三角形内外角分线的应用

合集下载

专题02 三角形角平分线模型的应用(解析版)

专题02 三角形角平分线模型的应用(解析版)

专题02 三角形角平分线模型的应用参考答案与解析【考点1 双内角平分线】【条件】BP 、CP 分别为∠ABC 、∠ACB 的角平分线.【结论】∠P=90°+∠A.【例1】(2019春•东阿县期末)已知任意一个三角形的三个内角的和是180°.如图1,在△ABC 中,∠ABC 的角平分线BO 与∠ACB 的角平分线CO 的交点为O(1)若∠A =70°,求∠BOC 的度数;(2)若∠A =a ,求∠BOC 的度数;【答案】(1)∴∠BOC =125°(2)∴∠BOC =90°+21【直击考点】 【典例分析】【解答】解:(1)∵∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=110°,∵在△ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O,∴∠OBC=∠ABC,∠OCB=ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=125°;(2)∵∠A=α,∴∠ABC+∠ACB=180°﹣∠A=180°﹣α,∵在△ABC中,∠ABC的角平分线BO与∠ACB的角平分线CO的交点为O,∴∠OBC=∠ABC,∠OCB=ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB)=(180°﹣α)=90°﹣,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣(90°﹣)=90°+【变式1】(2021秋•四川)如图,△ABC中,(1)若∠B=70°,点P是△ABC的∠BAC和∠ACB的平分线的交点,求∠APC的度数.(2)如果把(1)中∠B=70°这个条件去掉,试探索∠APC和∠B之间有怎样的数量关系.【答案】(1)∴∠P=180°﹣55°=125°(2)∠APC==90°+∠B【解答】解:(1)∵∠B=70°,∴∠BAC+∠BCA=110°,∵点P是△ABC的∠BAC和∠ACB的平分线的交点,∴∠P AC=∠BAC,∠PCA=∠BCA,∴∠P AC+∠PCA=(∠P AC+∠PCA)=×110°=55°,∴∠P=180°﹣55°=125°;(2)∵点P是△ABC的∠BAC和∠ACB的平分线的交点,∴∠P AC=∠BAC,∠PCA=∠BCA,∴∠P AC+∠PCA=(∠P AC+∠PCA),∴∠P=180°﹣(∠P AC+∠PCA)=180°﹣(∠BAC+∠BCA)=180°﹣(180°﹣∠B)=90°+∠B.【变式2】(2021春•松北区期末)如图,∠ABD=15°,∠ACD=30°,∠A=45°,则∠BDC的度数为°.【答案】90【解答】解:延长BD交AC于点E,∵∠CEB=∠A+∠ABD,∠BDC=∠CEB+∠ACD,∴∠BDC=∠A+∠ABD+∠ACD,∵∠ABD=15°,∠ACD=30°,∠A=45°,∴∠BDC=45°+30°+15°=90°,故答案为90.【考点2 双外角平分线】【条件】BP 、CP 分别为∠EBC 、∠BCD 的角平分线.【结论】∠P=90°-∠A.【例2】(2021春•沈丘县期末)如图,已知∠ABC 、∠ACB 的外角平分线交于D 点.∠A=40°,那么∠D = .【答案】70°【解答】解:∵∠A =40°,∠ABC +∠A +∠ACB =180°,∴∠ABC +∠ACB =180°﹣40°=140°,∵∠ABC +∠CBF =180°,∠ACB +∠BCE =180°,∴∠ABC +∠CBF +∠ACB +∠BCE =360°,∴∠CBF +∠BCE =360°﹣140°=220°,∵BD 平分∠CBF ,CD 平分∠BCE ,∴∠DBC +∠DCB =(∠CBF +∠BCE )=110°,∵∠DBC +∠DCB +∠D =180°,∴∠D =180°﹣110°=70°,故答案为70°.