最新人教版初中九年级上册数学《配方法》同步练习
人教版九年级数学上册第21 章21.2.1.2 配方法 同步练习题(含答案,教师版)

人教版九年级数学上册第21 章21.2.1.2 配方法 同步练习题 一、选择题1.下列各式是完全平方式的是(C)A .a 2+7a +7B .m 2-4m -4C .x 2-12x +116D .y 2-2y +22.把一元二次方程a 2-6a =7配方,需在方程两边都加上(C)A .3B .-3C .9D .-9 3.用配方法将二次三项式a 2-4a +5变形,结果是(A)A .(a -2)2+1 B .(a +2)2-1 C .(a +2)2+1 D .(a -2)2-1 4.一元二次方程y 2-y -34=0配方后可化为(B)A .(y +12)2=1B .(y -12)2=1C .(y +12)2=34D .(y -12)2=345.方程x 2+4x =2的正根为(D)A .2- 6B .2+ 6C .-2- 6D .-2+ 66.若方程4x 2-(m -2)x +1=0的左边是一个完全平方式,则m 等于(B)A .-2B .-2或6C .-2或-6D .2或-6 7.方程(x +1)2-8(x +1)+16=0的解为(D)A .x 1=x 2=4B .x 1=3,x 2=5C .x 1=-3,x 2=-5D .x 1=x 2=3 二、填空题8.用适当的数或式子填空:(1)x 2-4x +4=(x -2)2; (2)x 2-8x +16=(x -4)2; (3)x 2+3x +94=(x +32)2; (4)x 2-25x +125=(x -15)2.9.已知方程x 2-6x +q =0可转化为x -3=±7,则q =2.10.将方程x 2-2x =2配方成(x +a)2=k 的形式,则方程的两边需加上1. 11.规定:ab =(a +b)b ,如:23=(2+3)×3=15.若2x =3,则x =1或-3.12.若方程2x 2+8x -32=0能配成(x +p)2+q =0的形式,则直线y =px +q 不经过第二象限. 三、解答题13.用配方法解方程:(1)x 2+6x =-7; 解:(x +3)2=2,∴x 1=-3+2,x 2=-3- 2.(2)(无锡中考)x 2-2x -5=0; 解:(x -1)2=6,∴x 1=6+1,x 2=-6+1.(3)x 2-23x +1=0.解:(x -13)2=-89,∴原方程无实数根. 14.解方程:2x 2-x -2=0.解:将常数项移到右边,得2x 2-x =2; 再把二次项系数化为1,得x 2-12x =1;然后配方,得x 2-12x +(14)2=1+(14)2;进一步得(x -14)2=1716;解得方程的两个根为x 14x 2415.用配方法解方程:(1)2x 2-3x -6=0; 解:(x -34)2=5716,∴x 1=3+574,x 2=3-574.(2)23x 2+13x -2=0. 解:(x +14)2=4916,∴x 1=32,x 2=-2.16.下面是小明同学对二次三项式2y 2-6y +1进行配方的过程:2y 2-6y +1=y 2-3y +(-32)2+12=(y -32)2+12.请判断配方过程是否正确,如果正确,请说明理由;如果不正确,请给出正确的配方过程.解:不正确.正确的配方过程为:2y 2-6y +1=2[y 2-3y +(32)2]-92+1=2(y -32)2-72.17.阅读下列解答过程,在横线上填入恰当内容.解方程:2x 2-8x -18=0. 解:移项,得2x 2-8x =18.① 两边同时除以2,得x 2-4x =9.② 配方,得x 2-4x +4=9,③即(x -2)2=9.∴x -2=±3.④ ∴x 1=5,x 2=-1.⑤上述过程中有没有错误?若有,错在步骤③(填序号),原因是配方时,只在方程的左边加上一次项系数一半的平方,而在右边忘记加.请写出正确的解答过程. 解:移项,得2x 2-8x =18. 两边同时除以2,得x 2-4x =9. 配方,得x 2-4x +4=9+4, 即(x -2)2=13.∴x -2=±13. ∴x 1=2+13,x 2=2-13.18.用配方法解下列方程:(1)2x 2+5x -3=0; 解:(x +54)2=4916,∴x 1=12,x 2=-3.(2)x 2-6x +1=2x -15; 解:(x -4)2=0, ∴x 1=x 2=4.(3)x(x +4)=6x +12; 解:(x -1)2=13,∴x 1=1+13,x 2=1-13.(4)3(x -1)(x +2)=x -7. 解:(x +13)2=-29,∴原方程无实数根.19.已知实数a ,b 满足a 2+4b 2+2a -4b +2=0,你认为能够求出a 和b 的值吗?如果能,请求出a ,b 的值;如果不能,请说明理由.解:能.理由:∵a 2+4b 2+2a -4b +2=0, ∴a 2+2a +1+4b 2-4b +1=0. ∴(a +1)2+(2b -1)2=0. ∵(a +1)2≥0,(2b -1)2≥0, ∴a +1=0,2b -1=0. ∴a =-1,b =0.5.。
人教版数学九年级上册21配方法 同步练习

人人人人人人人人人人21.2.1人人人人人人人一、选择题1.一元二次方程x2−4x−1=0配方后可化为( )A. (x+2)2=3B. (x+2)2=5C. (x−2)2=3D. (x−2)2=52.用配方法解方程x2+8x+9=0,变形后的结果正确的是( )A. (x+4)2=−9B. (x+4)2=−7C. (x+4)2=25D. (x+4)2=73.用配方法解方程x2−6x+8=0时,方程可变形为( )A. (x−3)2=1B. (x−3)2=−1C. (x+3)2=1D. (x+3)2=−14.已知方程x2−10x+n=0可以配方成(x−m)2=15的形式,那么x2−10x+m=n可以配方成下列的( )A. (x−5)2=20B. (x−5)2=30C. (x−5)2=15D. (x−5)2=405.若方程4x2−(m−2)x+1=0的左边是一个完全平方式,则m的值是( )A. −2B. −2或6C. −2或−6D. 2或−66.配方法解方程2x2−4x−6=0,变形正确的是( )A. (x+2)2=10B. (x−2)2=10C. (x+1)2=4D. (x−1)2=47.下列方程可用直接开平方法求解的是( )A. 9x2=25B. 4x2−4x−3=0C. x2−3x=0D. x2−2x−1=98.小马用配方法解一元二次方程4x2−bx+c=0时,先移项得到4x2−bx=−c,然后系数化为1时,方程右边忘记除以4,得到(x−2)2=7,则正确的变形为( )A. (x+2)2=194B. (x−2)2=34C. (x−2)2=194D. (x−2)2=16二、填空题9.x2−32x+______ =(x−______ )2.10.若(m2+n2−1)2=9,则m2+n2=.11.解方程:4(x−2)2−25=0.解:移项,得.方程左右两边同除以4,得.直接开平方,得,即x−2=52或x−2=−52.解得x1=,x2=.12.用配方法解方程2x2−8x−16=0时,可将方程变形为(x−m)2=n的形式,则方程m2x2−n2=0的解是。
