2.3.2 奇数和偶数的运算性质

合集下载

偶数和奇数的性质认识偶数和奇数的基本性质

偶数和奇数的性质认识偶数和奇数的基本性质

偶数和奇数的性质认识偶数和奇数的基本性质偶数和奇数的性质认识在数学中,我们经常接触到偶数和奇数这两个概念。

偶数是可以被2整除的整数,而奇数则不能被2整除。

了解偶数和奇数的基本性质对于数学的学习和运用至关重要。

本文将介绍偶数和奇数的基本性质,帮助读者更好地认识和理解它们。

1. 偶数的特点偶数可以被2整除,因此它们的特点主要体现在以下几个方面:1.1 可以用2的倍数表示偶数可以用2的倍数来表示,例如4、6、8等。

这是因为偶数是2的倍数,它们的个位数字必然是0、2、4、6或8。

1.2 与偶数的相加结果仍为偶数任意两个偶数相加,结果仍然是偶数。

例如,2 + 4 = 6,8 + 10 = 18。

这个性质可以通过偶数与2的乘积为偶数来证明。

1.3 与奇数的相加结果为奇数偶数与奇数相加,结果一定是奇数。

例如,2 + 3 = 5,4 + 7 = 11。

这个性质可以通过偶数与奇数的乘积为偶数,再加1为奇数来证明。

1.4 任意偶数都可以表示为2的乘积任意偶数都可以表示为2的乘积,其中2是一个素数。

例如,8 = 2 × 2 × 2,14 = 2 × 7。

这个性质被称为“唯一分解定理”。

2. 奇数的特点奇数不能被2整除,因此它们的特点主要体现在以下几个方面:2.1 可以用2的倍数加1表示奇数可以用2的倍数加1来表示,例如3、5、7等。

这是因为奇数与偶数的差值为1。

2.2 与奇数的相加结果仍为偶数任意两个奇数相加,结果一定是偶数。

例如,3 + 5 = 8,7 + 9 = 16。

这个性质可以通过奇数与2的乘积加1为奇数来证明。

2.3 与偶数的相加结果为奇数奇数与偶数相加,结果一定是奇数。

例如,3 + 4 = 7,5 + 8 = 13。

这个性质可以通过奇数与2的乘积加1为奇数来证明。

2.4 任意奇数都可以表示为2的乘积加1任意奇数都可以表示为2的乘积加1,其中2是一个素数。

例如,9 = 2 × 4 + 1,15 = 2 × 7 + 1。

偶数与奇数的特点与性质

偶数与奇数的特点与性质

偶数与奇数的特点与性质偶数和奇数是我们在数学中经常遇到的两种基本概念。

它们有自己独特的特点和性质,对于我们理解整数的性质具有重要意义。

本文将详细讨论偶数与奇数的特点和性质。

一、偶数的特点与性质偶数指的是能够被2整除的数,它们的特点与性质如下:1. 偶数的个位数字一定是0、2、4、6或8。

这是因为当一个数能够被2整除时,它的个位数字必定是偶数。

2. 任意两个偶数相加,结果一定是偶数。

这是因为两个偶数都能被2整除,它们的和也能被2整除。

3. 偶数与奇数相加,结果一定是奇数。

这是因为在两个数相加时,一个数能被2整除,另一个数不能被2整除,其和不能被2整除。

4. 偶数与偶数相乘,结果一定是偶数。

因为两个偶数相乘得到的结果,至少可以被2整除一次。

5. 偶数可以分解为2的倍数。

任何一个偶数都可以写成2乘以某个整数的形式。

二、奇数的特点与性质奇数指的是不能被2整除的数,它们的特点与性质如下:1. 奇数的个位数字一定是1、3、5、7或9。

这是因为不能被2整除的数的个位数字一定是奇数。

2. 任意两个奇数相加,结果一定是偶数。