【变式1】(2020秋•讷河市期末)在△ABC 中,∠B =58°,三角形的外角∠DAC 和∠ACF的平分线交于点E ,则∠AEC = .21【答案】61°【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF,∵∠DAC=∠B+∠2,∠ACF=∠B+∠1∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2),∵∠B=58°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=119°∴∠AEC=180°﹣(∠DAC+∠ACF)=61°.故答案是:61°.【变式2】(2020秋•前郭县期末)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)【答案】(1)∠A=70°(2)∠BDC=90°﹣∠A【解答】解:(1)∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=70°,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°;(2)∠BDC=90°﹣∠A.理由如下:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∴∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180°﹣∠BCD﹣∠DBC,=180°﹣[∠A+(∠A+∠ABC+∠ACB)],=180°﹣(∠A+180°),=90°﹣∠A;【考点3内外角平分线】【条件】BP、CP分别为∠ABC、∠ACD的角平分线.【结论】∠A=2∠P.【例3】(2021春•莲湖区期末)如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,若∠ABP=20°,∠ACP=60°,则∠A﹣∠P=()A.70°B.60°C.50°D.40°【答案】B【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∠ABP =20°,∠ACP=60°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=120°,∠MCP=∠ACP=60°,∠CBP =∠ACP=20°,∴∠A=∠ACM﹣∠ABC=120°﹣40°=80°,∠P=∠PCM﹣∠CBP=60°﹣20°=40°,∴∠A﹣∠P=80°﹣40°=40°,故选:D.【变式1】(2020秋•莲湖区期末)如图,已知在△ABC中,CE是外角∠ACD的平分线,BE是∠ABC的平分线.(1)求证:∠A=2∠E;(2)若∠A=∠ABC,求证:AB∥CE.【答案】(1)略(2)略【解答】证明:(1)∵∠ACD是△ABC的一个外角,∠2是△BCE的一个外角,(已知),∴∠ACD=∠ABC+∠A,∠2=∠1+∠E(三角形外角的性质),∴∠A=∠ACD﹣∠ABC,∠E=∠2﹣∠1(等式的性质),∵CE是外角∠ACD的平分线,BE是∠ABC的平分线(已知),∴∠ACD=2∠2,∠ABC=2∠1(角平分线的性质),∴∠A=2∠2﹣2∠1(等量代换),=2(∠2﹣∠1)(提取公因数),=2∠E(等量代换);(2)由(1)可知:∠A=2∠E∵∠A=∠ABC,∠ABC=2∠ABE,∴2∠E=2∠ABE,即∠E=∠ABE,∴AB∥CE.【变式2】(2021春•宽城县期末)如图,△ABC中,∠A=100°,BI、CI分别平分∠ABC,∠ACB,则∠BIC=,若BM、CM分别是∠ABC,∠ACB的外角平分线,则∠M=.【答案】140°;40°【解答】解:∵∠A =100°,∵∠ABC +∠ACB =180°﹣100°=80°,∵BI 、CI 分别平分∠ABC ,∠ACB ,∴∠IBC =∠ABC ,∠ICB =∠ACB ,∴∠IBC +∠ICB =∠ABC +∠ACB =(∠ABC +∠ACB )=×80°=40°,∴∠I =180°﹣(∠IBC +∠ICB )=180°﹣40°=140°;∵∠ABC +∠ACB =80°,∴∠DBC +∠ECB =180°﹣∠ABC +180°﹣∠ACB =360°﹣(∠ABC +∠ACB )=360°﹣80°=280°,∵BM 、CM 分别是∠ABC ,∠ACB 的外角平分线,∴∠1=∠DBC ,∠2=ECB ,∴∠1+∠2=×280°=140°,∴∠M =180°﹣∠1﹣∠2=40°.故答案为:140°;40°.1.