高中物理牛顿运动定律的应用解题技巧分析及练习题(含答案)含解析

高中物理牛顿运动定律的应用解题技巧分析及练习题(含答案)含解析
高中物理牛顿运动定律的应用解题技巧分析及练习题(含答案)含解析

高中物理牛顿运动定律的应用解题技巧分析及练习题(含答案)含解析

一、高中物理精讲专题测试牛顿运动定律的应用

1.如图所示,长木板质量M=3 kg ,放置于光滑的水平面上,其左端有一大小可忽略,质量为m=1 kg 的物块A ,右端放着一个质量也为m=1 kg 的物块B ,两物块与木板间的动摩擦因数均为μ=0.4,AB 之间的距离L=6 m ,开始时物块与木板都处于静止状态,现对物块A 施加方向水平向右的恒定推力F 作用,取g=10 m/s 2.

(1).为使物块A 与木板发生相对滑动,F 至少为多少?

(2).若F=8 N ,求物块A 经过多长时间与B 相撞,假如碰撞过程时间极短且没有机械能损失,则碰后瞬间A 、B 的速度分别是多少? 【答案】(1)5 N (2)v A’=2m/s v B’=8m/s 【解析】 【分析】 【详解】

(1)据分析物块A 与木板恰好发生相对滑动时物块B 和木板之间的摩擦力没有达到最大静摩擦力.

设物块A 与木板恰好发生相对滑动时,拉力为F 0,整体的加速度大小为a ,则: 对整体: F 0=(2m +M )a 对木板和B :μmg =(m +M )a 解之得: F 0=5N

即为使物块与木板发生相对滑动,恒定拉力至少为5 N ; (2)物块的加速度大小为:24A F mg

a m s m

μ-==∕ 木板和B 的加速度大小为:B mg

a M m

=

+μ=1m/s 2

设物块滑到木板右端所需时间为t ,则:x A -x B =L

22

1122A B a t a t L -= 解之得:t =2 s v A =a A t=8m/s v B =a B t=2m/s

AB 发生弹性碰撞则动量守恒:mv a +mv B =mv a '+mv B '

机械能守恒:

12mv a 2+12mv B 2=12mv a '2+1

2

mv B '2 解得:v A '=2m/s v B '=8m/s

2.如图甲所示,m 1 =5 kg 的滑块自光滑圆弧形槽的顶端A 点无初速度地滑下,槽的底端与

水平传送带相切于左端导轮顶端的B 点,传送带沿顺时针方向匀速运转.m 1下滑前将m 2 = 3 kg 的滑块停放在槽的底端.m 1下滑后与m 2发生碰撞,碰撞时间极短,碰后两滑块均向右运动,传感器分别描绘出了两滑块碰后在传送带上从B 点运动到C 点的v -t 图象,如图乙、丙所示.两滑块均视为质点,重力加速度g = 10 m/s 2.

(1)求A 、B 的高度差h ;

(2)求滑块m 1与传送带间的动摩擦因数μ和传送带的长度L BC ; (3)滑块m 2到达C 点时速度恰好减到3 m/s ,求滑块m 2的传送时间; (4)求系统因摩擦产生的热量.

【答案】(1)0.8m (2)26m (3)6.5s (4)16J 【解析】

(1)由图乙可知,碰撞后瞬间,m 1 的速度v 1=1 m/s ,m 2的速度v 2 =5 m/s ,设碰撞前瞬间m 1的速度为v 0,取向右的方向为正方向,根据动量守恒:m 1v 0= m 1v 1+ m 2v 2 解得:v 0 = 4 m/s

m 1下滑的过程机械能守恒:211012

m gh m v = 解得:h =0.8 m

(2)由图乙可知,滑块m 1在传送带上加速运动时的加速度大小0.5v

a t

?==?m/s 2 滑块的加速度就是由滑动摩擦力提供,故μ1m 1g = m 1a 可求出滑块m 1与传送带间的动摩擦因数μ1 = 0.05

由图乙可知,滑块m 1在传送带上先加速4 s ,后匀速运动6 s 到达C 点 图线与坐标轴围成的图形的面积在数值上等于传送带的长度L BC ,即L BC = 26 m (3)滑块m 2一直做匀减速直线运动,达C 点时速度恰好减到3 m/s ,全程的平均速度为

24/2

v v

v m s +=

= 设滑块m 2的传送时间为t ,则有 6.5BC

L t s v

=

= (4)由图乙可知,滑块m 1在传送带上加速阶段的位移2

1011182

x v t at m =+= 滑块m 1在传送带上加速阶段产生的热量Q 1=μ1m 1g (vt 1-x 1)=10 J 滑块m 2在传送带上减速的加速大小4

13

v a t '?'=='?m/s 2 滑块m 2受到的滑动摩擦力大小f = m 2a ′

滑块m 2在传送带上减速阶段产生的热量Q 2 = f (L BC -vt ) = 6 J

系统因摩擦产生的热量Q = Q 1 + Q 2 =16 J .

3.如图,质量M=4kg 的长木板静止处于粗糙水平地面上,长木板与地面的动摩擦因数μ1=0.1,现有一质量m=3kg 的小木块以v 0=14m/s 的速度从一端滑上木板,恰好未从木板上滑下,滑块与长木板的动摩擦因数μ2=0.5,g 取10m/s 2,求:

(1)木块刚滑上木板时,木块和木板的加速度大小; (2)木板长度;

(3)木板在地面上运动的最大位移。 【答案】(1)5m/s 2 2m/s 2(2)14m (3)12m 【解析】 【分析】

(1)由题意知,冲上木板后木块做匀减速直线运动,木板由静止做匀加速度直线运动,根据牛顿第二定律求解加速度;(2)木块恰好未从木板滑下,当木块运动到木板最右端时,两者速度相等;根据位移关系求解木板的长度;(3)木块木板达到共同速度后将一起作匀减速直线运动,结合运动公式求解木板在地面上运动的最大位移. 【详解】