人教版数学九年级上册 21.2.1 配方法 同步练习题含答案

21.2 解一元二次方程 21.2.1 配方法一、单项选择题1. 下列方程中,无实数根的是( )A .x 2=4B .x 2=2C .4x 2+25=0D .4x 2-25=02. 方程x 2-3x +2=0的解是 ( )A .1和2B .-1和-2C .1和-2D .-1和23.用配方法解方程x 2+2x=8的解为 ( )A .x 1=4,x 2=-2B .x 1=-10,x 2=8C .x 1=10,x 2=-8D .x 1=-4,x 2=2 4.用配方法解方程01322=−−x x 应该先变形为 ( )A .98)31(2=−xB .98)31(2−=−x C .910)31(2=−x D .0)32(2=−x 5.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为 ( ).A .-2B .-4C .-6D .2或66.方程29180x x −+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .15C .12或15D .不能确定7. 方程(x+1)2-3=0的根是( )A .x 1=1+3,x 2=1-3B .x 1=1+3,x 2=-1+3C .x 1=-1+3,x 2=-1-3D .x 1=-1-3,x 2=1+38. 下列各命题中正确的是( )①方程x 2=-4的根为x 1=2,x 2=-2②∵(x-3)2=2,∴x-3=2±,即x=3±2③∵x 2-16=0,∴x=±4④在方程ax 2+c=0中,当a≠0,c >0时,一定无实根A .①②B .②③C .③④D .②④9. 把方程x 2+23x-4=0左边配成一个完全平方式后,所得方程是( )A .(x+43)2=1673− B .(x+23)2=415− C .(x+23)2=415 D .(x+43)2=1673 10. 将二次三项式3x 2+8x-3配方,结果为( )A .3(x+38)2+355 B .3(x+34)2-3 C .3(x+34)2-325 D .(3x+4)2-19 11. 已知方程x 2-6x+q=0可以配方成(x-p )2=7的形式,那么x 2-6x+q=2可以配方成下列的( )A .(x-p )2=5B .(x-p )2=9C .(x-p+2)2=9D .(x-p+2)2=512. 用配方法解方程2250x x −−=时,原方程应变形为( )A .()216x +=B .()216x −=C .()229x +=D .()229x −=二、填空题13. +−x x 82_________=(x -__________)2. 14. x x 232−+_________=(x -_________)2. 15. 把右面的式子配成完全平方式:x 2-6x+ =(x- )216. 用配方法将右面的式子转化为(x+m )2+n 的形式:x 2+px+q=(x+ )2+17. 若方程x 2-m=0有整数根,则m 的值可以是 (只填一个)18. 若2(x 2+3)的值与3(1- x 2)的值互为相反数,则x 值为19. 若(x 2+ y 2-5)2=4,则x 2+ y 2=20. 关于x 的方程2x 2+3ax-2a=0有一个根是x=2,则关于y 的方程y 2+a=7的解是21. 方程x 2-6x +8=0的解是22.方程的解是______________.23.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.24.关于x 的方程x 2+mx -8=0的一个根是2,则m=______,另一根是______.三、解答题25. 用配方法解方程x 2+4x =-326. 用配方法解方程241210x x −−=.27. 应用配方法把关于x 的二次三项式2x 2-4x +6变形,然后证明:无论x 取 任何实数值,二次三项式的值都是正数.042=−x x28. 用配方法说明:无论x取何值,代数式x2-4x+5的值总大于0,再求出当x取何值时,代数式x2-4x+5的值最小?最小值是多少?29. 用配方法说明下列结论:(1)代数式x2+8x+17的值恒大于0;(2)代数式2x-x2-3的值恒小于030. 若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4×2×6=48(1)求3※5的值(2)求x※x+2※x-2※4=0中x的值(3)若无论x是什么数,总有a※x=x,求a的值答案:一、1---12 CADCD BCDDC BB二、13. 16 4 14. ⋅43,169 15. 23 26 16. 2p 442p q − 17. 1,4,9,…,答案不唯一18. ±319. 3或720. y 1=3 y 2=-321. x 1=2 x 2=4;22. x 1=0 x 2=423. -224. 2 -4三、25. 解: 两边同加上一次项系数一半的平方,配方得x 2+4x+4=-3+4, 即(x+2)2=1,从而21x +=±,得到x 1=-1,x 2=-3.26. 解: 二次项系数化为1,得21304x x −−=,,移项,得2134x x −=, 配方,得2134x x −+=2233(-)+(-)22,得到52x ⎛⎫−= ⎪⎝⎭232,则322x −=±,∴1233,2222x x =−=−− 27. 解: 2x 2-4x +6=2(x 2-2x)+6=2(x 2-2x+1)+6-2=2(x -1)2+4,无论x 取任何实数值,2(x -1)2≥0,则2(x -1)2+4>0.所以无论x 取任何实数值,二次三项式的值都是正数.28. 解;x 2-4x +5= x 2-4x +4+1=(x -2)2+1,无论x 取何值,(x -2)2≥0,所以(x -2)2+1>0.即代数式x 2-4x +5的值总大于0,且当x =2时,代数式x 2-4x +5的值最小,最小值是1.29. 解:(1)x 2+8x+17= x 2+8x+16-16+17=(x+4)2+1∵(x+4)2≥0 ∴(x+4)2+1>0即代数式x 2+8x+17的值恒大于0(2)2x-x 2-3= -x 2+2x -3= -(x 2-2x +3)= -(x 2-2x+1-1 +3)= -[(x-1)2+2]= -(x-1)2-2∵-(x-1)2≤0 ∴-(x-1)2-2<0即代数式2x-x 2-3的值恒小于030. 解:(1)3※5=4×3×5=60(2)x ※x+2※x-2※4=04x 2+8x-32=0x 2+2x-8=0x 2+2x=8x 2+2x+1=8+1(x+1)2=9x+1=±3x+1=3,x+1= -3x1=2,x2=-4(3)a※x=x4ax=x1;当x=0时,a为任意数当x≠0时,a=4。