(2020秋•薛城区期末)如图,CD 、BD 分别平分∠ACE 、∠ABC ,∠A =80°,则∠BDC 【跟踪训练】=()A.35°B.40°C.30°D.45°【答案】B【解答】解:∵∠ACE是△ABC的外角,∴∠A=∠ACE﹣∠ABC,∵CD、BD分别平分∠ACE、∠ABC,∴∠DCE=∠ACE,∠DBE=∠ABC,∵∠DCE是△BCD的外角,∴∠D=∠DCE﹣∠DBC=∠ACE﹣∠ABC=(∠ACE﹣∠ABC)===40°,故选:B.2.(2020春•江阴市期中)AD是∠CAE的平分线,∠B=35°,∠DAE=60°,则∠ACD =()A.25°B.60°C.85°D.95°【答案】D【解答】解:∵AD是∠CAE的平分线,∴∠EAC=2∠DAE=120°,∴∠ACB=∠EAC﹣∠B=85°,∴∠ACD=180°﹣85°=95°,故选:D.3.(2019秋•保山期末)如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.110°B.115°C.120°D.125°【答案】A【解答】解:∵∠A=27°,∠C=38°,∴∠AEB=∠A+∠C=65°,∵∠B=45°,∴∠DFE=65°+45°=110°,故选:A.4.(2021春•淮阳区期末)如图,在△ABC中,BP平分∠ABC,AP平分∠NAC,CP平分△ABC的外角∠ACM,连接AP,若∠BPC=40°,则∠NAP的度数是()A.30°B.40°C.50°D.60°【答案】C【解答】解:∵BP平分∠ABC,CP平分△ABC的外角∠ACM,∴∠PCM=ACM,∠PBC=ABC,∵∠ACM=∠ABC+∠BAC,∠PCM=∠PBC+∠BPC,∴∠PCM=ABC+BAC=+∠BPC,∴∠BPC=∠BAC=40°,∴∠BAC=80°,∴∠NAC=100°,∴∠NAP=50°,故选:C.5.(2021春•茌平区期末)如图,在△ABC中,∠ABC,∠ACB的平分线交于点O,D是∠ACF与∠ABC平分线的交点,E是△ABC的两外角平分线的交点,若∠BOC=130°,则∠D的度数为()A.25°B.30°C.40°D.50°【答案】C【解答】解:由题意得:CO,CD分别平分∠ACB,∠ACF,∴∠ACO=∠ACB,∠ACD=∠ACF,∵∠ACB+∠ACF=180°,∴∠OCD=∠ACO+∠ACD=90°,∵∠BOC=130°,且∠BOC是△OCD的外角,∴∠D=∠BOC﹣∠OCD=130°﹣90°=40°.故选:C.6.(2020秋•费县期末)如图,BA1和CA1分别是△ABC的内角平分线和外角平分线,BA2是∠A1BD的角平分线,CA2是∠A1CD的角平分线,BA3是∠A2BD的角平分线,CA3是∠A2CD的角平分线,…,若∠A=α,则∠A2021为.【答案】【解答】解:∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,同理可得∠A2=∠A1,∠A3=∠A2,……则∠A2021=∠A=.故答案为:.8.(2021春•衡阳县期末)如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.【解答】(1)解:∵∠A=80°.∴∠ABC+∠ACB=100°,∵点P是∠ABC和∠ACB的平分线的交点,∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,(2)∵外角∠MBC,∠NCB的角平分线交于点Q,∴∠QBC+∠QCB=(∠MBC+∠NCB)=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;(3)延长BC至F,∵CQ为△ABC的外角∠NCB的角平分线,∴CE是△ABC的外角∠ACF的平分线,∴∠ACF=2∠ECF,∵BE平分∠ABC,∴∠ABC=2∠EBC,∵∠ECF=∠EBC+∠E,∴2∠ECF=2∠EBC+2∠E,即∠ACF=∠ABC+2∠E,又∵∠ACF=∠ABC+∠A,∴∠A=2∠E,即∠E=∠A;∵∠EBQ=∠EBC+∠CBQ=∠ABC+∠MBC=(∠ABC+∠A+∠ACB)=90°.如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.综上所述,∠A的度数是90°或60°或120°.15。