(1)由题意知,冲上木板后木块做匀减速直线运动,

初速度 v 0=14m/s ,加速度大小 2

12a μg 5m /s ==

木板由静止做匀加速度直线运动 即 ()212μmg μM m g Ma -+=

解得 2

2a 2m /s =

(2)木块恰好未从木板滑下,当木块运动到木板最右端时,两者速度相等。设此过程所用时间为t

即 012v v a t v a t =-==木板木块 解得 t=2s

木块位移 2

011x v t a t 18m 2

木块=-= 木板位移 2

21x a t 4m 2

木板=

= 木板长度 L x x 14m =-=木板木块

(3)木块木板达到共同速度后将一起作匀减速直线运动,分析得

2231v a t 4m /s a μg 1m /s ====共,

木板位移 23

v x

8m 2a ==,共木板

总位移 ,

x x x 12m =+=木板木板

4.如图所示,质量为m=5kg 的长木板B 放在水平地面上,在木板的最右端放一质量也为m=5kg 的物块A (可视为质点).木板与地面间的动摩擦因数μ1=0.3,物块与木板间的动摩擦因数μ2.=0.2,现用一水平力F=60N 作用在木板上,使木板由静止开始匀加速运动,经过t=1s ,撤去拉力,设物块与木板间的最大静摩擦力等于滑动摩擦力,2

10/g m s =,求:

(1)拉力撤去时,木板的速度v B ;

(2)要使物块不从木板上掉下,木板的长度L 至少为多大; (3)在满足(2)的条件下,物块最终将停在右端多远处.

【答案】(1)V B =4m/s ;(2)L=1.2m ;(3)d=0.48m 【解析】

【分析】对整体运用牛顿第二定律,求出加速度,判断物块与木板是否相对滑动,对物块和系统分别运用动量定理求出拉力撤去时,长木板的速度;从撤去拉力到达到共同速度过程,对物块和长木板分别运用动量定理求出撤去拉力后到达到共同速度的时间t 1,分别求出撤去拉力前后物块相对木板的位移,从而求出木板的长度对木板和物块,根据动能定理求出物块和木板的相对位移,再由几何关系求出最终停止的位置. (1)若相对滑动,对木板有:212B F mg mg ma μμ--?=,

得:2

4/B a m s =

对木块有2A mg ma μ=,2

2/A a m s =

所以木块相对木板滑动

撤去拉力时,木板的速度4/B B v a t m s ==,2/A A v a t m s == (2)撤去F 后,经时间t 2达到共同速度v ;由动量定理22B mgt mv mv μ=-

22122B mgt mgt mv mv μμ--=-,

可得20.2t s =,v=2.4m/s

在撤掉F 之前,二者的相对位移11122

B A v v x t t ?=- 撤去F 之后,二者的相对位移22222

B A v v v v x t t ++?=- 木板长度12 1.2L x x m =?+?=

(3)获得共同速度后,对木块,有2

2102

A mgx mv μ-=-

对木板有()2211202

B mg mg x mv μμ-=- 二者的相对位移3A B x x x ?=-

木块最终离木板右端的距离1230.48d x x x m =?+?-?=

【点睛】本题综合性很强,涉及到物理学中重要考点,如牛顿第二定律、动能定理、动量定理、运动学公式,关键是明确木板和木块的运动规律和受力特点.

5.如图所示,一质量M =40kg 、长L =2.5m 的平板车静止在光滑的水平地面上. 一质量m =10kg 可视为质点的滑块,以v 0=5m/s 的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.4,取g =10m/s 2.

(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小; (2)计算说明滑块能否从平板车的右端滑出. 【答案】(1) ,

(2)恰好不会从平板车的右端滑出.

【解析】

根据牛顿第二定律得 对滑块,有 , 解得

对平板车,有,

解得

设经过t 时间滑块从平板车上滑出滑块的位移为:

平板车的位移为:

而且有 解得:

此时,

所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出. 答:滑块与平板车的加速度大小分别为

滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.

点睛:对滑块受力分析,由牛顿第二定律可求得滑块的加速度,同理可求得平板车的加

速度;

由位移关系可得出两物体位移间相差L 时的表达式,则可解出经过的时间,由速度公式可求得两车的速度,则可判断能否滑出.

6.如图所示,长L =10m 的水平传送带以速度v =8m/s 匀速运动。质量分别为2m 、m 的小物块P 、Q ,用不可伸长的轻质细绳,通过固定光滑小环C 相连。小物块P 放在传送带的最左端,恰好处于静止状态,C 、P 间的细绳水平。现在P 上固定一质量为2m 的小物块(图中未画出),整体将沿传送带运动,已知Q 、C 间距大于10 m ,重力加速度g 取10m/s 2.求:

(1)小物块P 与传送带间的动摩擦因数; (2)小物块P 从传送带左端运动到右端的时间;

(3)当小物块P 运动到某位置S (图中末画出)时将细绳剪断,小物块P 到达传送带最右端时刚好与传送带共速,求位置S 距传送带右端的距离。 【答案】(1)0.5(2)10?s (3)4m 【解析】 【分析】

(1)对物体P 、Q 分别由平衡条件求解即可;(2)判断滑块的运动是一直加速还是先加速后匀速.(3)相对运动确定滑动摩擦力,相对运动趋势弄清静摩擦力方向,结合牛顿第二定律和运动学公式求距离. 【详解】

(1)设静止时细绳的拉力为T 0,小物块P 与传送带间的动摩擦因数为μ,P 、Q 受力如图:

由平衡条件得:0(2)T m g μ=

0T mg =

0.5μ=

(2)设小物块P 在传送带上运动时加速度为a 1,细绳的拉力为T ,P 、Q 受力如图,

由牛顿第二定律得,对P :1(22)(22)m m g T m m a μ+-=+ 对Q :1T mg ma -=

假设P 一直加速至传送带最右端时间为t ,末速度为v 1由运动学公式得:2

12v aL =

v 1=1a t

联立以上两式并代入数据得:10 s t =,v 1=210 m /s

(3)设细绳剪断后小物块P 的加速度大小为a 2,小物块P 在S 处的速度大小为2v ,位置S 距离传送带左端距离为1x ,距离传送带右端距离为2x ,P 受力如图:

断绳后由牛顿第二定律得:2(22)(22)m m g m m a μ+=+

断绳前由运动学公式得:2

2112v a x = 断绳后由运动学公式得:22

2222v v a x -=

12x x L +=

联立以上各式并代入数据得:S 距离传送带右端距离:2 4 m x = 【点睛】

本题关键是明确滑块P 、Q 的受力情况和运动情况,结合牛顿第二定律和运动学公式列式求解.