人教版九年级数学上同步练习卷:2121 配方法-九年级数学人教版(上)(解析版)

第二十一章一元二次方程21.2.1配方法一、选择题目:在每小题给出的四个选项中,只有一项是符合题目要求的.1.用配方法解一元二次方程时,下列变形正确的为A.B.C.D.【答案】D【名师点睛】本题主要考查了用配方法解一元二次方程,熟记并理解用配方法解一元二次方程的方法和步骤是做题的关键.2.用配方法解方程x2+2x=8时,方程可变形为A.(x﹣2)2=9 B.(x﹣1)2=8C.(x﹣1)2=3 D.(x+1)2=9【答案】D【解析】方程两边同时加上一次项系数一半的平方,得x2+2x+1=9,配方,得(x+1)2=9.故选D.【名师点睛】本题考查了解一元二次方程−配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.若方程x2﹣8x+m=0可以通过配方写成(x﹣n)2=6的形式,那么x2+8x+m=5可以配成A.(x﹣n+5)2=1 B.(x+n)2=1C.(x﹣n+5)2=11 D.(x+n)2=11【答案】D【名师点睛】本题考查了解一元二次方程﹣配方法,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.用配方法把代数式x2﹣4x+5变形,所得结果是A.(x﹣2)2+1 B.(x﹣2)2﹣9C.(x+2)2﹣1 D.(x+2)2﹣5【答案】A【解析】原式=x2﹣4x+4﹣4+5=(x﹣2)2+1.故选A.5.把一元二次方程x2﹣4x+1=0,配成(x+p)2=q的形式,则p、q的值是A.p=﹣2,q=5 B.p=﹣2,q=3C.p=2,q=5 D.p=2,q=3【答案】B【解析】即则故选B.学科~网二、填空题目:请将答案填在题中横线上.6.一元二次方程2x=2的解是__________.【答案】x=【解析】方程两边同时开平方得:x=±2.故答案为x.【名师点睛】对形如(x+a)2=b(b≥0)的方程两边直接开平方而转化为两个一元一次方程的方法叫直接开平方法.7.把方程x2−2x−4=0用配方法化为(x+m)2=n的形式,则m=__________,n=__________.【答案】(1)−1;(2)5.8.用配方法解方程x2﹣6x﹣1=0,经过配方后得到的方程式为__________.【答案】(x﹣3)2=10.【解析】x2−6x−1=0,(x−3)2−9−1=0(x−3)2=10,故答案为:(x−3)2=10.【名师点睛】此题考查配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.9.方程x2+2x﹣1=0配方得到(x+m)2=2,则m=__________.【答案】1【解析】x2+2x−1=0,x2+2x=1,x2+2x+1=2,(x+1)2=2,则m =1,故答案为1.10.若把代数式x 2−4x −5化成(x −m )2+k 的形式,其中m ,k 为常数,则m +k =__________.【答案】−711.若3a =,则代数式262a a --的值为__________.【答案】−1【解析】根据完全平方式可知262a a --=26911a a -+-=(a −3)2−11,代入3a =可得原式=(3-−3)2−11=10−11=−1.故答案为:−1.三、解答题:解答应写出文字说明、证明过程或演算步骤.12.解方程:y 2-2y -15=0.【答案】【解析】,,,∴. 学科%网13.解方程(x +3)(x ﹣1)=12(用配方法).【答案】x 1=3,x 2=﹣5【解析】将原方程整理,得x 2+2x =15,两边都加上12,得x 2+2x +12=15+12,即(x +1)2=16,开平方,得x +1=±4,即x+1=4,或x+1=-4,∴x1=3,x2=-5.【名师点睛】用配方法进行配方时先将二次项系数化为1,然后方程左右两边同时加上一次项系数一半的平方.14.用配方法解方程:.【答案】,.【名师点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,且一次项的系数是2的倍数.学科+网祝福语祝你考试成功!。
人教版九年级上册数学21.2.1配方法解一元二次方程同步训练(word、含答案)

人教版九年级上册数学21.2.1配方法解一元二次方程同步训练一、单选题1.将一元二次方程2870x x --=化成()2x a b +=(a ,b 为常数)的形式,则a ,b 的值分别是( )A .-4,23B .-4,13C .4,23D .-8,71 2.用配方法解一元二次方程27120x x -+=,配方后的方程为( )A .27124x ⎛⎫-= ⎪⎝⎭B .27124x ⎛⎫+= ⎪⎝⎭C .()2737x -=D .()2737x += 3.用配方法解方程2420x x ++=时,配方结果正确的是( )A .()222x +=B .()222x -=C .()226x +=D .()226x -= 4.若把方程2410x x --=化为2()x m n +=的形式,则n 的值是( ) A .5 B .2 C .2- D .5- 5.已知m 是有理数,则m 2﹣2m +4的最小值是( )A .3B .5C .6D .8 6.把方程“22310x x +-=”转化为“2()x p q +=”的形式,则( ) A .34p =,2516q = B .34p =,1716q = C .32P =,114q = D .34p =,54q = 7.用配方法解方程时,下列配方错误的是( ).A .2670x x +-=化为()230x += B .2540x x --=化为254124x ⎛⎫-= ⎪⎝⎭ C .22990x x +-=化为()21100?x += D .23420x x --=化为221039x ⎛⎫-= ⎪⎝⎭ 8.若把方程2410x x --=化为2()x m n +=的形式,则m n +的值是( ) A .7 B .3C .5D .3-二、填空题9.