三角形角平分线性质

三角形角平分线性质

三角形角平分线性质
三角形角平分线性质:
1. 三角形内角平分线是从三角形内角出发并延伸到角对边的中点的一
条线。

2. 三角形外角平分线是从某个角的外接点延伸到角的对边的中点的一
条线。

3. 若把三角形的一个内角平分线投射到另一条边,则这条边上会出现
两个度数相等的角。

4. 三角形另外两条边上也会出现两个度数相等的角,而这两个夹角分
别是已知角平分线所触碰的边的一半。

5. 如果三角形的两个角的度数是内角平分线的两段的乘积,则三角形
为等腰三角形;如果三角形的两个角的度数是外角平分线的两段的乘积,则三角形为直角三角形。

6. 三角形的外角平分线的长度与三斜边的长度之比是加上直角的度数,并称为帕斯卡比。

7. 三角形角平分线的面积是外角平分线长度乘以其邻边长度的1/2,称
为斯拉特尔面积。

8. 三角形角平分线的弦形长度等于一条边长度的1/3乘以平方根的两倍,并称为塔尔特弦形长度。

9. 三角形角平分线的半周长等于该角的度数乘以弦形长度,并称为霍
伦斯半周长。

初中数学-三角形内外角平分线有关命题的证明及应用

初中数学-三角形内外角平分线有关命题的证明及应用

三角形内外角平分线一.命题的证明及应用在中考常有与三角形内外角平分线有关的题目,若平时不注意总结是很难一下子解决的.下面来一起学习一下.命题1 如图1,点D是△ABC两个内角平分线的交点,则∠D=90°+∠A.证明:如图1:∵∠1=∠,∠2=∠,∴2∠1+2∠2+∠A=180°①∠1+∠2+∠D=180°②①-②得:∠1+∠2+∠A=∠D③由②得:∠1+∠2=180°-∠D④把③代入④得:∴180°-∠D+∠A=∠D∠D=90°+∠A.点评利用角平分线的定义和三角形的内角和等于180°,不难证明.命题2 如图2,点D是△ABC两个内角平分线的交点,则∠D=90°-∠A.证明:如图2:∵DB和DC是△ABC的两条外角平分线,∴∠D=180°-∠1-∠2=180°-(∠DBE+∠DCF)=180°-(∠A+∠4+∠A+∠3)=180°-(∠A+180°)=180°-∠A-90°=90°-∠A;点评利用角平分线的定义和三角形的一个外角等于与它不相邻两外角的和以及三角形的内角和等于180°,可以证明.命题3 如图3,点E是△ABC一个内角平分线与一个外角平分线的交点,则∠E=∠A.证明:如图3:∵∠1=∠2,∠3=∠4,∠A+2∠1=2∠4①∠1+∠E=∠4②①×代入②得:∠E=∠A.点评利用角平分线的定义和三角形的一个外角等于与它不相邻两外角的和,很容易证明.命题4如图4,点E是△ABC一个内角平分线BE与一个外角平分线CE 的交点,证明:AE是△ABC的外角平分线.证明:如图3:∵BE是∠ABC的平分线,可得:EH=EFCE是∠ACD的平分线, 可得:EG=EF∴过点E分别向AB、AC、BC所在的直线引垂线,所得的垂线段相等.即EF=EG=EH∵EG=EH∴AE是△ABC的外角平分线.点评利用角平分线的性质和判定能够证明.应用上面的结论能轻松地解答一些相关的比较复杂的问题,下面来一起看.例1如图5,PB和PC是△ABC的两条外角平分线.①已知∠A=60°,请直接写出∠P的度数.②三角形的三条外角平分线所在的直线形成的三角形按角分类属于什么三角形?解析:①由命题2的结论直接得:∠P=90°-∠A=90°-×60°=60°②根据命题2的结论∠P=90°-∠A,知三角形的三条外角平分线所在的直线形成的三角形的三个角都是锐角,则该三角形是锐角三角形.点评此题直接运用命题2的结论很简单.同时要知道三角形按角分为锐角三角形、直角三角形和钝角三角形.例2如图6,在△ABC中,延长BC到D,∠ABC与∠ACD的角平分线相较于点,∠BC与∠CD 的平分线交与点,以此类推,…,若∠A=96°,则∠= 度.解析:由命题③的结论不难发现规律∠∠A .可以直接得:∠=×96°=3°.点评 此题是要找出规律的但对要有命题③的结论作为基础知识.例3(203陕西第一大题填空题第八小题,此题3分)如图7,△ABC 的外角∠ACD 的平分线CP 的内角∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP=_______________.解析:此题直接运用命题4的结论可以知道AP是△ABC 的一个外角平分线,结合命题3的结论知道∠BAC=2∠BPC, CAP=(180°-∠BAC )= (180°-2∠BPC )=50°.点评 对命题3、4研究过的读者此题不难,否则将是一道在考试的时候花时间也不一定做的出来的题目. 例4 (2003年山东省)如图,在Rt △ABC 中,∠ACB=90°,∠BAC=30°,∠ACB 的平分线与∠ABC 的外角平分线交与E 点,连接AE ,则∠AEB= 度.解析:有题目和命题4的结论可以知道AE 是△ABC 的一个外角平分线, 结合命题2的结论知道∠AEB=∠ACB -∠ACB=90°-×90°=45°点评 从上面的做题过程来看题目中给出的“∠A=30°”这个条件是可以不用的.二.角平分线定理使用中的几种辅助线作法一、已知角平分线,构造三角形例题、如图所示,在△ABC 中,∠ABC=3∠C ,AD 是∠BAC 的平分线,BE ⊥AD 于F 。