7.如图所示,质量M =1kg 的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数μ1=0.1,在木板的左端放置一个质量m =1kg 、大小可忽略的铁块,铁块与木板间的动摩擦因数μ2=0.4,g 取10m/s 2,

(1)若木板长L =1m ,在铁块上加一个水平向右的恒力F =8N ,经过多长时间铁块运动到木板的右端?

(2)若在铁块右端施加一个从零开始连续增大的水平向右的力F 假设木板足够长,在图中画出铁块受到木板的摩擦力f 随拉力F 大小变化而变化的图像.

【答案】(1)1s;(2)见解析

【解析】

【分析】

【详解】

(1)铁块的加速度大小=4m/s2

木板的加速度大小2m/s2

设经过时间t铁块运动到木板的右端,则有

解得:t=1s

(2)

8.质量为m的长木板静止在水平地面上,质量同样为m的滑块(视为质点)以初速度v0从木板左端滑上木板,经过0.5s滑块刚好滑到木板的中点,下右图为滑块滑上木板后的速度时间图像,若滑块与木板间动摩擦因数为μ1,木板与地面间的动摩擦因数为μ2,求:

(1)μ1、μ2各是多少?

(2)滑块的总位移和木板的总长度各是多少?

【答案】(1)0.6;0.2(2)1.5m,2.0m 【解析】 【详解】

(1)设0.5s 滑块的速度为v 1,由v-t 图像可知:v 0=4m/s v 1=1m/s 滑块的加速度 201

16/v v a m s t

-=

= 木板的加速度大小21

22/v a m s t

=

= 对滑块受力分析根据牛顿定律:μ1mg=ma 1 所以μ1=0.6

对木板受力分析:μ1mg-μ2?2mg= ma 2 解得 μ2=0.2

(2)0.5s 滑块和木板达到共同速度v 1,假设不再发生相对滑动则2ma 3=μ2?2mg 解得a 3=2m/s 2 因ma 3=f<μ1mg

假设成立,即0.5s 后滑块和木板相对静止,滑块的总位移为s 1则

201111

22v v v s t a +=+

解得s 1=1.5m

由v-t 图像可知011

222

v v v L s t +?=

=- 所以木板的长度 L=2.0m

9.图示为仓库中常用的皮带传输装置示意图,它由两台皮带传送机组成,一台水平传送,A 、B 两端相距3m ,另一台倾斜,传送带与地面的倾角θ= 37°,C 、D 两端相距4.45m , B 、C 相距很近。水平部分AB 以5m/s 的速率顺时针转动。将质量为10 kg 的一袋大米轻放在A 端,到达B 端后,速度大小不变地传到倾斜的CD 部分,米袋与传送带间的动摩擦因数均为0.5.试求:(已知sin37o=0.6,cos37o=0.8, g 取10 m/s 2 ,6=2.450,

7.2=2.68)

(1)若CD 部分传送带不运转,求米袋沿倾斜传送带所能上升的最大距离.

(2)若要米袋能被送到D 端,求CD 部分顺时针运转的速度应满足的条件及米袋从C 端到D 端所用时间的取值范围.

【答案】(1)能滑上的最大距离 1.25m s= (2)要把米袋送到D 点,CD 部分的速度

4m/s CD ≥v 时间t 的范围为1.16s 2.1s t ≤≤

【解析】

【分析】

(1)由牛顿第二定律可求得米的加速度,因米袋的最大速度只能为5m/s ,则应判断米袋到达B 点时是否已达最大速度,若没达到,则由位移与速度的关系可求得B 点速度,若达到,则以5m/s 的速度冲上CD ;在CD 面上由牛顿第二定律可求得米袋的加速度,则由位移和速度的关系可求得上升的最大距离;

(2)米袋在CD 上应做减速运动,若CD 的速度较小,则米袋的先减速到速度等于CD 的速度,然后可能减小到零,此为最长时间;而若传送带的速度较大,则米袋应一直减速,则可求得最短时间; 【详解】

(1)米袋在AB 上加速时的加速度a 0=

mg

m

μ=μg =5m /s 2

米袋的速度达到v 0=5m/s 时,滑行的距离s 0=20

2v a

=2.5m <AB=3m ,

因此米袋在到达B 点之前就有了与传送带相同的速度;设米袋在CD 上运动的加速度大小为a ,由牛顿第二定律得mgsinθ+μmgcosθ=ma 代入数据得 a=10 m/s 2

所以能滑上的最大距离 s =20

2v a

=1.25m

(2)设CD 部分运转速度为v 1时米袋恰能到达D 点(即米袋到达D 点时速度恰好为零),则米袋速度减为v 1之前的加速度为a 1=-g (sinθ+μcosθ)=-10 m/s 2 米袋速度小于v 1至减为零前的加速度为a 2=-g (sinθ-μcosθ)=-2 m/s 2

由22

2

10112

0 4.4522v v v m a a --+= 解得 v 1=4m/s ,即要把米袋送到D 点,CD 部分的速度v CD ≥v 1=4m/s 米袋恰能运到D 点所用时间最长为101

12

0 2.1max v v v t s a a --+=

= 若CD 部分传送带的速度较大,使米袋沿CD 上滑时所受摩擦力一直沿皮带向上,则所用时间最短,此种情况米袋加速度一直为a 2. 由S CD =v 0t min +

12

a 2t 2

min ,得:t min =1.16s 所以,所求的时间t 的范围为 1.16 s≤t≤2.1 s ; 【点睛】

题难点在于通过分析题意找出临条界件,注意米袋在CD 段所可能做的运动情况,从而分析得出题目中的临界值为到达D 点时速度恰好为零.

10.图1中,质量为m 的物块叠放在质量为2m 的足够长的木板上方右侧,木板放在光滑的水平地面上,物块与木板之间的动摩擦因数为

.在木板上施加一水平向右的拉

力F ,在0~3s 内F 的变化如图2所示,图中F 以mg 为单位,重力加速度g=10m/s 2.整个

系统开始时静止.

(1)求1s 、1.5s 、2s 、3s 末木板的速度以及2s 、3s 末物块的速度;

(2)在同一坐标系中画出0~3s 内木板和物块的v —t 图象,据此求0~3s 内物块相对于木板滑过的距离. 【答案】(1)

(2)如图所示.