因为两个奇数相加,得到的结果至少能被2整除一次。

3. 奇数与偶数相加,结果一定是奇数。

这是因为在两个数相加时,一个数能被2整除,另一个数不能被2整除,其和不能被2整除。

4. 奇数与奇数相乘,结果一定是奇数。

因为两个奇数相乘得到的结果,不能被2整除。

5. 奇数可以分解为2的倍数加1。

任何一个奇数都可以表示成2乘以某个整数加1的形式。

总结:通过以上讨论,可以看出偶数和奇数有许多相似和相反的特点与性质。

偶数是能够被2整除的数,而奇数则是不能被2整除的数。

偶数的个位数字一定是偶数,而奇数的个位数字一定是奇数。

两个偶数相加得到的结果仍是偶数,两个奇数相加得到的结果则是偶数。

奇数与偶数相加得到的结果是奇数,奇数与奇数相乘得到的结果也是奇数。

以上是对偶数与奇数的特点与性质的简要介绍。

掌握了它们的基本概念和性质,有助于我们更好地理解整数的运算规律和数学推理。

奇数偶数ppt课件

奇数偶数ppt课件
数加偶数等于奇数,如 (2n+1)+2m=2(n+m)+1=
奇数。
奇数减奇数等于偶数,如 (2n+1)-(2m+1)=2n-
2m=2(n-m)为偶数;奇数减 偶数等于奇数,如(2n+1)2m=2n-2m+1=2(n-m)+1
为奇数。
奇数乘奇数等于奇数,如 (2n+1)*(2m+1)=4nm+2m +2n+1=2(2nm+m+n)+1为 奇数;奇数乘偶数等于偶数
04
奇偶数的趣味案例
奇偶数在自然界中的表现
总结词
自然界中的奇偶数现象
详细描述
自然界中存在着许多奇偶数现象,如蜂巢的六边形结构、树木的分枝、花瓣的数量等,这些现象都与奇偶数的性 质和规律有关。
奇偶数在艺术创作中的应用
总结词
艺术中的奇偶数之美
详细描述
在艺术创作中,奇偶数也有着广泛的应用。例如,在建筑设计、绘画和雕塑等领域,艺术家们常常利 用奇偶数的规律和美感来营造独特的视觉效果。
奇数与偶数之间存在一些基本的数学 性质,例如奇数加奇数等于偶数,奇 数减奇数也等于偶数等。
探讨奇偶数在各个领域的应用价值
数学领域
奇偶数在数学中有着广泛的应用,如 代数、几何、概率论等。例如,在几 何中,奇数和偶数可以用来描述图形 的对称性。
计算机科学领域
物理学领域
在物理学中,波的振动频率可以用奇 偶数来描述,例如正弦波和余弦波的 振动频率可以用奇偶数来表示。
在计算机科学中,奇偶校验是一种常 用的错误检测方法,用于检测数据传 输过程中的错误。
激发对奇偶数进一步探索的兴趣
01

奇数偶数

奇数偶数

一、基本概念和知识1.奇数和偶数整数可以分成奇数和偶数两大类.能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

偶数通常可以用2k(k为整数)表示,奇数则可以用2k+1(k为整数)表示。

特别注意,因为0能被2整除,所以0是偶数。

2.奇数与偶数的运算性质性质1:偶数±偶数=偶数,奇数±奇数=偶数。

性质2:偶数±奇数=奇数。

性质3:偶数个奇数相加得偶数。

性质4:奇数个奇数相加得奇数。

性质5:偶数×奇数=偶数,奇数×奇数=奇数。

二、例题利用奇数与偶数的这些性质,我们可以巧妙地解决许多实际问题.例1 1+2+3+…+1993的和是奇数?还是偶数?分析此题可以利用高斯求和公式直接求出和,再判别和是奇数,还是偶数.但是如果从加数的奇、偶个数考虑,利用奇偶数的性质,同样可以判断和的奇偶性.此题可以有两种解法。