对于二次三项式263x x ++,若x 取值为m ,则二次三项式的最小值为n ,那么m +n 的值为_________.10.解方程:-8x -2= - x 2解得 ____.11.当a =_____时,多项式a 2+2a +2有最小值为 _____.12.关于y 的方程249996y y -=,用___________法解,得1y =__,2y =__. 13.已知方程20x m -=__________. 14.小明设计了一个魔术盒,当任意实数对(a ,b )进入其中,会得到一个新的实数a 2-2b +3,若将实数(x ,-2x )放入其中,得到-1,则x =_______ .15.已知方程280x x q -+=可以配成2(4)7x -=,那么282x x q -+=可以配成_____.16.关于x 的一元二次方程20ax bx c ++=(,,a b c 是常数,0a ≠)配方后为2(2)x d -=(d 是常数),则b a=______. 三、解答题17.用适当的正数填空:(1)24x x -+_____=(x-_____)2;(2)x 2-______x+16=(x-____)2;(3)24974x x ++=(x +____)2; (4)225x x -+______=(x-____)2. 18.解下列方程:(1)22210x x --= (2)()()571x x -+=19.小明在解方程2210x x --=时出现了错误,其解答过程如下:221x x -=, (第一步)2211x x -+=, (第二步)2(1)1x -=, (第三步)120,2x x ==. (第四步)(1)小明的解答过程是从第______步开始出错的,其错误原因是__________;(2)请写出此题正确的解答过程.20.请阅读下列材料:我们可以通过以下方法求代数式265++的最小值.x x265++x x222=+⋅⋅+-+x x233352=+-x(3)4∵ ()230x+≥,∵ 当x=-3时,代数式265++的最小值为-4.x x请根据上述的方法,解答下列问题:(1) 22x x x m n+-=++,则mn的值为_______.61()(2)求代数式25--+的最大值.x(3)若代数式2++的最小值为2,求k的值.26x kx参考答案:1.A2.A3.A4.A5.A6.B7.A8.B9.-910.124,4x x ==-11. -1 112. 配方 102 98-13.14.-215.2(4)9x -=16.4-17.(1)4;2;(2)8;4;(3)72;(4)125;1518.(1)1x =,2x(2)11x =-21x =-19.(1)二;不符合等式的性质;(2)过程见解析;1211x x == 20.(1)-30(2)最大值为11(3)k=±。
21-2-1配方法同步精炼人教版九年级数学上册

《21.2.1 配方法》同步精炼一 、选择题1.方程(x ﹣2)2=9的解是( )A.x 1=5,x 2=﹣1B.x 1=﹣5,x 2=1C.x 1=11,x 2=﹣7D.x 1=﹣11,x 2=7 2.把一元二次方程x 2+12x +27=0,化为(x +p )2+q =0的形式,正确的是( )A .(x ﹣6)2﹣9=0B .(x +6)2﹣9=0C .(x +12)2+27=0D .(x +6)2+27=03.用配方法解下列方程错误的是( )A.m 2﹣2m ﹣99=0可化为(m ﹣1)2=100B.k 2﹣2k ﹣8=0可化为(k ﹣1)2=9C.x 2+8x +9=0可化为(a ﹣23)2=25D.3a 2﹣4a ﹣2=0可化为(a ﹣23)2=109 4用配方法将方程变形为,则的值是( ) A .4B .5C .6D .7 5若一元二次方程(x ﹣2)2=9可转化为两个一元一次方程,一个一元一次方程是x ﹣2=3,则另一个一元一次方程是( )A .x ﹣2=3B .x ﹣2=﹣3C .x+2=3D .x+2=﹣3 6.用配方法解下列方程,其中应在方程左右两边同时加上4的是( )A .x 2﹣2x =5B .2x 2﹣4x =5C .x 2+4x =3D .x 2+2x =5 7.若方程2640x kx ++=的左边是完全平方式,则k 的值为( )A .16B .8±C .16-D .16±8.用配方法解关于x 的方程x 2+px+q=0时,此方程可变形为( )A .224()24p p q x -+=B .224()24p q p x -+= C .224()24p p q x --= D .224()24p q p x --= 二 、填空题1.方程x 2﹣16=0的解为 .2.已知0136422=+-++y x y x ,且x,y 为实数,则________=yx3.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.4.如果a 、b 2-12b+36=0,那么ab 的值是_______.5.已知方程x 2+4x +n =0可以配方成(x +m)2=3,则(m -n)2 024=________.三 、解答题1.用直接开平方法解方程:(x +2)2﹣25=02.用配方法解下列方程:(1)2x 2+7x -4=0;(2)-23x 2-13x +2=0; (3)x (x +4)=6x +12;(4)3(x -1)(x +2)=x -7. 3.若代数式233x x -的值与2(1)x -的值互为相反数,求x 的值?4.某市为打造“绿色城市”,积极投入资金进行河道治污与园林绿化两项工程、已知2020年投资1000万元,预计2022年投资1210万元.若这两年内平均每年投资增长的百分率相同.求平均每年投资增长的百分率.5.阅读下面的例题:求代数式y 2+4y +8的最小值.解:y 2+4y +8=y 2+4y +4+4=(y +2)2+4.∵(y +2)2≥0,∴(y +2)2+4≥4,∴y 2+4y +8的最小值是4.仿照上述解题过程回答下列问题:(1)求代数式m 2+m +4的最小值.(2)求代数式4﹣x 2+2x 的最大值.(3)某居民小区要在一块一边靠墙(墙长15 m)的空地上建一个长方形花园ABCD ,花园一边靠墙,另三边用总长为20 m 的栅栏围成.如图,设AB =x(m),请问:当x 取何值时,花园的面积最大?最大面积是多少?。
人教版九年级上册配方法同步习题