【解析】 【分析】 【详解】

(1)设木板和物块的加速度分别为a 和'a ,在t 时刻木板和物块的速度分别为t v 和't v ,木板和物块之间的摩擦力的大小为f ,根据牛顿第二定律,运动学公式和摩擦定律得

'f ma =,f mg μ=

当't t v v <,2121'''()t t v v a t t =+-

2F f ma -=,2121()t t v v a t t =+-

联立可得1 1.5234/, 4.5/,4/,4/v m s v m s v m s v m s ====,23'4/,'4/v m s v m s == (2)物块与木板运动的v t -图象,如右图所示.在0~3s 内物块相对于木板的距离s ?等于木板和物块v t -图线下的面积之差,即图中带阴影的四边形面积,该四边形由两个三角形组成,上面的三角形面积为0.25(m ),下面的三角形面积为2(m ),因此

2.25m s ?=

高中物理解题技巧:图像法

高物理解题技巧:图像法1 物理规律可以用文字描述,也可以用数函数式表示,还可以用图象描述。图象作为表示物理规律的方法之一,可以直观地反映某一物理量随另一物理量变化的函数关系,形象地描述物理规律。在进行抽象思维的同时,利用图象视觉感知,有助于对物理知识的理解和记忆,准确把握物理量之间的定性和定量关系,深刻理解问题的物理意义。应用图象不仅可以直接求或读某些待求物理量,还可以用探究某些物理规律,测定某些物理量,分析或解决某些复杂的物理过程。 图象的物理意义主要通过“点”、“线”、“面”、“形”四个方面体现,应从这四方面入手,予以明确。 1、物理图象“点”的物理意义:“点”是认识图象的基础。物理图象上的“点”代表某一物理状态,它包含着该物理状态的特征和特性。从“点”着手分析时应注意从以下几个特殊“点”入手分析其物理意义。 (1)截距点。它反映了当一个物理量为零时,另一个物理的值是多少,也就是说明确表明了研究对象的一个状态。如图1,图象与纵轴的交点反映当I=0时,U=E即电的 电动势;而图象与横轴的交点反映电的短路电流。这可通过图象的数表达式 得。 (2)交点。即图线与图线相交的点,它反映了两个不同的研究对象此时有相同的物理量。如图2的P点表示电阻A接在电B两端时的A两端的电压和通过A的电流。

(3)极值点。它可表明该点附近物理量的变化趋势。如图3的D点表明当电流等于时,电有最大的输功率。 (4) 拐 点。通常反映物理过程在该点发生突变,物理量由量变到质变的转折点。拐点分明拐点和暗拐点,对明拐点,生能一眼看其物理量发生了突变。如图4的P点反映了加速度方向发生了变化而不是速度方向发生了变化。而暗拐点,生往往察觉不到物理量的突变。如图5P点看起是一条直线,实际上在该点速度方向发生了变化而加速度没有发生变化。 2、物理图象“线”的物理意义:“线”:主要指图象的直线或曲线的切线,其斜率通常 具有明确的物理意义。物理图象的斜率代表两个物理量增量之比值,其大小往往 代表另一物理量值。如-t图象的斜率为速度,v-t图象的斜率为加速度,Φ-t图象的斜率为感应电动势(n=1的情况下),电U-I图象(如图1)的斜率 为电的内阻(从图象的数表达式也一目了然)等。 3、物理图象“面”的物理意义:“面”:是指图线与坐标轴所围的面积。有些物理图象的图线与横轴所围的面积的值常代表另一个物理量的大小.习图象时,有意识地利用求面积的方法,计算有关问题,可使有些物理问题的解答变得简便,如v-t图象所围面积 代表位移,F-图象所围面积为力做的功,P-V图象所围面积为 气体压强做的功等。 4、物理图象“形”的物理意义:“形”:指图象的形状。由图线的形状结合其斜率找其隐含的物理意义。例如在v-t图象,如果是一条与时间轴平行的直线,说明物体做匀速直线运动;若是一条斜的直线,说明物体做匀变速直线运动;若是一条曲线,则可根据其斜率变化情况,判断加速度的变化情况。在波的图象,可通过微小的平移能够判断各质点在该时刻的振动方向;在研究小电珠两端的电压U与电流I关系时,通过实验测在

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

牛顿运动定律专题精修订

牛顿运动定律专题集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

牛顿运动定律专题 一、基础知识归纳 1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态为止。 理解要点: (1)运动是物体的一种属性,物体的运动不需要力来维持; (2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,(运动状态指物体的速度)又根据加速度定义:t v a ??=,有速度变化就一定有加速度,所以 可以说:力是使物体产生加速度的原因。(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。); (3)定律说明了任何物体都有一个极其重要的属性——惯性;一切物体都有保持原有运动状态的性质,这就是惯性。惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的量度。 (4)牛顿第一定律描述的是物体在不受任何外力时的状态。而不受外力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律; (5)牛顿第一定律是牛顿第二定律的基础,物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。 2、牛顿第二定律:物体的加速度跟作用力成正比,跟物体的质量成反比。公式F=ma. 理解要点:

物理解题技巧高中对称法

物理解题技巧高中对称法 物理解题技巧高中自然界和自然科学中,普遍存在着优美和谐的对称现象.对称性就是事物在变化时存在的某种不变性.物理中对称现象比比皆是,对称的结构、对称的作用、对称的电路、对称的物和像等等.一般情况下对称表现为研究对象在结构上的对称性、物理过程在时间上和空间上的对称性、物理量在分布上的对称性及作用效果的对称性等.利用对称性解题时有时能一眼看出答案,大大简化解题步骤.从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力.用对称性解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径. 静力学问题解题的思路和方法 确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 认识物体的平衡及平衡条件 对于质点而言,若该质点在力的作用下保持静止或匀速直线运

动,即加速度为零,则称为平衡,欲使质点平衡须有∑F=0。若将各力正交分解则有:∑FX=0,∑FY=0。 这里应该指出的是物体在三个力(非平行力)作用下平衡时,据∑F=0可以引伸得出以下结论: 这三个力矢量组成封闭三角形。 任何两个力的合力必定与第三个力等值反向。 对物体受力的分析及步骤 明确研究对象 分析物体或结点受力的个数和方向,如果是连结体或重叠体,则用“隔离法” 作图时力较大的力线亦相应长些 每个力标出相应的符号(有力必有名),用英文字母表示 用正交分解法解题列动力学方程 受力不平衡时 一些物体的受力特征:轻杆或弹簧对物体可以有压力或者拉力。绳子或橡皮筋可受拉力不能受压力,同一绳放在光滑滑轮或光滑挂钩上,两侧绳子受力大小相等,当三段以上绳子在交点打结时,各段绳受力大小一般不相等。 受力分析步骤: 判断力的个数并作图:重力;接触力(弹力和摩擦力);场力(电场力、磁场力) 判断力的方向:

高考物理复习高中物理解题方法归类总结高中物理例题解析,原来还有这么巧妙的方法!