三角形角平分线地结论及应用

三角形角平分线地结论及应用

浅议三角形角平分线的结论及应用摘要:一个角的平分线是一条射线,而三角形的角平分线是一条线段。

本文主要谈两点:关于三角形的、外角平分线的夹角的问题和关于三角形、外角平分线的交点问题。

关于三角形的、外角平分线的夹角问题:(1)三角形两角平分线的夹角等于90度与三角形第三个角的一半的和。

(2)三角形两外角平分线的夹角等于90度与三角形第三个角的一半的差。

(3)三角形一个角的平分线与一个外角平分线的夹角等于三角形第三个角的一半(4)三角形两角平分线的夹角与两外角平分线的夹角互补或相等。

关于三角形外角平分线的交点问题:(5)三角形的三条角平分线相交于一点,这点到三角形的三边的距离相等(6)三角形两外角平分线的交点到三角形三边所在的直线相等,并且这点在三角形第三个角的平分线上等关键词:三角形角平分线夹角交点变式练习一个三角形的角平分线不外乎就是角的平分线和外角的角平分线。

在学习过程中,教师要指导学生善于对三角形的角平分线的基本图形进行归纳,对角平分线的性质和结论做好总结,这样对以后知识的积累有很大的帮助,对解决复杂的几何证明题也更便捷。

下面就三角形角平分线的相关结论逐一探讨。

结论一:如图1、在△ABC中,∠ABC、∠ACB的角平分线的交与点D,1∠A。

试探究:∠D=90°+2解:∵BD、CD为角平分线1∠ABC,(图1)∴∠CBD=21∠ACB。

∠BCD=2在△BCD中:∠D=180°-(∠CBD+∠BCD)1(∠ABC+∠ACB)=180°-21(180°-∠A)=180°-21∠A=90°+2变式练习的题目有(1)如图2、在△ABC中,∠ABC、∠ACB的角平分线的交与点D,∠D=100°,则∠A的度数是度。

1∠A。

则∠A=2∠D―180°,解:由结论1得知,∠D=90°+2容易得出∠A=20°(图2)(2)如图3:在四边形ABCD中,∠D=120°,∠A=100°∠ABC、∠ACB的角平分线的交与点E,试求∠BEC的度数。

