圆筒件的拉深系数

合集下载

圆筒形件最小拉深系数测定及拉深过程模拟分析(基于dynaform)

圆筒形件最小拉深系数测定及拉深过程模拟分析(基于dynaform)

吉林大学材料科学与工程学院材料成型及控制工程专业(锻压)综合实验题目:圆筒形件最小拉深系数测定及拉深过程模拟分析学号:43090919姓名:崔如坤指导老师:程万军、李欣、张志强时间:2013年3月3日——2013年3月23日目录一、实验过程报告 (1)1、实验目的 (1)2、实验内容 (1)3、实验用具 (1)4、实验步骤 (1)5、实验材料(08AL)性能分析 (2)6、影响材料冲杯实验结果的因素 (2)7、实验数据 (2)二、用DYNAFORM软件模拟实验过程中的拉深试件 (3)1、创建三维模型 (3)2、数据 (3)(1) 创建DYNAFORM数据库 (3)(2)导入模型 (3)(3) 参数设定 (4)3、网格划分 (5)4、网格检查及网格修补 (6)5、自动设置 (7)(1) 初始设置 (7)(2) 定义板料零件“BAN50” (8)(3) 定义凹模零件“AOMO”、凸模零件“TUMO” (10)(4) 定义压边圈零件“YBQ” (10)(5) 工模具初始定位设置 (11)(6) 工模具拉伸行程参数设置 (12)(7) 工模具运动规律的动画模拟演示 (12)(8) 提交LS-DYNA进行求解计算 (13)6、后置处理 (14)7、模拟结果分析 (15)(1) 零件的最终外形图 (15)(2) 最终零件的壁厚变化分布图 (15)(3) 最终零件的FLD图 (16)(4) 最终零件平均应力分布图 (16)8、实验结果模拟分析 (17)(1) 不同直径毛坯的成形极限图 (17)(2) 不同直径毛坯的厚度分布图 (19)(3) 不同直径毛坯的平均应力分布图 (21)(4) 模拟实验结果表 (23)一、实验过程报告1、实验目的(1)掌握最小拉深系数的测定方法。

(2)认识起皱、拉裂现象及其影响因素。

(3)熟悉掌握dynaform软件操作方法,熟悉板料成形模拟原理。

2、实验内容(1)拉深系数m是每次拉深后圆筒形件的直径与拉深前坯料(或工序件)直径的比值。

圆筒形件拉深尺寸计算和成形过程模拟

圆筒形件拉深尺寸计算和成形过程模拟

圆筒形件拉深尺寸计算和成形过程模拟摘要:在冲压生产中,拉深是广泛使用的工序。

通过拉深可获得筒形、阶梯形、锥形、球形等零件。

平板毛坯拉深成筒状开口零件时口部出现飞边卷口现象,对此进行切边设计。

关键词:筒形件;模具结构;拉深间隙Dynaform作为近年来板料成形数值模拟技术中常用的软件,可以预测成形过程中板料的破裂、起皱、回弹等,从而帮助设计人员显著减少模具开发设计时间及试模周期。

在利用该软件进行模拟分析时,应该采用理论计算和软件模拟共用,以找出合适的成形工艺。

带凸缘的圆筒形件是日常生活中常用的零件,如不锈钢的面盆、压力锅的锅盖等物品,均属于带凸缘的圆筒形件。

本文利用所给的拉深件,首先计算了拉深过程中的部分尺寸,而后在理论计算的基础上,结合Dynaform软件对零件的拉伸过程进行模拟,找出了较为合适的压边力,从而为后续拉深模具设计提供依据。

1、带凸缘圆筒形件拉深尺寸计算图1是带凸缘圆筒形件的零件图,其壁厚为2mm,材料为304不锈钢,精度为IT14级。

本文计算的拉深尺寸包括拉深毛坯的尺寸、拉深次数的计算、压边装置的使用与否以及压边力的计算。

1.1带凸缘圆筒形件毛坯尺寸的计算由图1,零件的厚度t=2mm,因此在计算毛坯尺寸时应采用中线尺寸计算。

该零件的相对直径dt/d=380/320=1.18,其中dt为凸缘直径,d为圆筒件底部直径,取修边余量δ=6mm。

由拉深毛坯尺寸的计算公式可知:根据图1,d4=380+2δ=392mm,r=6mm,d2=d+2r=332mm,H=98mm由此计算出防尘盖毛坯尺寸:1.2是否需要压边装置和拉深次数的计算本零件采用普通平面凹模拉深,毛坯不起皱条件为:t/D≥(0.09~0.17)(1-m)由图1和D可计算出:t/D=2/527=0.38%,总拉深系数m=d2/D=332/527=0.63。

