(3)E D C CD A C B A A )(++++=A+CD+E证明:左边=ED C CD A C B A A )(++++=A+CD+A B C +CDE =A+CD+CD E =A+CD+E =右边(4)C B A C B A B A ++=CB C A B A ++证明:左边=CB AC B A B A ++=C B A C AB C B A B A +++)(=C B C A B A ++=右边8.用布尔代数化简下列各逻辑函数表达式(1)F=A+ABC+A C B +CB+C B =A+BC+C B (2)F=(A+B+C )(A+B+C)=(A+B)+C C =A+B (3)F=ABC D +ABD+BC D +ABCD+B C =AB+BC+BD (4)F=C AB C B BC A AC +++=BC(5)F=)()()()(B A B A B A B A ++++=B A 9.将下列函数展开为最小项表达式(1)F(A,B,C)=Σ(1,4,5,6,7)(2)F(A,B,C,D)=Σ(4,5,6,7,9,12,14)10.用卡诺图化简下列各式(1)CAB C B BC A AC F +++=0 ABC00 01 11 1011111化简得F=C(2)CB A D A B A DC AB CD B A F++++=111111AB CD 00 01 11 1000011110化简得F=DA B A +(3)F(A,B,C,D)=∑m (0,1,2,5,6,7,8,9,13,14)1111111111ABCD 00 01 11 1000011110化简得F=DBC D C A BC A C B D C ++++(4)F(A,B,C,D)=∑m (0,13,14,15)+∑ϕ(1,2,3,9,10,11)Φ1ΦΦ1ΦΦ1Φ1AB CD 00 01 11 1000011110化简得F=ACAD B A ++11.利用与非门实现下列函数,并画出逻辑图。
数字逻辑课后习题答案(华中科技大学出版社,欧阳星明主编)

习题课
1.4 最简电路是否一定最佳?为什么? 解答: 最简电路并不一定是最佳电路。最佳电路应满足全面的 性能指标和实际应用要求。
4
习题课
1.5 把下列不同进制数写成按权展开形式。 (1)(4517.293)10 (3)(325.744)8 (2)(10110.0101)2 (4)(785.4AF)16 解答: (1)(4517.293)10=4×103+5×102+1×101+ 7 × 1 0 0 + 2× 1 0 - 1 +9 × 1 0 - 2 + 3×10-3 (2)(10110.0101)2=1×24+0×23+1×22+1×21+0×20+ 0×2-1+1×2-2 +0×2-3+1×2-4 (3)(325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+ 4×8-3 (4)(785.4AF)16=7×162+8×161+5×160+4×16-1+ 10×8-2 +15×16-3
(3) A ABC ABC ABC ABC
(4) ABC ABC ( AB BC AC )
解答: (1) 左边= ( AB AC)= AB AC (定理6)= ( A B)(A C) (定理6)= AB AC BC (分配率)= AB AC (定理8)=右边
解答: (1)不正确。如当X、Y、Z取值为1,0,1时。 (2)不正确。如当X、Y、Z取值为0,1,0时。 (3)正确。Y=(Y X )(Y X )= (Z X )(Y X ) = XY YZ X Z Z YZ XZ = X Z YZ = =Z。 (4)正确。X= XY X Y = X Y X Y = X Y , Y= XY XY = X Y XY= X Y , 所以,X=Y。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第3章习题 章习题
3.9 图3.46(a)所示三态门组成的总线换向开关电路,其中A、B为信号输入端 ,分别送两个不同频率的信号;EN为换向控制端,输入信号和控制电平波 形如图(b)所示,试画出Y1、Y2的波形。 解: EN
= 0 门1、3打开 Y1 = AACD1 01 01 01 0
AD
F的卡诺图 的卡诺图
G的卡诺图 的卡诺图
根据F和G的卡诺图,得到:F = G
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第3章习题 章习题 3.4 在数字电路中,晶体三极管一般工作在什么状态? 答:在数字电路中,晶体三极管一般工作在饱和导通状态 或者截止状态。
F = BD
再取反,得F最简或与式。 F = B + D = (B+D)
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第2章习题 章习题 2.8用卡诺图化简法求出最简与-或表达式和最简或-与表达式。 ⑶ F(A, B, C, D ) = ∏ M (2,4,6,10,11,12,13,14,15 ) ②求出最简或-与表达式。 解:画出逻辑函数的卡诺图。 圈0,求 F 最简与或式。 ①求出最简与-或表达式。 BC BD AB AB CD 00 01 11 10 CD 00 01 11 10 00 1 0 0 1 00 1 0 0 1 AB 0 1 01 1 1 0 1 01 1 1 0 0 1 1 11 0 0 1 1 11 10 AD 0 0 0 0 CD 10 0 0 0 0 AC F的卡诺图 的卡诺图 F = AD + BC F的卡诺图 的卡诺图 F = AB +AC + CD + BD
8
(00010111.0100)2= (17.4)16
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第1章习题 章习题 1.8 如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除? 答:b1= b0 = 0。 ∵B = b6×26+ b5×25+ b4×24+ b3×23+ b2×22+ b1×21+ b0×20 =22 (b6×24+ b5×23+ b4×22+ b3×21+ b2×20)+ b1×21+ b0×20 =4 (b6×24+ b5×23+ b4×22+ b3×21+ b2×20)+ b1×21+ b0×20 B÷4 商= b6×24+ b5×23+ b4×22+ b3×21+ b2×20 余数 = b1×21+ b0×20 整除,余数=0,∴只能b1= b0 = 0
解:画出逻辑函数F的卡诺图。 AB CD 00 CD 00 1 01 0 11 10 0 1
BD
01 1 0 0 1
11 1 0 0 1