解法1:∵1+2+3+…+1993又∵997和1993是奇数,奇数×奇数=奇数,∴原式的和是奇数。

解法2:∵1993÷2=996…1,∴1~1993的自然数中,有996个偶数,有997个奇数。

∵996个偶数之和一定是偶数,又∵奇数个奇数之和是奇数,∴997个奇数之和是奇数。

因为,偶数+奇数=奇数,所以原式之和一定是奇数。

例2 一个数分别与另外两个相邻奇数相乘,所得的两个积相差150,这个数是多少?解法1:∵相邻两个奇数相差2,∴150是这个要求数的2倍。

∴这个数是150÷2=75。

解法2:设这个数为x,设相邻的两个奇数为2a+1,2a-1(a≥1).则有(2a+1)x-(2a-1)x=150,2ax+x-2ax+x=150,2x=150,x=75。

∴这个要求的数是75。

例3 元旦前夕,同学们相互送贺年卡.每人只要接到对方贺年卡就一定回赠贺年卡,那么送了奇数张贺年卡的人数是奇数,还是偶数?为什么?分析此题初看似乎缺总人数.但解决问题的实质在送贺年卡的张数的奇偶性上,因此与总人数无关。

学习奇数和偶数的概念

学习奇数和偶数的概念

教案学习奇数和偶数的概念一、引言1.1奇数和偶数的定义1.1.1奇数:一个整数不能被2整除,称为奇数。

1.1.2偶数:一个整数能被2整除,称为偶数。

1.1.3零是偶数:零能被任何非零整数整除,包括2,因此零是偶数。

1.2奇偶性的判断1.2.1末位数字法:观察一个整数的个位数字,如果为奇数,则该数为奇数;如果为偶数,则该数为偶数。

1.2.2二进制表示法:在二进制中,偶数的最低位一定是0,奇数的最低位一定是1。

1.2.3性质判断法:奇数和偶数在数学性质上有明显的区别,如奇数加奇数等于偶数,奇数乘以奇数等于奇数等。

二、知识点讲解2.1奇数的性质2.1.1奇数加奇数:两个奇数相加,结果为偶数。

2.1.2奇数减奇数:两个奇数相减,结果为偶数。

2.1.3奇数乘以奇数:两个奇数相乘,结果为奇数。

2.1.4奇数的除法:奇数除以奇数,结果可能为奇数,也可能为分数。

2.2偶数的性质2.2.1偶数加偶数:两个偶数相加,结果为偶数。

2.2.2偶数减偶数:两个偶数相减,结果为偶数。

2.2.3偶数乘以偶数:两个偶数相乘,结果为偶数。

2.2.4偶数的除法:偶数除以偶数,结果可能为偶数,也可能为分数。

三、教学内容3.1奇数和偶数的概念3.1.1奇数的概念:不能被2整除的整数。

3.1.2偶数的概念:能被2整除的整数。

3.1.3零的特殊性:零是偶数。

3.2奇数和偶数的性质3.2.1奇数的性质:奇数加奇数等于偶数,奇数乘以奇数等于奇数等。

3.2.2偶数的性质:偶数加偶数等于偶数,偶数乘以偶数等于偶数等。

3.2.3奇数和偶数的运算规律:奇数与偶数相加、相减、相乘的结果等。

四、教学目标4.1理解奇数和偶数的概念4.1.1能够正确地定义奇数和偶数。

4.1.2能够理解零是偶数的原因。

4.1.3能够判断一个数是奇数还是偶数。

4.2掌握奇数和偶数的性质4.2.1能够列举奇数和偶数的基本性质。

4.2.2能够运用奇数和偶数的性质解决相关问题。

4.2.3能够理解奇数和偶数在数学中的重要性。

偶数与奇数的区别

偶数与奇数的区别

偶数与奇数的区别偶数和奇数是数学中最基本的概念之一,它们在数学运算和现实生活中有着不同的特点和应用。

本文将讨论偶数和奇数的区别,从数学定义、性质以及在现实生活中的应用等方面进行分析。