高考物理复习高中物理解题方法归类总结 (高中物理例题解析) 方法一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义

在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______ Ω. 【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A当作短路电流,而得出r=E/I 短=2.5Ω的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω 3.挖掘交点的潜在含意

一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车? 【解析】依题意在同一坐标系中作出分别从A、B站由不同时刻开出的汽车做匀速运动的s一t图像,如图所示. 从图中可一目了然地看出:(1)当B站汽车与A站第一辆汽车同时相向开出时,B站汽车的s一t图线CD与A站汽车的s-t图线有6个交点(不包括在t轴上的交点),这表明B站汽车在途中(不包括在站上)能遇到6辆从A站开出的汽车.(2)要使B站汽车在途中遇到的车最多,它至少应在A站第一辆车开出50 min后出发,即应与A站第6辆车同时开出此时对应B站汽车的s—t图线MN与A 站汽车的s一t图线共有11个交点(不包括t轴上的交点),所以B站汽车在途中(不包括在站上)最多能遇到1l辆从A站开出的车.(3)如果B站汽车与A站汽

牛顿运动定律-经典习题汇总

牛顿运动定律经典练习题 一、选择题 1.下列关于力和运动关系的说法中,正确的是 ( ) A .没有外力作用时,物体不会运动,这是牛顿第一定律的体现 B .物体受力越大,运动得越快,这是符合牛顿第二定律的 C .物体所受合外力为0,则速度一定为0;物体所受合外力不为0,则其速度也一定不为0 D .物体所受的合外力最大时,速度却可以为0;物体所受的合外力为0时,速度却可以最大 2.升降机天花板上悬挂一个小球,当悬线中的拉力小于小球所受的重力时,则升降机的运动情况可能是 ( ) A .竖直向上做加速运动 B .竖直向下做加速运动 C .竖直向上做减速运动 D .竖直向下做减速运动 3.物体运动的速度方向、加速度方向与作用在物体上合力方向的关系是 ( ) A .速度方向、加速度方向、合力方向三者总是相同的 B .速度方向可与加速度方向成任何夹角,但加速度方向总是与合力方向相同 C .速度方向总是和合力方向相同,而加速度方向可能和合力相同,也可能不同 D .速度方向与加速度方向相同,而加速度方向和合力方向可以成任意夹角 4.一人将一木箱匀速推上一粗糙斜面,在此过程中,木箱所受的合力( ) A .等于人的推力 B .等于摩擦力 C .等于零 D .等于重力的下滑分量 5.物体做直线运动的v-t 图象如图所示,若第1 s 内所受合力为F 1,第2 s 内所受合力为F 2,第3 s 内所受合力为F 3, 则( ) A .F 1、F 2、F 3大小相等,F 1与F 2、F 3方向相反 B .F 1、F 2、F 3大小相等,方向相同 C .F 1、F 2是正的,F 3是负的 D .F 1是正的,F 1、F 3是零 6.质量分别为m 和M 的两物体叠放在水平面上如图所示,两物体之间及M 与 水平面间的动摩擦因数均为μ。现对M 施加一个水平力F ,则以下说法中不正确的是( ) A .若两物体一起向右匀速运动,则M 受到的摩擦力等于F B .若两物体一起向右匀速运动,则m 与M 间无摩擦,M 受到水平面的摩擦力大小为μmg C .若两物体一起以加速度a 向右运动,M 受到的摩擦力的大小等于F -M a D .若两物体一起以加速度a 向右运动,M 受到的摩擦力大小等于μ(m+M )g+m a 7.用平行于斜面的推力,使静止的质量为m 的物体在倾角为θ的光滑斜面上,由底端向顶端做匀加速运动。当物体运动到斜面中点时,去掉推力,物体刚好能到达顶点,则推力的大小为 ( ) A .mg(1-sin θ) B .2mgsin θ C .2mgcos θ D .2mg(1+sin θ) 8.从不太高的地方落下的小石块,下落速度越来越大,这是因为 ( ) A .石块受到的重力越来越大 B .石块受到的空气阻力越来越小 C .石块的惯性越来越大 D .石块受到的合力的方向始终向下 9.一个物体,受n 个力的作用而做匀速直线运动,现将其中一个与速度方向相反的力逐渐减小到零,而其他的力保持不变,则物体的加速度和速度 ( ) A .加速度与原速度方向相同,速度增加得越来越快 B .加速度与原速度方向相同,速度增加得越来越慢 C .加速度与原速度方向相反,速度减小得越来越快 D .加速度与原速度方向相反,速度减小得越来越慢 10.下列关于超重和失重的说法中,正确的是 ( ) 第 5 题 第 6 题