21.2 解一元二次方程21.2.1 配方法第1课时直接开平方法1.若x2=a(a≥0),则x就叫做a的平方根,记为x=__±a___(a≥0),由平方根的意义降次来解一元二次方程的方法叫做直接开平方法.2.直接开平方,把一元二次方程“降次”转化为__两个一元一次方程___.3.如果方程能化为x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么x=__±p___或mx+n=__±p___.知识点1:可化为x2=p(p≥0)型方程的解法1.方程x2-16=0的根为( C )A.x=4 B.x=16C.x=±4 D.x=±82.方程x2+m=0有实数根的条件是( D )A.m>0 B.m≥0C.m<0 D.m≤03.方程5y2-3=y2+3的实数根的个数是( C )A.0个B.1个C.2个D.3个4.若4x2-8=0成立,则x的值是.5.解下列方程:(1)3x2=27;解:x1=3,x2=-3(2)2x2+4=12;解:x1=2,x2=-2(3)5x2+8=3.解:没有实数根知识点2:形如(mx+n)2=p(p≥0)的解法6.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( D )A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-47.若关于x的方程(x+1)2=1-k没有实数根,则k的取值范围是( D )A.k<1 B.k<-1C.k≥1 D.k>18.一元二次方程(x-3)2=8的解为__x=3±22___.9.解下列方程:(1)(x-3)2-9=0;解:x1=6,x2=0(2)2(x-2)2-6=0;解:x1=2+3,x2=2- 3(3)x2-2x+1=2.解:x1=1+2,x2=1- 210.(2014·白银)一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,则a=__1___.11.若x2-4x+2的值为0,则x=__2___.12.由x2=y2得x=±y,利用它解方程(3x-4)2=(4x-3)2,其根为__x=±1___.13.在实数范围内定义一种运算“*”,其规则为a*b=a2-b2,根据这个规则,方程(x+2)*5=0的根为__x1=3,x2=-7___.14.下列方程中,不能用直接开平方法求解的是( C )A.x2-3=0 B.(x-1)2-4=0C.x2+2x=0 D.(x-1)2=(2x+1)215.(2014·枣庄)x1,x2是一元二次方程3(x-1)2=15的两个解,且x1<x2,下列说法正确的是( A ) A.x1小于-1,x2大于3B.x1小于-2,x2大于3C.x1,x2在-1和3之间D.x1,x2都小于316.若(x2+y2-3)2=16,则x2+y2的值为( A )A.7 B.7或-1C.-1 D.1917.解下列方程:(1)3(2x+1)2-27=0;解:x1=1,x2=-2(2)(x-2)(x+2)=10;解:x1=23,x2=-2 3(3)x2-4x+4=(3-2x)2;解:x1=1,x2=53(4)4(2x-1)2=9(2x+1)2.解:x1=-52,x2=-11018.若2(x2+3)的值与3(1-x2)的值互为相反数,求x+3x2的值.解:由题意得2(x2+3)+3(1-x2)=0,∴x=±3.当x=3时,x+3x2=23;当x=-3时,x+3x2=019.如图,在长和宽分别是a,b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.解:(1)ab-4x2(2)依题意有ab-4x2=4x2,将a=6,b=4代入,得x2=3,解得x1=3,x2=-3(舍去),即正方形的边长为 3第2课时配方法1.通过配成__完全平方形式___来解一元二次方程的方法叫做配方法.2.配方法的一般步骤:(1)化二次项系数为1,并将含有未知数的项放在方程的左边,常数项放在方程的右边;(2)配方:方程两边同时加上__一次项系数的一半的平方___,使左边配成一个完全平方式,写成__(mx +n)2=p___的形式;(3)若p__≥___0,则可直接开平方求出方程的解;若p__<___0,则方程无解.知识点1:配方1.下列二次三项式是完全平方式的是( B )A.x2-8x-16 B.x2+8x+16C.x2-4x-16 D.x2+4x+162.若x2-6x+m2是一个完全平方式,则m的值是( C )A.3 B.-3C.±3 D.以上都不对3.用适当的数填空:x2-4x+__4___=(x-__2___)2;m2__±3___m+94=(m__±32___)2.知识点2:用配方法解x2+px+q=0型的方程4.用配方法解一元二次方程x2-4x=5时,此方程可变形为( D ) A.(x+2)2=1 B.(x-2)2=1C.(x+2)2=9 D.(x-2)2=95.下列配方有错误的是( D )A.x2-2x-3=0化为(x-1)2=4B.x2+6x+8=0化为(x+3)2=1C.x2-4x-1=0化为(x-2)2=5D.x2-2x-124=0化为(x-1)2=1246.(2014·宁夏)一元二次方程x2-2x-1=0的解是( C )A.x1=x2=1B.x1=1+2,x2=-1- 2C.x1=1+2,x2=1- 2D.x1=-1+2,x2=-1- 27.解下列方程:(1)x2-4x+2=0;解:x1=2+2,x2=2- 2(2)x2+6x-5=0.解:x1=-3+14,x2=-3-14知识点3:用配方法解ax2+bx+c=0(a≠0)型的方程8.解方程3x2-9x+1=0,两边都除以3得__x2-3x+13=0___,配方后得__(x-32)2=2312___.9.方程3x2-4x-2=0配方后正确的是( D ) A.(3x-2)2=6 B.3(x-2)2=7C.3(x-6)2=7 D.3(x-23)2=10310.解下列方程:(1)3x2-5x=-2;解:x1=23,x2=1(2)2x2+3x=-1.解:x1=-1,x2=-1211.对于任意实数x ,多项式x 2-4x +5的值一定是( B )A .非负数B .正数C .负数D .无法确定12.方程3x 2+2x =6,左边配方得到的方程是( B )A .(x +26)2=-3718B .(x +26)2=3718C .(x +26)2=3518D .(x +26)2=611813.已知方程x 2-6x +q =0可以配方成(x -p)2=7的形式,那么x 2-6x +q =2可以配方成下列的( B )A .(x -p)2=5B .(x -p)2=9C .(x -p +2)2=9D .(x -p +2)2=514.已知三角形一边长为12,另两边长是方程x 2-18x +65=0的两个实数根,那么其另两边长分别为__5和13___,这个三角形的面积为__30___.15.当x =__2___时,式子200-(x -2)2有最大值,最大值为__200___;当y =__-1___时,式子y 2+2y +5有最__小___值为__4___.16.