三角形角分线定理及其应用

三角形角分线定理及其应用

三角形角分线定理及其应用
三角形角分线定理,简称“角分线定理”,是几何典型定理之一。

它指出,在一个三角形中,当任意一个内角的角平分线经过三角形的另外两个边上的点时,该点到其他两个角对应的边上的距离总是相等的。

角分线定理可以证明任何三角形的周长大于其内接圆的周长,并且当三角形边长都相等时,存在一个角顶点等于内接圆半径的情况。

角分线定理也有助于证明其他几何定理,如:托伯特定理,贾塞罗定理以及几何中许多其他定理。

此外,角分线定理在几何学中拥有许多重要应用。

它可以用于证明各种三角形、矩形和多边形的两个角等腰三角形性质,如同等腰三角形、菱形、等腰直角三角形和菱角三角形。

角分线定理也可用于证明沿着边的和未沿着边的垂直角等腰三
角形的性质,以及等边三角形的一些性质,如其内角和外角的和相等,为180°。

角分线定理也可以用于求解几何问题,如求某角的弧度大小,求某个点到某边的距离,以及求三角形外接圆半径、内接圆半径等等。

在数学中,角分线定理也可以应用到复数中。

例如,若一个复数平面上的点有n个,则可以根据角分线定理得出,这n个点的综合角度是2π。

角分线定理在建筑工程中、机械工程中以及其他技术领域也可以得到应用。

例如,它可以用来设计和构建车轮、曲柄机构、桁架机构
和其他各种机械结构,以及求解测绘问题和地图投影问题等。

总之,角分线定理是一条几何定理,它有多种应用,并且在现代数学、建筑工程、机械工程和其他技术领域也可以得到广泛应用。

三角形内外角平分线与角的关系

三角形内外角平分线与角的关系

三角形内外角平分线与角的关系咱来说说三角形内外角平分线和角的那些事儿。

一、内角平分线与角的关系。

1. 一个内角平分线把这个角分成两个相等的角。

- 你看啊,在三角形里,假如有个角∠A,它的角平分线AD一出来,那就把∠A 分成了两个小角,∠BAD和∠CAD,这俩小角那可是一模一样大的。

就好像把一块蛋糕(∠A这个角),从中间(角平分线)平均切成了两块(∠BAD和∠CAD)。

2. 三角形内角平分线定理。

- 这个定理可有点意思呢。

如果AD是△ABC中∠A的平分线,它交BC于D点,那么就有AB/AC = BD/DC。

你可以想象成,角平分线AD就像一个裁判,它把BC边分成的两段BD和DC的比例,就和AB、AC这两条边的比例是一样的。

这就好像是三角形里的一种“平衡规则”,角平分线在这儿起着一种特殊的协调边和角关系的作用。

二、外角平分线与角的关系。

1. 外角平分线与相邻内角的关系。

- 三角形一个角的外角平分线和它相邻的内角是互补的关系。

比如说,在△ABC 中,∠A的外角∠CAE,它的平分线AF,那∠CAF和∠BAF把∠CAE平分了。

而∠CAE和∠BAC是互补的,也就是∠CAE+∠BAC = 180°。

这就好比一个在外面(外角),一个在里面(相邻内角),它们合起来就是一条直线的角度。

2. 三角形外角平分线定理。

- 如果AE是△ABC的外角∠CAE的平分线,交BC的延长线于E点,那么有AB/AC=BE/CE。

这就和内角平分线定理有点类似啦,外角平分线也在协调着边和角之间的比例关系。

只不过这里是涉及到边的延长线部分了。

就好像外角平分线在三角形外面也在按照自己的规则管理着边和角的关系呢。

三角形角平分线的结论及应用

三角形角平分线的结论及应用

浅议三角形角平分线的结论及应用摘要:一个角的平分线是一条射线,而三角形的角平分线是一条线段。