高中物理大题技巧

高考物理解答题规范化要求 物理计算题可以综合地考查学生的知识和能力,在高考物理试题中,计算题在物理部分中的所占的比分很大(60%),单题的分值也很高。一些考生考后感觉良好但考分并不理想,一个很重要的原因便是解题不规范导致失分过多。在高考的物理试卷上对论述计算题的解答有明确的要求:“解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位。”具体地说,物理计算题的解答过程和书写表达的规范化要求,主要体现在以下几个方面。 一、文字说明要清楚 必要的文字说明是指以下几方面内容: ①说明研究的对象 ①对字母、符号的说明。题中物理量有给定符号的,必须严格按题给符号表示,无需另设符号; 题中物理量没有给定符号的,应该按课本习惯写法(课本原始公式)形式来设定。 ②对物理关系的说明和判断。如在光滑水平面上的两个物体用弹簧相连,"在两物体速度相等时弹簧的弹性势能最大","在弹簧为原长时物体的速度有极大值。" ③说明研究对象、所处状态、所描述物理过程或物理情境要点,关健的条件作必要的分析判断。题目中的隐含条件,临界条件等。即说明某个方程是关于"谁"的,是关于"哪个状态或过程"的。 ④说明所列方程的依据及名称,规定的正方向、零势点及所建立的坐标系. 这是展示考生思维逻辑严密性的重要步骤。 ⑤选择物理规律的列式形式;按课本公式的“原始形式”书写。 ⑥诠释结论:说明计算结果中负号的物理意义,说明矢量的方向。 ⑦对于题目所求、所问的答复,说明结论或者结果。 文字说明防止两个倾向:①过于简略而显得不完整,缺乏逻辑性。②罗嗦,分不清必要与必不要。 答题时表述的详略原则是物理方面要祥,数学方面要略.书写方面,字迹要清楚,能单独辨认.题解要分行写出,方程要单列一行,绝不能连续写下去,切忌将方程、答案淹没在文字之中. 二、主干方程要突出(在高考评卷中,主干方程是得分的重点) 主干方程是指物理规律、公式或数学的三角函数、几何关系式等 (1) 主干方程式要有依据,一般表述为:依xx 物理规律得;由图几何关系得,根据……得等。 (2) 主干方程列式形式得当,字母、符号的书写规范,严格按课本“原始公式”的形式列式,不能以变形的结果式代替方程式;(这是相当多考生所忽视的). 要全部用字母符号表示方程,不能字母、符号和数据混合,不要方程套方程;要用原始方程组联立求解,不要用连等式 如:带电粒子在磁场的运动应有R v m qvB 2 =,而不是其变形结果qB m v R =. (3) 列方程时,物理量的符号要用题目中所给符号,不能自己另用字母符号表示, 若题目中没有给定物理量符号,应该先设定,设定也有要求(按课本形式设定), 如:U 表示两点间的电压,?表示某点的电势,E 表示电动势,ε表示电势能 (4) 主干方程单独占一行,按首行格式放置;式子要编号,号码要对齐。 (5) 对所列方程式(组)进行文字(符号)运算,推导出最简形式的计算式,不是关键环节不计算结果。 具体推导过程只在草稿纸上演算而不必写在卷面上。如果题目有具体的数值运算,则只在最简形式的计算式中代入数值算出最后结果,切忌分步进行代数运算。 (6) 要用原始公式联立求解,分步列式,并用式别标明。不要用连等式,不断地用等号连等下去。 因为这样往往因某一步的计算错误会导致整个等式不成立而失分。 三、书写布局要规范 (1) 文字说明的字体要书写公整、版面布局合理整齐、段落清晰、美观整洁。详略得当、言简意赅、逻辑

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

上海高三物理复习牛顿运动定律专题

第三章牛顿运动定律专题 考试内容和要求 一.牛顿运动定律 1.牛顿第一定律 (1)第一定律的内容:任何物体都保持或的状态,直到有迫使它改变这种状态为止。牛顿第一定律指出了力不是产生速度的原因,也不是维持速度的原因,力是改变的原因,也就是产生的原因。 (2)惯性:物体保持的性质叫做惯性。牛顿第一定律揭示了一切物体都有惯性,惯性是物体的固有性质,与外部条件无关,因此该定律也叫做惯性定律。 【典型例题】 1.(2005广东)一汽车在路面情况相同的公路上直线行驶,下面关于车速、惯性、质量和滑行路程的讨论,正确的是() (A)车速越大,它的惯性越大

(B)质量越大,它的惯性越大 (C)车速越大,刹车后滑行的路程越长 (D)车速越大,刹车后滑行的路程越长,所以惯性越大 2.(2006广东)下列对运动的认识不正确的是() (A)亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动 (B)伽利略认为力不是维持物体速度的原因 (C)牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动 (D)伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去 3.(2003上海理综)科学思维和科学方法是我们 认识世界的基本手段。在研究和解决问题过程中, 不仅需要相应的知识,还要注意运用科学的方法。 理想实验有时更能深刻地反映自然规律。伽利略 设想了一个理想实验,如图所示,其中有一个是经验 事实,其余是推论。 ①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度; ②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面; ③如果没有摩擦,小球将上升到原来释放的高度; ④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面做持续的匀速运动。 请将上述理想实验的设想步骤按照正确的顺序排列(只要填写序号即可)。在上述的设想步骤中,有的属于可靠的事实,有的则是理想化的推论。 下列关于事实和推论的分类正确的是() (A)①是事实,②③④是推论 (B)②是事实,①③④是推论 (C)③是事实,①②④是推论 (D)④是事实,①②③是推论 2.牛顿第二定律 (1)第二定律的内容:物体运动的加速度同成正比,同成反比,而且加速度方向与力的方向一致。ΣF=ma (2)1牛顿=1千克·米/秒2

高中物理解题方法整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两 环再次 A O B P Q

牛顿运动定律专题(一)

牛顿运动定律专题(一) 知识达标: 1、下列说法正确的是…………………………………() A、甲主动推乙,甲对乙的作用力的发生先于乙对甲的作用力 B、施力物体必然也是受力物体 C、地球对人的吸引力显然要比人对地球的吸引力大得多 D、以卵击石,卵破碎,说明石块对卵的作用力大于卵对石块的作用力 2、关于惯性下列说法中正确的是…………………………………………() A、物体不受力或所受的合外力为零才能保持匀速直线运动状态或静止状态,因此只有此时物体才有惯性 B、物体加速度越大,说明它的速度改变得越快,因此加速度大的物体惯性小; C、行驶的火车速度大,刹车后向前运动距离长,这说明物体速度越大,惯性越大 D、物体惯性的大小仅由质量决定,与物体的运动状态和受力情况无关 3、一小球用一细绳悬挂于天花板上,以下几种说法正确的是………………………() A、小球所受的重力和细绳对它的拉力是一对作用力和反作用力 B、小球对细绳的拉力就是小球所受的重力 C、小球所受的重力的反作用力作用在地球上 D、小球所受重力的反作用力作用在细绳上 4、当作用在物体上的合外力不为零时,下面结论正确的是……………………() A、物体的速度大小一定发生变化 B、物体的速度方向一定发生变化 C、物体的速度不一定发生变化 D、物体的速度一定发生变化 5、关于超重和失重的说法中正确的是…………………………………() A、超重就是物体受到的重力增加了 B、失重就是物体受到的重力减少了 C、完全失重就是物体的重力全部消失了 D、不论超重、失重还是完全失重,物体所受重力不变 6、在升降机内,一人站在磅秤上,发现自己的体重减少了20%,于是他作出了下列判断,你认为正确的是() A、升降机以0.8g的加速度加速上升 B、升降机以0.2g的加速度加速下降 C、升降机以0.2g的加速度减速上升 D、升降机以0.8g的加速度减速下降 7、2001年1月,我国又成功进行“神舟二号”宇宙飞船的航行,失重实验是至关宇宙员生命安全的重要实验,宇宙飞船 在下列哪种状态下会发生失重现象………………………() A、匀速上升 B、匀速圆周运动 C、起飞阶段 D、着陆阶段 经典题型: 一、牛顿第二定律结合正交分解 例:1、细线悬挂的小球相对于小车静止,并与竖直方向成θ角,求小车运动的加速度。 2、如图,斜面固定,物体在水平推力F作用下沿斜面上滑,已知物体质量m,斜面倾角 θ,动摩擦因数μ和物体小球加速度a,求水平推力F的大小。 练习:1、如图,已知θ=300,斜杆固定,穿过斜杆的小球质量m=1kg,斜杆与小球动摩擦因数μ= √3/6,竖直向上的力F=20N,求小球的加速度a=?