用配方法解方程: (1)23x 2=2-13x ;解:x1=32,x2=-2(2)3y2+1=23y.解:y1=y2=3 317.把方程x2-3x+p=0配方得到(x+m)2=12,求常数m与p的值.解:m=-32,p=7418.试证明关于x的方程(a2-8a+20)x2+2ax+1=0,无论a为何值,该方程都是一元二次方程.解:∵a2-8a+20=(a-4)2+4≠0,∴无论a取何值,该方程都是一元二次方程19.选取二次三项式ax2+bx+c(a≠0)中的两项,配成完全平方式的过程叫做配方.例如:①选取二次项和一次项配方:x2-4x+2=(x-2)2-2;②选取二次项和常数项配方:x2-4x+2=(x-2)2+(22-4)x,或x2-4x+2=(x+2)2-(4+22)x;③选取一次项和常数项配方:x2-4x+2=(2x-2)2-x2.根据上述材料,解决下列问题:(1)写出x2-8x+4的两种不同形式的配方;(2)已知x2+y2+xy-3y+3=0,求x y的值.解:(1)x2-8x+4=x2-8x+16-16+4=(x-4)2-12;x2-8x+4=(x-2)2+4x-8x=(x-2)2-4x(2)x2+y2+xy-3y+3=0,(x2+xy+14y2)+(34y2-3y+3)=0,(x+12y)2+34(y-2)2=0,又∵(x+12y)2≥0,34(y-2)2≥0,∴x+12y=0,y-2=0,∴x=-1,y=2,则x y=(-1)2=1 先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
九年级数学上册2121配方法同步测试新人教版

九年级数学上册2121配方法同步测试新人教版21.2.1 配方法第1课时用直接开平方法解一元二次方程[见B本P2]1.一元二次方程x2-25=0的解是(D)A.x1=5,x2=0B.x=-5C.x=5 D.x1=5,x2=-52.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是(D)A.x-6=-4 B.x-6=4C.x+6=4 D.x+6=-43.若a为一元二次方程(x-)2=100的一个根,b为一元二次方程(y-4)2=17的一个根,且a,b都是正数,则a-b等于(B)A.5 B.6C.D.10-17【解析】 (x-)2=100的根为x1=-10+,x2=10+,因为a为正数,所以a=10+.(y-4)2=17的根为y1=4+,y2=4-,因为b为正数,所以b=4+,所以a -b=10+-(4+)=6.4.解关于x的方程(x+m)2=n,正确的结论是(B)A.有两个解x=±nB.当n≥0时,有两个解x=±-mC.当n≥0时,有两个解x=±n-mD.当n≤0时,无实数解5.若关于x的方程(3x-c)2-60=0的两根均为正数,其中c为整数,则c的最小值为(B)A.1B.8C.16D.61【解析】原方程可化为(3x-c)2=60,3x-c=±,3x=c±,x=.因为两根均为正数,所以c>>7,所以整数c的最小值为8.故选B.6.一元二次方程x2-4=0的解是__x=±2__.7.当x=__-7或-1__时,代数式(x-2)2与(2x+5)2的值相等.【解析】由(x-2)2=(2x+5)2,得x-2=±(2x+5),即x-2=2x+5或x-2=-2x-5,所以x1=-7,x2=-1.8.若x=2是关于x的方程x2-x-a2+5=0的一个根,则a的值为__±__.【解析】把x=2代入方程x2-x-a2+5=0得22-2-a2+5=0,即a2=7,所以a=±.9.在实数范围内定义运算“☆”,其规则为:a☆b=a2-b2,则方程(4☆3)☆x=13的解为x=__±6__.【解析】4☆3=42-32=16-9=7,7☆x=72-x2,∴72-x2=13.∴x2=36.∴x=±6.10.如果分式的值为零,那么x=__-2__.【解析】由题意得x2-4=0且x-2≠0,∴x=-2.11.求下列各式中的x.(1)x2=36;(2)x2+1=1.01;(3)(4x-1)2=225;(4)2(x2+1)=10.解:(1)x1=6,x2=-6;(2)x1=0.1,x2=-0.1;(3)x1=4,x2=-;(4)x1=2,x2=-2.12.已知关于x的一元二次方程(x+1)2-m=0有两个实数根.则m的取值范围是(B)A.m≥-B.m≥0C.m≥-1 D.m≥2【解析】 (x+1)2-m=0,(x+1)2=m,∵一元二次方程(x+1)2-m=0有两个实数根,∴m≥0.13.已知等腰三角形的两边长分别是(x-3)2=1的两个解,则这个三角形的周长是(C)A.2或4 B.8C.10 D.8或10【解析】开方得x-3=±1,即x=4或2,则等腰三角形的三边长只能为4,4,2,则周长为10.故选C.14.解下列方程:(1)[2012·永州](x-3)2-9=0;(2)(2x-3)(2x-3)=x2-6x+9;(3)(2x+3)2-(1-)2=0.解:(1)(x-3)2=9,x-3=±3,∴x1=0,x2=6;(2)原方程可化为(2x-3)2=(x-3)2,两边开平方得2x-3=±(x-3),即2x-3=x-3或2x-3=-(x-3),∴x1=0,x2=2;(3)原方程可化为(2x+3)2=(1-)2,∴2x+3=±(1-).∴2x+3=1-或2x+3=-(1-).∴x1=-1-,x2=-2+.15.以大约与水平线成45°角的方向,向斜上方抛出标枪,抛出距离s(单位:米)与标枪出手的速度v(单位:米/秒)之间根据物理公式大致有如下关系:s=+2,如果抛出48米,试求标枪出手时的速度(精确到0.1米/秒).解:把s=48代入s=+2,得48=+2,v2=46×9.8,∴v1≈21.2,v2≈-21.2(舍去).答:标枪出手时的速度约为21.2米/秒.16.已知=,求关于x的方程x2-3m=0的解.解:=,方程两边同时乘m(m-1),得2m=3(m-1),解得m=3,经检验m=3是原方程的解.将m=3代入方程x2-3m=0,则x2-9=0,解得x=±3,即关于x的方程x2-3m=0的解为x1=3,x2=-3.17.已知a+b=4n+2,ab=1,若19a2+150ab+19b2的值为2 012,求n.解:∵19a2+150ab+19b2=19(a+b)2-38ab+150ab=19(a+b)2+112ab,且a +b=4n+2,ab=1,又19a2+150ab+19b2的值为2 012,∴19×(4n+2)2+112×1=2 012,即(4n+2)2=100,∴4n+2=±10,当4n+2=10时,解得n=2;当4n+2=-10时,解得n=-3.故n为2或-3.第2课时用配方法解一元二次方程[见A本P4]1.用配方法解方程x2-2x-1=0时,配方后所得的方程为(D)A.