画出逻辑函数G的卡诺图。 ABD ACD BD AB CD 00 01 11 10 10 00 0 0 0 0 1 1 1 0 01 1 1 0 1
CD 11 10
F = (A + B)(A + C)(C + D )(B + D )
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第2章习题 章习题 2.9用卡诺图判断函数F(A,B,C,D)和G(A,B,C,D) 之间的关系。
F(A, B, C, D ) = BD + A D + CD + ACD G (A, B, C, D ) = BD + CD + ACD + ABD
湖南理工学院计算机与信息工程系通信教研室 陈进制作
⑵-10110
[X1]反 = 0.1011
[X1]补 = 0.1011
第1章习题 章习题 1.12 试用8421码和格雷码表示下列各数。 ⑴(111110)2 ⑵ (1100110)2 解:⑴ (111110)2 = 64-2 = (62) = (0110 0010) 10 8421码 (111110)2 =( 100001 )格雷码 ? 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 0 0 1
F = ABC + ABC
= (A + B + C)(A + B + C )
10
1
0
1
1
F的卡诺图 的卡诺图 ABC
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第2章习题 章习题 2.8用卡诺图化简法求出最简与-或表达式和最简或-与表达式。 ⑵ F(A, B, C, D ) = BC + D + D(B + C )⋅ (AD + B) 解: 画出逻辑函数的卡诺图。 先转换成与或表达式
第1章习题 章习题 1.3 数字逻辑电路可分为哪两种类型?主要区别是什么? 答:数字逻辑电路可分为组合逻辑电路、时序逻辑电路两 种类型。 主要区别:组合逻辑电路无记忆功能, 时序逻辑电路有记忆功能。
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第1章习题 章习题 1.6 将下列二进制数转换成十进制数、八进制数和十六进制数。 ⑴1110101 ⑵0.110101 ⑶10111.01 解:⑴ (1110101)2 = 64+32+16+4+1 =(117)10 (001110101)2 = (165)8 (01110101)2 = (75)16 ⑵ (0.110101) 2 = 0.5+0.25+0.0625+0.015625 =(0.828125)10 (0.110101) 2 = (0.65) 8 (0.11010100) 2 = (0.D4)16 ⑶ (10111.01)2 =16+4+2+1+0.25 =(23.25)10 (010111.010)2 = (27.2)
A 0 0 1 1
B 0 1 0 1
F2 A + B A + B AB A B F1 1 0 0 1 0 1 1 0 0 1 1 1 0 0 1 0 1 1 0 0
= AB + A B F2 0 F1 = F2 得证 1 1 0
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第2章习题 章习题 2.4 利用反演规则和对偶规则求下列函数的反函数和对偶函数: ⑴ F = AB + A B ⑶ F = (A + B)(C + DAC) 解⑴: F = (A + B) ⋅ (A + B)
⊕ ⊕⊕⊕ ⊕
⊕ ⊕⊕⊕ ⊕⊕
⑵ (1100110)2 = 64+32+4+2 = (102)10 = (0001 0000 0010)8421码 (1100110)2 =( 1010101 )格雷码 ?
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第2章习题 章习题 2.2 用逻辑代数的公理、定理和规则证明下列表达式: ⑴ AB + AC = A B + A C ⑵ AB + A B + AB + A B = 1 ⑶ A ABC = A BC + A BC + ABC 证⑴: + AC AB
= A B + AC
证⑵: 全部最小项之和等于1。
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第2章习题 章习题 ⑵ (A + B)(A + B) = AB + A B ⑴ A B + AB = (A + B)(A + B) 证⑴:设 F1 = A B + AB F2 = (A + B)(A + B) A B A B AB (A + B) (A + B) F1 F2 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 F1 = F2 得证 1 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 证⑵:设 F1 = (A + B) ⋅ (A + B) 2.3用真值表验证下列表达式:
Y2 = B Y2 = A
EN = 1 门2、4打开 Y1 = B
A B EN Y1 Y2
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第3章习题 章习题 3.13 在图3.65(a)所示的D触发器电 路中,若输入端D的波形如图 3.66(b) 所示,试画出输出端Q的波 形(设触发器初态为0)。 解: 触发器初态为0 在CP=1期间, Qn+1=D Q CP D
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第3章习题 章习题
3.14 已知输入信号A和B 的波形如图3.66(a),试画 出图3.66(b)、(c) 中两个触 发器Q端的输出波形,设 触发器初态为0。
F = BC + D + (DB + DC ) ⋅ (AD + B)
= BC + D + BCD BCD
BC 01 11 10 1 1 1 1 1 1 1 1 1 1 AB CD 00 00 01 1 11 10 1
D
F的卡诺图 的卡诺图
湖南理工学院计算机与信息工程系通信教研室 陈进制作
第2章习题 章习题 2.8 ⑵ ①求出最简与-或表达式。 ②求出最简或-与表达式。 两次取反法 在卡诺图上按最小项合并的 圈0,求 F 最简与或式。 规律合并。 B BD AB AB CD 00 01 11 10 CD 00 01 11 10 00 0 1 1 0 00 0 1 1 0 1 1 1 01 1 1 1 1 01 1 D 1 1 1 1 11 1 1 1 1 11 10 0 1 1 0 10 0 1 1 0 F的卡诺图 的卡诺图 将每个卡诺圈对应的与项相或 ,就得到最简与或表达式。 F= B + D F的卡诺图 的卡诺图