一、数学定义偶数是能够被2整除的自然数,以0作为最小的偶数。

从数学角度来看,偶数可以用2n的形式表示,其中n是整数。

常见的偶数包括2、4、6、8等。

奇数则是不能被2整除的自然数,以1作为最小的奇数。

同样,奇数可以用2n+1的形式表示,其中n是整数。

常见的奇数包括1、3、5、7等。

二、性质对比1. 偶数与奇数的相加结果任何一个偶数和奇数相加的结果都是奇数。

这是因为偶数可表示为2n,奇数可表示为2m+1,那么偶数加奇数的和为2n+(2m+1)=2(n+m)+1,是一个奇数。

而偶数与偶数相加的结果则仍然是偶数。

如2n+2m=2(n+m),可表示为2的倍数,因此相加后仍为偶数。

2. 偶数与奇数的相乘结果无论偶数乘以偶数、奇数乘以奇数还是偶数乘以奇数,结果都是偶数。

这是因为偶数可以表示为2n,奇数可以表示为2m+1,所以偶数乘以偶数得到4nm,仍然为偶数;奇数乘以奇数得到(2m+1)(2m+1)=4m^2+4m+1,仍然为奇数;而偶数乘以奇数得到2n(2m+1)=4nm+2n,仍然为偶数。

3. 偶数与奇数的特征性质(1)偶数和偶数相减的结果是偶数,奇数和奇数相减的结果也是偶数。

这是因为相减后剩余的部分都是2的倍数,因此结果为偶数。

(2)偶数与任何数相乘的结果仍然是偶数。

无论是与整数、分数还是小数相乘,只要其中有一个因数是偶数,结果就一定为偶数。

这是因为偶数乘以任何数,都可以写成某个整数乘以2的形式。

三、现实生活中的应用1. 校对和验证在现实生活中,我们经常需要校对和验证数据的准确性。

而偶数与奇数可以作为一种校验机制来帮助我们快速进行数据验证。

通过对数据进行分组,将偶数和奇数分别相加,如果两个结果相等,则可以初步判断数据的准确性。

春-四年级-第2讲-奇数与偶数(二)(学生版)

春-四年级-第2讲-奇数与偶数(二)(学生版)

奇数与偶数(二)知识纵横奇数:除以2余1的数,用(2n-1)或(2n+1)(n是整数)表示;偶数:是2的倍数,用2n表示。

奇数和偶数的运算性质:(1)加减法奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数偶数±奇数=奇数奇数个奇数相加和为奇数;偶数个奇数相加和为偶数。

偶数个偶数相加和为偶数;奇数个偶数相加和为偶数。

重要结论:两个整数的和与差同奇同偶。

(2)乘法奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数若干个整数连乘,乘数中有偶数,则积为偶数;若干个整数连乘,乘数都为奇数,则积为奇数。

例 1有一列数 1、1、2、4、7、13、24、44、81……,从第 4 个数开始,每个数都是它前面三个数之和,那么这串数的前 2019 个数(包括第 2019 个数)中,有多少个奇数?试一试 1有一列数:1,1,2 ,3,5,8,13,21,34,55,…,从第三个数开始,每个数都是前两个数的和。

那么在前1000个数(包括第 1000个数)中,有多少个奇数?例 2在黑板上写着 3 个整数,然后擦去一个换成其它两数之和,这样操作下去,最后得到 74、86、309,问原来写的 3 个数能否为 1、3、5?试一试 2在黑板上写着 3 个整数,然后擦去一个换成其它两数之和,这样操作下去,最后得到 84、98、401,问原来写的 3 个数能否为 2、4、6?例 3在7 个房间中,有 6 个房间开着灯,1 个房间关着灯。