(x+1)2=0B.(x-1)2=0C.(x+1)2=2 D.(x-1)2=22.用配方法解方程x2-x-4=0时,配方后得(C)A.=B.=-394C.=D.以上答案都不对【解析】先把方程化为x2-3x-12=0,再移项得x2-3x=12,配方得=.3.若一元二次方程式x2-2x-3 599=0的两根为a,b,且a>b,则2a-b之值为(D)A.-57B.63C.179D.181【解析】x2-2x-3 599=0,移项得x2-2x=3 599,x2-2x+1=3 599+1,即(x -1)2=3 600,x-1=60,x-1=-60,解得x=61或x=-59.∵一元二次方程式x2-2x-3 599=0的两根为a,b,且a>b,∴a=61,b=-59,∴2a-b=2×61-(-59)=181.4.关于x的一元二次方程x2-5x+p2-2p+5=0的一个根为1,则实数p的值是(C)A.4 B.0或2 C.1 D.-1【解析】把x=1代入原方程有1-5+p2-2p+5=0,即p2-2p+1=0,∴(p-1)2=0,∴p=1.5.把下列各式配成完全平方式:(1)x2+6x+__9__=(x+__3__)2;(2)x2±__x__+=.6.若方程x2+6x=7可化为(x+m)2=16,则m=__3__.7.当m=__±12__时,x2+mx+36是完全平方式.【解析】∵x2+mx+36=x2+mx+62是完全平方式,∴m=±2×1×6,∴m=±12. 8.用配方法解一元二次方程:(1)x2-2x=5;(2)2x2+1=3x;(3)2t2-6t+3=0;(4)6x2-x-12=0;(5)2y2-4y=4;(6)x2+3=2x;(7)x2-2x=2x+1.解:(1)配方,得(x-1)2=6,∴x-1=±,∴x1=1+,x2=1-;(2)移项得2x2-3x=-1,二次项系数化为1得x2-x=-,配方得x2-x+=-+,即=,∴x-=±,解得x1=1,x2=;(3)移项、系数化为1得t2-3t=-,配方得t2-3t+=-+,即=,开方得t-=±,∴t1=,t2=.(4)移项,得6x2-x=12,二次项系数化为1,得x2-=2,配方,得x2-+=2+,即=,∴x-=±,∴x1=,x2=-;(5)系数化为1,得y2-2y=2,配方,得y2-2y+1=2+1,即(y-1)2=3,∴y-1=±;∴y1=1+,y2=1-;(6)移项,得x2-2x=-3,配方,得x2-2x+()2=-3+()2,即(x-)2=0,∴x1=x2=;(7)移项得x2-4x=1,配方得x2-4x+22=1+22,即(x-2)2=5,∴x-2=±,∴x1=2+,x2=2-.9.当x满足条件时,求出方程x2-2x-4=0的根.解:由求得,则2<x<4,解方程x2-2x-4=0可得x1=1+,x2=1-52<<3,而2<x<4,所以x=1+.10.已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的(B)A.(x-p)2=5B.(x-p)2=9C.(x-p+2)2=9 D.(x-p+2)2=5【解析】由x2-6x+q=0,得x2-6x+9-9+q=0,即(x-3)2-9+q=0,∴(x -3)2=9-q.∴q=2,p=3.∴x2-6x+q=2即为x2-6x+2=2,x2-6x=0,x2-6x+9=9,(x-3)2=9,即(x-p)2=9.故选B.11.用配方法解方程:(1)(2x-1)2=x(3x+2)-7.(2)5(x2+17)=6(x2+2x).解:(1)(2x-1)2=x(3x+2)-7,4x2-4x+1=3x2+2x-7,x2-6x=-8,(x-3)2=1,x-3=±1,x1=2,x2=4.(2)5(x2+17)=6(x2+2x),整理得:5x2+85=6x2+12x ,x2+12x -85=0,x2+12x =85,x2+12x +36=85+36,(x +6)2=121,x +6=±11,x1=5,x2=-17.12.利用配方法比较代数式3x2+4与代数式2x2+4x 值的大小.解:∵(3x2+4)-(2x2+4x)=3x2+4-2x2-4x=x2-4x +4=(x -2)2≥0,∴3x2+4≥2x2+4x.13.阅读材料:对于任何实数,我们规定符号的意义是=ad -bc.例如:=1×4-2×3=-2,=(-2)×5-4×3=-22.(1)按照这个规定请你计算的值;(2)按照这个规定请你计算当x2-4x +4=0时,的值.解:(1)=5×8-7×6=-2;(2)由x2-4x +4=0得x =2,⎪⎪⎪x +1x -1 ⎪⎪⎪2x2x -3==3×1-4×1=-1. 14.已知关于x 的方程a(x +m)2+b =0的解是x1=-2,x2=1(a ,m ,b 均为常数,a ≠0),求关于x 的方程a(x +m +2)2+b =0的解.解:x1=-4,x2=-1.15.选取二次三项式ax2+bx +c(a ≠0)中的两项,配成完全平方式的过程叫配方.例如①选取二次项和一次项配方:x2-4x+2=(x-2)2-2;②选取二次项和常数项配方:x2-4x+2=(x-)2+(2-4)x,或x2-4x+2=(x+)2-(4+2)x;③选取一次项和常数项配方:x2-4x+2=(x-)2-x2.根据上述材料,解决下面问题:(1)写出x2-8x+4的两种不同形式的配方;(2)已知x2+y2+xy-3y+3=0,求xy的值.解:(1)x2-8x+4=x2-8x+16-16+4=(x-4)2-12;x2-8x+4=(x-2)2+4x-8x=(x-2)2-4x;(2)x2+y2+xy-3y+3=0,(x+)2+(y-2)2=0,x+=0,y-2=0,x=-1,y=2,则xy=(-1)2=1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.2 解一元二次方程
21.2.1 配方法
第2课时 配方法
基础题
知识点1 配方
1.下列各式是完全平方式的是( )
A .a 2+7a +7
B .m 2-4m -4
C .x 2-12x +116
D .y 2-2y +2 2.若x 2+6x +m 2是一个完全平方式,则m 的值是( )
A .3
B .-3
C .±3
D .以上都不对
3.(兰州中考)用配方法解方程x 2-2x -1=0时,配方后得的方程为( )
A .(x +1)2=0
B .(x -1)2=0
C .(x +1)2=2
D .(x -1)2=2
4.(河北模拟)把一元二次方程x 2-6x +4=0化成(x +n)2=m 的形式时,m +n 的值为( )
A .8
B .6
C .3
D .2
5.(吉林中考)若将方程x 2+6x =7化为(x +m)2=16,则m =________.