大学物理题库第二章牛顿运动定律.doc

第二章牛顿运动定律 一、填空题(本大题共16小题,总计48分) 1.(3分)如图所示,一个小物体A靠在一辆小车的竖直前壁上,A和车壁间静摩擦系数是丛,若要使物体A不致掉下来,小车的加速度的最小值应为1=. J A i 疽 3.(3分)如果一个箱子与货车底板之间的静摩擦系数为〃,当这货车爬一与水平方向 成。角的平缓山坡时,若不使箱了在车底板上滑动,车的最大加速度%域=. 4.(3分)质量m = 40kg的箱子放在卡车的车厢底板上,巳知箱子与底板之间的静摩擦系数为从=0.40,滑动摩擦系数为角=0.25,试分别写出在下列情况下,作用在箱了上的摩擦力的大小和方向. (1)卡车以。=2m/s2的加速度行驶,/ =,方向. (2)卡车以a = -5m/s2的加速度急刹车,/ =,方向? 5.(3分)一圆锥摆摆长为/、摆锤质量为在水平面上作匀速圆周运动,摆线与铅直线夹角。,则 (1)摆线的张力§= 2 (3分)质量相等的两物体A和B,分别固定在弹簧的两端,竖直放在光滑水平支持面C 上,如图所示.弹簧的质量与物体A、B的质量相比,M以忽略不计.若把支持面C迅速移走,则在移开的一瞬间,A的加速度大小心= ,B的加速度的大小% = .

⑵ 摆锤的速率V= I 6.(3分)质量为m的小球,用轻绳AB. BC连接,如图,其中AB水平.剪断绳AB前后的瞬间,绳BC中的张力比F T:E;=. 7.(3分)有两个弹簧,质量忽略不计,原长都是10 cm,第一个弹簧上端固定,下挂一个质量为m的物体后,长为11 cm,而第二个弹簧上端固定,下挂一质量为m的物体后,R为13 cm,现将两弹簧串联,上端固定,下面仍挂一质量为〃,的物体,则两弹簧的总长为 . 8.(3分)如图,在光滑水平桌面上,有两个物体A和B紧靠在一起.它们的质量分别为 = 2kg , = 1kg .今用一水平力F = 3N推物体B,则B推A的力等于.如 用同样大小的水平力从右边推A,则A推B的力等于? 9.(3分)一物体质量为M,置于光滑水平地板上.今用一水平力斤通过一质量为m的绳拉动物体前进,贝U物体的加速度但=,绳作用于物体上的力. 10.(3分)倾角为30°的一个斜而体放置在水平桌面上.一个质量为2 kg的物体沿斜面下滑, 下滑的加速度为3.0m/s2.若此时斜面体静止在桌面上不动,则斜面体与桌面间的静摩擦力

高中物理总复习 15种快速解题技巧

技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin θ (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F 与系统的重力(M+m )g 满足关系式:F >(M+m )g ,正确答案为D. 【方法链接】对于超、失重现象大致可分为以下几种情况: θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

牛顿运动定律试题及标准答案

高一物理牛顿运动定律测试 一、选择题:(每题5分,共50分)每小题有一个或几个正确选项。 1.下列说法正确的是 A.力是物体运动的原因B.力是维持物体运动的原因 C.力是物体产生加速度的原因D.力是使物体惯性改变的原因 2.下列说法正确的是 A.加速行驶的汽车比它减速行驶时的惯性小 B.静止的火车启动时速度变化缓慢,是因为火车静止时惯性大 C.已知月球上的重力加速度是地球上的1/6,故一个物体从地球移到月球惯性减小为1/6 D.为了减小机器运转时振动,采用螺钉将其固定在地面上,这是为了增大惯性 3.在国际单位制中,力学的三个基本单位是 A.kg 、m 、m / s2 B.kg 、 m / s 、 N C.kg 、m 、 s D.kg、 m / s2 、N 4.下列对牛顿第二定律表达式F=ma及其变形公式的理解,正确的是()A.由F=ma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成正比 B.由m=F/a可知,物体的质量与其所受合外力成正比,与其运动加速度成反比 C.由a=F/m可知,物体的加速度与其所受合外力成正比,与其质量成反比 D.由m=F/a可知,物体的质量可以通过测量它的加速度和它受到的合外力而求得 5.大小分别为1N和7N的两个力作用在一个质量为1kg的物体上,物体能获得的最小加速度和最大加速度分别是 A.1 m / s2和7 m / s2 B.5m / s2和8m / s2 C.6 m / s2和8 m / s2 D.0 m / s2和8m / s2 6.弹簧秤的秤钩上挂一个物体,在下列情况下,弹簧秤的读数大于物体重力的是A.以一定的加速度竖直加速上升B.以一定的加速度竖直减速上升 C.以一定的加速度竖直加速下降D.以一定的加速度竖直减速下降 7.一物体以 7 m/ s2的加速度竖直下落时,物体受到的空气阻力大小是 ( g取10 m/ s2 ) A.是物体重力的0.3倍 B.是物体重力的0.7倍 C.是物体重力的1.7倍 D.物体质量未知,无法判断