如果每次同时拨动 4 个房间的开关,能否把全部房间的灯关上。

试一试 3有 15 张扑克牌,画面朝上,小明每次翻转其中的 6 张。

他能在翻转若干次后,使 15 张牌的画面都向下吗?例 4有 100 个不为 0 的自然数,它们的总和是 2003,在这些数里,奇数的个数比偶数的个数多,那么偶数最多有几个?试一试 4100 个自然数的和是 10000,这 100 个自然数中,奇数的个数比偶数少,那么偶数最少有多少个?小练习1、有一列数 1、1、2、4、7、13、24、44、81……,从第 4 个数开始,每个数都是它前面三个数之和,那么这串数的前 102 个数(包括第 102 个数)中,有多少个偶数?2、在黑板上写着 3 个整数,然后擦去一个换成其它两数之和,这样操作下去,最后得到 66 ,88,230,问原来写的 3 个数能否为3、5、7?3、9 个杯子全部杯口朝上放在桌子上,每次翻转其中的 2 个杯子。

五年级下册数学课件 第2课时 奇数、偶数的运算性质 人教版(共10张PPT)

五年级下册数学课件 第2课时 奇数、偶数的运算性质 人教版(共10张PPT)
偶数: 偶数+偶数=偶数 奇数+奇数=偶数
(3)那么奇数+偶数=?用刚才的方法试一下。 奇数: 偶数: 结论:奇数+偶数=奇数
三、巩固练习 1.奇数与奇数的积是奇数还是偶数?奇数与偶数的积是奇 数还是偶数?偶数与偶数的积呢?
答:奇数与奇数的积是奇数,奇数与偶数的积是偶数, 偶数与偶数的积是偶数。
99、读书忌死读,死读钻牛角。——叶圣陶100、不要回避苦恼和困难,挺起身来向它挑战,进而克服它。——池田大作
2.探索6的倍数的特征,并记录你探索的过程和结果。
答:是偶数,各果甲队人数为奇数,乙队人数为奇数还是 偶数?如果甲队人数为偶数呢?
答:如果甲队人数为奇数,乙队人数为奇数; 如果甲队人数为 偶数,则乙队人数为偶数。
四、课堂小结 通过这节课的学习,你有什么收获?
1、最灵繁的人也看不见自己的背脊。——非2、最困难的事情就是认识自己。——希腊3、有勇气承担命运这才是英雄好汉。——黑塞4、与肝胆人共事,无字句处读书。——周恩来5、阅读使人充实,会谈 使人敏捷,写作使人精确。——培根6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎7、自知之明是最难得的知识。——西班牙8、勇气通往天堂,怯懦通往地狱。——塞内加9、有时候 读书是一种巧妙地避开思考的方法。——赫尔普斯10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿11、越是没有本领的就越加自命不凡。——邓拓12、越是无能的人,越喜欢挑剔别人的错儿。— —爱尔兰13、知人者智,自知者明。胜人者有力,自胜者强。——老子14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利16、 业余生活要有意义,不要越轨。——华盛顿17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云19、自己活着,就是为 了使别人过得更美好。——雷锋20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根22、业精于勤,荒于嬉;行 成于思,毁于随。——韩愈23、一切节省,归根到底都归结为时间的节省。——马克思24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚25、学习是劳动,是充满思想的劳动。——乌申斯 基26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗28、知之者不如 好之者,好之者不如乐之者。——孔子29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华31、只有永远躺在泥坑里的人, 才不会再掉进坑里。——黑格尔32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德33、希望是人生的乳母。