本文主要谈两点:关于三角形的内、外角平分线的夹角的问题和关于三角形内、外角平分线的交点问题。

关于三角形的内、外角平分线的夹角问题:(1)三角形两内角平分线的夹角等于90度与三角形第三个内角的一半的和。

(2)三角形两外角平分线的夹角等于90度与三角形第三个内角的一半的差。

(3)三角形一个内角的平分线与一个外角平分线的夹角等于三角形第三个内角的一半(4)三角形两内角平分线的夹角与两外角平分线的夹角互补或相等。

关于三角形内外角平分线的交点问题:(5)三角形的三条内角平分线相交于一点,这点到三角形的三边的距离相等(6)三角形两外角平分线的交点到三角形三边所在的直线相等,并且这点在三角形第三个内角的平分线上等关键词:三角形角平分线夹角交点变式练习一个三角形的角平分线不外乎就是内角的平分线和外角的角平分线。

在学习过程中,教师要指导学生善于对三角形的角平分线的基本图形进行归纳,对角平分线的性质和结论做好总结,这样对以后知识的积累有很大的帮助,对解决复杂的几何证明题也更便捷。

下面就三角形角平分线的相关结论逐一探讨。

结论一:如图1、在△ABC中,∠ABC、∠ACB的角平分线的交与点D,1∠A。

试探究:∠D=90°+2解:∵BD、CD为角平分线1∠ABC,(图1)∴∠CBD=21∠ACB。

∠BCD=2在△BCD中:∠D=180°-(∠CBD+∠BCD)1(∠ABC+∠ACB)=180°-21(180°-∠A)=180°-21∠A=90°+2变式练习的题目有(1)如图2、在△ABC中,∠ABC、∠ACB的角平分线的交与点D,∠D=100°,则∠A的度数是度。

1∠A。

则∠A=2∠D―180°,解:由结论1得知,∠D=90°+2容易得出∠A=20°(图2)(2)如图3:在四边形ABCD中,∠D=120°,∠A=100°∠ABC、∠ACB的角平分线的交与点E,试求∠BEC的度数。

三角形内角角平分线和外角角平分线的定义

三角形内角角平分线和外角角平分线的定义

三角形内角角平分线和外角角平分线的定义一、三角形内角角平分线的定义1. 什么是三角形内角角平分线?三角形内角角平分线是指从一个三角形的一个内角的顶点出发,经过该内角的对边的中点并且与对边相交于对边的中点的线段。

2. 三角形内角角平分线的性质a. 三角形内角角平分线把对应内角分成两个等角,而且它还把对应的对边分成两个相等的线段。

b. 三角形内角角平分线的交点称为内心,内角角平分线也称之为内心角平分线。

c. 三角形的三条内角角平分线相交于同一个点,即三角形的内心。

3. 三角形内角角平分线的作用三角形内角角平分线是解决三角形内部各类角度相关问题的基础,通过利用三角形内角角平分线的性质,可以有效地求解相关的角度大小,并且可以推导出其他的重要性质和定理。

二、三角形外角角平分线的定义1. 什么是三角形外角角平分线?三角形外角角平分线是指三角形的一个外角的顶点出发,经过它的对边的中点并且与其它两条边相交于对应边的中点的线段。

2. 三角形外角角平分线的性质a. 三角形外角角平分线把对应外角分成两个等角,而且它还把对应的对边分成两个相等的线段。

b. 三角形外角角平分线的交点称为外心,外角角平分线也称之为外心角平分线。

c. 三角形的三条外角角平分线相交于同一个点,即三角形的外心。

3. 三角形外角角平分线的作用三角形外角角平分线同样也是解决三角形外部各类角度相关问题的基础,通过利用三角形外角角平分线的性质,可以有效地求解相关的角度大小,并且可以推导出其他的重要性质和定理。