6.用适当的数或式子填空:
(1)x 2-4x +______=(x -______)2;
(2)x 2-______+16=(x -______)2;
(3)x 2+3x +94
=(x +______)2; (4)x 2-25
x +______=(x -______)2. 知识点2 用配方法解一元二次方程
7.如果一元二次方程通过配方能化成(x +n)2=p 的形式,那么(1)当p>0时,方程有____________的实数根,x 1=__________,x 2=__________;(2)当p =0时,方程有________的实数根,x 1=x 2=________;(3)当p<0,方程__________.
8.解方程:2x 2-3x -2=0.为了便于配方,我们将常数项移到右边,得2x 2-3x =______;再把二
得(x -34)2=2516
,解得方程的两个根为____________________. 9.用配方法解下列方程:
(1)x 2-4x -2=0;
(2)2x 2-3x -6=0;
(3)23x 2+13
x -2=0;
(4)x 2-23
x +1=0.
10.(燕山区一模)在多项式x 2+9中添加一个单项式,使其成为一个完全平方式,则添加的单项式可以是( )
A .x
B .3x
C .6x
D .9x
11.(长清区期末)用配方法解下列方程时,配方正确的是( )
A .方程x 2-6x -5=0,可化为(x -3)2=4
B .方程y 2-2y -2 015=0,可化为(y -1)2=2 015
C .方程a 2+8a +9=0,可化为(a +4)2=25
D .方程2x 2-6x -7=0,可化为(x -32)2=234
12.若方程4x 2-(m -2)x +1=0的左边是一个完全平方式,则m 等于( )
A .-2
B .-2或6
C .-2或-6
D .2或-6
13.(聊城中考)用配方法解一元二次方程ax 2+bx +c =0(a ≠0),此方程可变形为(
) A .(x +b 2a )2=b 2-4ac
4a 2
B .(x +b 2a )2=4ac -b 2
4a 2
C .(x -b 2a )2=b 2-4ac
4a 2
D .(x -b 2a )2=4ac -b
2
4a 2
14.用配方法解下列方程:
(1)2x 2+7x -4=0;
(2)x 2-6x +1=2x -15;
(3)x(x +4)=6x +12;
(4)3(x -1)(x +2)=x -7.
15.(河北中考)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a ≠0)的求根公式时,对于b 2-4ac>0的情况,她是这样做的:
由于a ≠0,方程ax 2+bx +c =0变形为:
x 2+b a x =-c a
,第一步 x 2+b a x +(b 2a )2=-c a +(b 2a
)2,第二步 (x +b 2a )2=b 2-4ac 4a 2
,第三步 x +b 2a =b 2-4ac 2a
(b 2-4ac>0),第四步 x =-b +b 2-4ac 2a
.第五步 (1)嘉淇的解法从第______步开始出现错误;事实上,当b 2-4ac>0时,方程ax 2+bx +c =0(a ≠0)的求根公式是________________________;
(2)用配方法解方程:x 2-2x -24=0.
16.若要用一根长20厘米的铁丝,折成一个面积为16平方厘米的矩形方框,则应该怎样折呢?
综合题
17.(葫芦岛中考)有n 个方程:x 2+2x -8=0;x 2+2×2x -8×22=0;……;x 2+2nx -8n 2=0. 小静同学解第1个方程x 2+2x -8=0的步骤为:“①x 2+2x =8;②x 2+2x +1=8+1;③(x +
1)2=9;④x +1=±3;⑤x =1±3;⑥x 1=4,x 2=-2.”
(1)小静的解法是从步骤______开始出现错误的;
(2)用配方法解第n 个方程x 2+2nx -8n 2=0.(用含n 的式子表示方程的根)
参考答案
基础题
1.C
2.C
3.D
4.D
5.3
6.(1)4 2 (2)8x 4 (3)32 (4)125 15
7.两个不相等 -n -p -n +p 两个相等 -n 无实数根 8.2 32 1 32 (34)2 1+(34)2 x 1=2,x 2=-12
9.(1)(x -2)2=6,x 1=6+2,x 2=-6+2.(2)方程无实数根.(3)(x -34)2=5716,x 1=3+574
,x 2=3-574.(4)(x +14)2=4916,x 1=32
,x 2=-2 中档题
10.C 11.D 12.B 13.A 14.(x +74)2=8116,x 1=12
,x 2=-4.(2)(x -4)2=0,∴x 1=x 2=4.(3)(x -1)2=13,x 1=1+13,x 2=1-13.(4)(x +13)2=-29
,原方程无实数解. 15.(1)四 x =-b±b 2-4ac 2a
(2)方程x 2-2x -24=0变形,得x 2-2x =24,x 2-2x +1=24+1,(x -1)2=25,x -1=±5,x =1±5,所以x 1=-4,x 2=6.
16.设折成的矩形的长为x 厘米,则宽为(10-x)厘米,由题意,得x(10-x)=16.解得x 1=2,x 2=8.∴矩形的长为8厘米,宽为2厘米.
综合题
17.(1)⑤
(2)x 2+2nx -8n 2=0,x 2+2nx =8n 2,x 2+2nx +n 2=8n 2+n 2,(x +n)2=9n 2,x +n =±3n ,x =-n±3n ,∴x =-4n ,x =2n.
后序
亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
希望我的文档能够帮助到你,促进我们共同进步。
孔子曰,三人行必有我师焉,术业有专攻,尺有所长,寸有所短,希望你能提出你的宝贵意见,促进我们共同成长,共同进步。
每一个都花费了我大量心血,其目的是在于给您提供一份参考,哪怕只对您有一点点的帮助,也是我最大的欣慰。
如果您觉得有改进之处,请您留言,后期一定会优化。
常言道:人生就是一场修行,生活只是一个状态,学习只是一个习惯,只要你我保持积极向上、乐观好学、求实奋进的状态,相信你我不久的将来一定会取得更大的进步。
最后祝:您生活愉快,事业节节高。