——科策布34、形成天才的决定因素应该是勤奋。——郭沫若35、学到很多东 西的诀窍,就是一下子不要学很多。——洛克36、自己的鞋子,自己知道紧在哪里。——西班牙37、我们唯一不会改正的缺点是软弱。——拉罗什福科38、我这个人走得很慢,但是我从不后退。——亚伯拉 罕·林39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳40、学而不思则罔,思而不学则殆。——孔子41、学问是异常珍贵的东西,从任何源泉吸收都不可耻。——阿卜·日·法拉兹42、只有 在人群中间,才能认识自己。——德国43、重复别人所说的话,只需要教育;而要挑战别人所说的话,则需要头脑。——玛丽·佩蒂博恩·普尔44、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝 多芬45、自己的饭量自己知道。——苏46、我们若已接受最坏的,就再没有什么损失。——卡耐47、书到用时方恨少、事非经过不知难。——陆游48、书籍把我们引入最美好的社会,使我们认识各个时代的 伟大智者。——史美尔49、熟读唐诗三百首,不会作诗也会吟。——孙50、谁和我一样用功,谁就会和我一样成功。——莫扎特51、天下之事常成于困约,而败于奢靡。——陆游52、生命不等于是呼吸,生 命是活动。——卢梭53、伟大的事业,需要决心,能力,组织和责任感。 ——易卜生54、唯书籍不朽。——乔特55、为中华之崛起而读书。——周恩来56、书不仅是生活,而且是现在、过去和未来文化生 活的源泉。——库法耶夫57、生命不可能有两次,但许多人连一次也不善于度过。——吕凯特58、问渠哪得清如许,为有源头活水来。——朱熹59、我的努力求学没有得到别的好处,只不过是愈来愈发觉自 己的无知。——笛卡儿60、生活的道路一旦选定,就要勇敢地走到底,决不回头。——左拉61、奢侈是舒适的,否则就不是奢侈。——CocoChanel62、少而好学,如日出之阳;壮而好学,如日中之光;志而好 学,如炳烛之光。——刘向63、三军可夺帅也,匹夫不可夺志也。——孔丘64、人生就是学校。在那里,与其说好的教师是幸福,不如说好的教师是不幸。——海贝尔65、接受挑战,就可以享受胜利的喜 悦。——杰纳勒尔·乔治·S·巴顿66、节制使快乐增加并使享受加强。——德谟克利特67、今天应做的事没有做,明天再早也是耽误了。——裴斯泰洛齐68、决定一个人的一生,以及整个命运的,只是一瞬之 间。——歌德69、懒人无法享受休息之乐。——拉布克70、浪费时间是一桩大罪过。——卢梭71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德72、家庭成为快乐的 种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰74、路漫漫其修道远,吾将上下而求索。——屈原75、内外相应,言行相 称。——韩非76、你热爱生命吗?那么别浪费时间,因为时间是组成生命的材料。——富兰克林77、坚强的信心,能使平凡的人做出惊人的事业。——马尔顿78、读一切好书,就是和许多高尚的人谈话。— —笛卡儿79、读书有三到,谓心到,眼到,口到。——朱熹80、读书之法,在循序而渐进,熟读而精思。——朱熹81、对一个人来说,所期望的不是别的,而仅仅是他能全力以赴和献身于一种美好事业。— —爱因斯坦82、敢于浪费哪怕一个钟头时间的人,说明他还不懂得珍惜生命的全部价值。——达尔文83、感激每一个新的挑战,因为它会锻造你的意志和品格。——佚名84、共同的事业,共同的斗争,可以 使人们产生忍受一切的力量。 ——奥斯特洛夫斯基85、古之立大事者,不惟有超世之才,亦必有坚忍不拔之志。——苏轼86、故立志者,为学之心也;为学者,立志之事也。——王阳明87、读一本好书,就 如同和一个高尚的人在交谈。——歌德88、过去一切时代的精华尽在书中。——卡莱尔89、好的书籍是最贵重的珍宝。——别林斯基90、读书是易事,思索是难事,但两者缺一,便全无用处。——富兰克林 91、读书是在别人思想的帮助下,建立起自己的思想。——鲁巴金92、合理安排时间,就等于节约时间。——培根93、你想成为幸福的人吗?但愿你首先学会吃得起苦。——屠格涅夫94、抛弃时间的人,时 间也抛弃他。——莎士比亚95、普通人只想到如何度过时间,有才能的人设法利用时间。——叔本华96、读书破万卷,下笔如有神。——杜甫97、取得成就时坚持不懈,要比遭到失败时顽强不屈更重要。— —拉罗什夫科98、人的一生是短的,但如果卑劣地过这一生,就太长了。——莎士比亚