总结通过上面的讨论,我们可以得出结论:三角形内角角平分线和外角角平分线是解决三角形问题的重要工具。

在解决三角形问题的时候,我们可以利用它们的性质,通过角度的分割和等分的方法,来求解出我们需要的角度大小。

三角形内角角平分线的交点叫内心,而三角形外角角平分线的交点叫外心,它们分别具有特定的性质和功能。

在学习和研究三角形的性质和相关问题的时候,我们需要深入理解和掌握三角形内角角平分线和外角角平分线的定义、性质和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
O
B
C
2、已知∠A=32°∠B=45°∠C=38°A则∠ DFE 等于( B )
A.120° C.110°
B.115°
D.105°
D F
CEB
1、在△ABC中,O是∠ABC与∠ACB的平分线BO和
CO的交点,则∠BOC=90°+ ∠1A
A
2A
O
B
C
B
C
D
O
E
2、O是外角∠DBC与外角∠ECB的平分线BO和 CO的交点,则∠BOC= 90°+ ∠1 A
F
D
4、如图,在正方形ABCD中,已知 ∠AEF=30°,∠BCF=28°,则∠EFC的 度数__5_8°_
A ED
F
B
C
例1、如图,你能求出∠CDB与∠A,∠B, ∠C的关系吗?为什么?
B D A
C
∠CDB=∠A+∠B+∠C
1、已知∠ABO=20°, ∠ACO=25°∠A=35°,
则∠BOC的度数__8_0_°__
的平分线交于点A1 ,得∠A1;∠A1BC和 ∠A1CD的平分线交于点A2,得 ∠A2;…∠A2012BC和∠A2012CD的平分线交于 点A2013,则∠A2013= m 度。
22013
A A1
A2
B
C
D
探索题:如图,∠XOY=90°,点A、B分别在 射线OX,OY上移动,BE是∠ABY的平分线, BE的反向延长线与∠OAB的平分线相交于点 C,试问∠ACB的大小是否变化,如果保持 不变,请给出证明,如果随点A、B的移动 变化,请给出变化范围。
Y
D
E B
C X
OA
B D
C
A
A
B D
O
C E
A
O
B
C
A O
B
C
D
下课了!
结束寄语
严格性之于数学家,犹如道德之 于人.
由“因”导“果”,执“果”索 “因”.是探索证明思路的基本 方法.
(2012呼和浩特,13,3分)如图,在△ABC中,∠B=47°, 三角形的外角∠DAC和∠ACF的平分线交于点E,则 ∠AEC=______°
【解析】∵∠B=4676.°5 ,∴∠BAC+∠BCA=180°– 47°=133°, ∴∠CAD+∠ACF=°360°–133°=227°
又∵AE和CE是角平分线,∴∠CAE+D∠ACE=113.5°,D
∴∠E=180°–113.5°=66.5° A
A
【答案】66.5
E
E
B
B
【点评】本题考查了三角形的内角C和3
∵BO和CO分别是
∠ABC和∠ACB的角平
分线,
A.10°B.20°C.30°D.80°
C
B
A
1
2、将一副常规的三角尺按如图方式 放置,则图中∠AOB的度数为( C )
A.75°
B.95°
D
C.105°
D.120°
C
B
O
A
3、如图,已知AB∥CD,∠EBA=45°, ∠E+∠D的度数为( D )
A.30°B.60°C.90°D.45°
E
AB
C
2
3、如图,O是∠ABC与外角∠ACD的平分线BO 和CO的交点,试分析∠BOC与∠A有怎样的 关系?
A O
B
C
D
3、如图,△ABC的外角∠ACD的平分线CP 和内角∠ABC平分线BP交于点P,若
∠BPC=40°,则 ∠CAB=_____8_0_°__.
A
P
B
CD
4、如图,在△ABC中∠A=m°,∠ABC和∠ACD
三角形内、外角平分线的应用
教学目标:1、熟悉并掌握三角形内 角和定理及其推论;运用角分线定 义、三角形内角和定理及推论解决 问题;
2、经历探索、证明的过 程,强化基础,提高推理能力,培 养几何意识
知识点:
1、三角形内角和定理 2、三角形的外角定理
1、如图,∠1=100°,∠C=70°, 则∠A的大小是( C )
相关文档
最新文档