高考物理解题技巧与时间分配

高考物理解题技巧与时间分配 (一)选择题 1、分时间以课标卷高考为例,高考物理一共8个选择题,按照高考选择题总时间在35--45 分钟的安排,物理选择题时间安排在15一25 分钟为宜,大约占所有选择题的一半时间(由于生物选择题和化学选择题的计算量不大,很多题目可以直接进行判断,所以物理选择题所占的时间比例应稍大些).在物理的8个选择题中,时间也不能平均分配,一般情况下,选择题的难度会逐渐增加,物理选择题也不会例外,难度大的题目大约需要 3 分钟甚至更长一点的时间,而难度较小的选择题一般 1 分钟就能够解决了, 7、8个选择题中,按照 2 : 5 : 1 的关系,一般有 2 个简单题目, 4、5个中档题目和 1 个难度较大的题目(开始时难题较少)。 2 .析本质 选择题一般考查的是考生对基本知识和基本规律的理解及应用这些知识进行一些定性推理,很少有较复杂的计算.解题时一定要注意一些关键词,例如“不正确的”“可能”与“一定”的区别,要讨论多种可能性.不要挑题做,应按题号顺序做,而且开始应适当慢一点,这样刚上场的紧张心情会逐渐平静下来,做题思维会逐渐活跃,不知不觉中能全身心进入状态.一般地

讲,如遇熟题,题图似曾相识,应陈题新解;如遇陌生题,题图陌生、物理情景陌生,应新题常规解,如较长时间分析仍无思路,则应暂时跳过去,先做下边的试题,待全部能做的题目做好后,再来慢慢解决(此时解题的心情已经会相对放松,状态更易发挥).确实做不出来时,千万不要放弃猜答案的机会,先用排除法排除能确认的干扰项,如果能排除两个,其余两项肯定有一个是正确答案,再随意选其中一项,即使一个干扰项也不能排除仍不要放弃,四个选项中随便选一个.尤其要注意的是,选择题做完后一定要立即涂卡. 3 .巧应对 高考物理选择题是所有学科中选择题难度最大的,主要难点有以下几种情况:一是物理木身在各个学科中就属于比较难的学科;二是物理选择题是不定项选择,题目答案个数不确定,造成在选择的时候瞻前顾后,不得要领;三是大部分选择题综合性很高,涉及的知识点比计算题和填空题还要多,稍有不慎,就会顾此失彼;四是有些选择题本身就是小型的计算题,计算量并不比简单的计算题小. 虽然说高考物理选择题在解决的时候有这样那样的困难,但是如果方法选择好,解决起来还是有章可循的,为了能够在处理高考选择题时游刃有余,我们首先要了解选择题一般的特点,把高考选择题进行分类,然后根据各自的类型研究对策.

牛顿运动定律图像专题一

牛顿运动定律图像专题一 1、一个质量为m的木块静止在光滑水平面上,某时刻开始受到如图所示的水平拉力的作用,下列说确的是() A.4t0时刻木块的速度为 B.4t0时刻水平拉力的瞬时功率为 C.0到4t0时间,木块的位移大小为 D.0到4t0时间,,木块的位移大小为5F0t02/m 1、【答案】D 【解析】 考点:牛顿第二定律;匀变速直线运动的位移与时间的关系. 专题:牛顿运动定律综合专题. 分析:根据牛顿第二定律求出加速度,结合运动学公式求出瞬时速度的大小和位移的大小,根据力和位移求出水平拉力做功大小. 解答:解:A、0﹣2t0的加速度,则2t0末的速度,匀减速 运动的加速度大小,则4t0末的速度v2=v1﹣a2?2t0=,则4t0时刻水平拉力的瞬时功率P=,故A、B错误. C、0﹣2t0的位移=,2t0﹣4t0的位移 =,则位移x=,故C错误. D、0到4t0时间,水平拉力做功,故D正确.

故选:D. 点评:本题考查了牛顿第二定律和运动学公式的综合运用,知道加速度是联系力学和运动学的桥梁. 2、如右下图甲所示,一个质量为3kg的物体放在粗糙水平地面上,从零时刻起,物体在水平力F作用下由静止开始做直线运动.在0~3s时间物体的加速度a随时间t的变化规律如右下图乙所示.则( ) A.F的最大值为12 N B.0~1s和2~3s物体加速度的方向相反 C.3s末物体的速度最大,最大速度为8m/s D.在0~1s物体做匀加速运动,2~3s 物体做匀减速运动 【答案】C 【解析】【命题立意】旨在考查牛顿第二定律的理解,运动图象的理解和应用 A加速度最大为4 m/s2,合力最大为4N,但有摩擦力,B 0~1s和2~3s物体加速度都是正值,方向相同,C梯形的面积是最大速度,类比匀变速的面积相当于位移,D物体一直做加速做加速直线运动,但加速度先增大,又不变,最后减少 3、质点所受的合外力F随时间变化的规律如图所示,力的方向始终在一直线上.已知t=0时质点的速度为零.在图示的t1、t2、t3和t4各时刻中,质点的速度最大的时刻是() A.t1 B.t2 C.t3 D.t4 【答案】B 【解析】考点:牛顿第二定律;匀变速直线运动的速度与时间的关系. 专题:牛顿运动定律综合专题. 分析:通过分析质点的运动情况,确定速度如何变化. 解答:解:由力的图象分析可知: 在0∽t1时间,质点向正方向做加速度增大的加速运动. 在t1∽t2时间,质点向正方向做加速度减小的加速运动. 在t2∽t3时间,质点向正方向做加速度增大的减速运动.

高中物理解题方法

高中物理解题方法指导 物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方 法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。 正确解答物理题应遵循一定的步骤 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白不可能都不明白,不懂之处是哪哪个关键之处不懂这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。

一、静力学问题解题的思路和方法 1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方程求解,而后讨论。 5.对于平衡态变化时,各力变化问题,可采用解析法或图解法进行研究。 静力学习题可以分为三类: ①力的合成和分解规律的运用。 ②共点力的平衡及变化。 ③固定转动轴的物体平衡及变化。 认识物体的平衡及平衡条件 对于质点而言,若该质点在力的作用下保持静止或匀速直线运动,即加速度α =0,为零,则称为平衡,欲使质点平衡须有∑F=0。若将各力正交分解则有:∑F X =0 。 ∑F Y 对于刚体而言,平衡意味着,没有平动加速度即α=0,也没有转动加速度即β=0(静止或匀逮转动),此时应有:∑F=0,∑M=0。 这里应该指出的是物体在三个力(非平行力)作用下平衡时,据∑F=0可以引伸得出以下结论:

相关文档
最新文档