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版 数学 五年级 下册
2 因数与倍数
质数和合数
奇数和偶数的运算性质
情境导入
质数和合数
快乐大转盘 规则:一个同学转,指针指着哪个数,就加 上这个数的本身。如果和是奇数,会得到大 奖;和是偶数,则没有奖。
奇数+奇数= 偶数+偶数=
10 9
1
2
8
3
7 6 54
情境导入
质数和合数
想要研究偶数和奇数的运算规律,除了这两种情况, 你还能想到其他的情况吗?
奇数+奇数= 偶数+偶数=
奇数+偶数= 说一说:为什么不研究
“偶数+奇数”?
探究新知
奇数? 奇数+偶数=
偶数? 奇数? 奇数+奇数= 偶数? 奇数? 偶数+偶数= 偶数?
质数和合数
分小组探究并说 说用到的方法。
探究新知
质数和合数
举例法
奇数:5,7,9,11,…… 偶数:8,12,20,24,……
偶数+偶数=偶数
探究新知
奇数:
图示法
质数和合数 ……
偶数:
……
奇数+偶数=奇数 奇数+奇数=偶数 偶数+偶数=偶数
探究新知 这个结论正确吗?
可以再找一 些大数试试。
质数和合数
319+534=853
奇数+偶数=奇数
533+319=852
奇数+奇数=偶数
534+320=854
偶数+偶数=偶数
探究新知 想一想:如果是减法呢?
(2)奇数+偶数+奇数=( 偶数 ) 奇数-偶数-偶数=( 奇数 )
课堂练习
质数和合数
远远到面包房去买面包,一个甜甜圈2元,一个三明治 10元,一个巧克力面包3元。如果远远买了一些甜甜圈 和三明治,他付给售货员50元,找回11元,找得对吗? 说明理由。
答:11是奇数,所以找得不对。
课堂小结
质数和合数
这节课你们都学会了哪些知识? 奇数和偶数的运算性质
奇数±偶数=奇数 奇数±奇数=偶数 偶数±偶数=偶数
奇数×偶数=偶数 奇数×奇数=奇数 偶数×偶数=偶数
同类为偶,异类为奇。 有偶为偶,无偶为奇。
课后作业
质数和合数
1.从教材课后习题中选取; 2.从课时练中选取。
下课啦!
数的积是奇数还是偶数?偶数与偶数的积呢?
题目让我们对奇 数、偶数的积做 一些探索。
可以随意找几个奇 数、偶数相乘。
课堂练习
质数和合数
奇数:5,7,9,11,…… 偶数:8,12,20,24,……
5×8=40
7×8=56
奇数×偶数=偶数
5×7=35
7×9=63
奇数×奇数=奇数
8×12=96
8×20=160
质数和合数
奇数?
奇数?
奇数-奇数=
偶数-偶数=
偶数?
偶数?
奇数?
奇数?
奇数-偶数=
偶数-奇数=
偶数?
偶数?
探究新知
质数和合数
9-7=2
同样找一些奇 数和偶数相减。
奇数-奇数=偶数
11-8=3
奇数-偶数=奇数
20-12=8
偶数-偶数=偶数
20-11=9
偶数-奇数=奇数
课堂练习
质数和合数
奇数与偶数的积是奇数还是偶数?奇数与奇
偶数×偶数=偶数
课堂练习
质数和合数
不计算,直接判断结果是奇数还是偶数。
12+16 偶数 16-12 偶数 103-71偶数 13+71偶数 114+25 奇数 19-12 奇数 11×13奇数 31×4 偶数 14×8偶数
课堂练习 填空。
质数和合数
(1)偶数+偶数+偶数=( 偶数 ) 奇数+奇数+奇数=( 奇数 )
5+8=13 5+7=12
7+8=15 7+9=16
可以随意找几个 奇数、偶数相加。
8+12=20 12+24=36
探究新知
质数和合数
奇数:5,7,9,11,…… 偶数:8,12,20,24,……
5+8=13
7+8=15
奇数+偶数=奇数
5+7=12
7+9=16
奇数+奇数=偶数
8+12=20
12+24=6
相关文档
最新文档