因此(0.09~0.17)(1-m)=0.0333~0.0629,则t/D<(0.09~0.17)(1-m),因此该零件拉深时需使用压边圈。

直壁圆桶形件落料拉深模设计

直壁圆桶形件落料拉深模设计

模具课程设计机械与自动化工程系数控加工专业班级10级数加3班学号XX姓名XX1.零件的工艺性分析如图,该产品是不带凸缘的直壁圆桶形件,厚度为0.3;零件的形状简单、对称,底部最大圆角半径为3.1,最小圆角半径为2.8,满足拉深工艺对形状和尺寸的要求,适合于拉深成行;2.工艺方案确定(1)确定修边余量由h/d=(19.3-0.15)/28.6=0.67,查表4.1得Δh=1.2mm(2)毛胚直径计算由式(4。

1)得D=[d0²+4d(h+Δh)+2πrd+8r²]½=[ (28.2×2.95)²+4×28.3×(19.3-0.3-2.95+1.2)+2π×3.1×(28-0.6)+8×3.1²]½=54mm(3)拉深次数确定1)判断是否需要压边圈。

由毛胚相对厚度t/D×100=(0.3/54)×100=0.556。

查表4.6知需要采用压边圈。

2)确定拉深次数。

由t/D×100=0.556。

查表4.4得极限拉深系数[m1]=0.58,[m2]=0.79则各拉深直件直径为:D1=[m1]=0.58×54=31.32mmD2=[m2]=0.79×31.32=24.74mm则两次拉深即可完成(4)方案确定。

该拉深件需要落料、二次拉深、一次冲孔、一次切边才能最终成行。

因此成行该零件的方案有以下几种:方案一:单工序生产,即落料-拉深-拉深-冲孔-切边方案二:首次复合,即落料拉深复合-拉深-冲孔-切边方案三:级进拉深方案一模具结构简单,但首次拉深时毛胚定位比较困难;方案三模具的结构比较复杂;因此方案二比较合适。

3.工艺计算(1)各次拉深半成品尺寸的确定1)半成品直径。

将上述极限拉深系数作调整,现分别如下:m1=0.63 d1=m1D=0.62×54=34.02mmm2=0.84 d2=m2D=0.84×34.02=28.6mm2)半成品底部圆角半径 r1=5.5mm r2=3.5mm3)半成品高度H,由式(4.3)计算得H1=0.25(D2/d1-d1)+0.43r1/d1(d1+0.32r1)=[0.25×(54²/34.02-34.7)+0.43×5.5/34.7×(34.7+0.32×5.5)]=15.24mmH2=19.9mm(2)冲压工艺力计算及初选设备拉深力由式(4.8)计算,查表4.8得K2=0.75查表1.3取бb=320Mpa则F压=π(d²1-d²2)P/4=π×(34.02²-28.6²)×1.2/4N=3.2KN选用单动压力机,设备吨位:F设≥F1+F压=21.34+3.2=24.54KN4.模具工作部分尺寸的设计落料凸凹模刃口尺寸计算查表2.11,-б=-0.004mm,+б=+0.006mm. 磨损系数X=0.5凹模刃口尺寸Dd=(D-Z min) +0б=(54-0.5×0.31) +00.006mm=53.85+0.0006mm凸模刃口尺寸寸D=(D d-Z min)0-αP=(53.85-0.01) 0-0.004=53.840-0.004mm拉深(1)模具单边间隙C的确定查表4.13得第二拉深凸凹模之间的单边间隙为 C2=t=1mm(2)凸凹模圆角半径的确定1)凹模圆角半径r d2的确定查表4.12得r d1=8t=2.4mm则r d(n-1)=(0.6-0.8)r d n可得r d2=1.92mm2)凸模圆角半径r p2的确定由于工件圆角半径大于料厚,因此最后一次拉深用的凸模圆角半径应该与工件圆角半径一致,即r p2=2.95mm(3)凸凹模刃口尺寸即尺寸公差的确定零件的尺寸及精度是由最后一道拉深模保证的,因此最后一道拉深用模具的刃口尺寸与公差应由工件决定.由于零件对外形有尺寸要求,因此以凸模为基准,间隙取在凹模上,即:D p2=(d min+0.4×Δ)0-Б=(28+0.4×0.74)-00.002mm=28.296-00.002mmD d2=(d p2+2C)+Б0=(28.296+2)+00.03mm=30.296+00.03mm式中бp、бd分别是凸凹模的制造公差,由表4.14查得Δ是工件的公差、工件未注公差可以按IT14级取为0.74mm凸模通气孔尺寸确定由表4.15查得.通气孔尺寸为5mm落料拉深复合模尺寸计算1)拉深凸凹模的尺寸计算1 模具单边间隙的确定查表4.13得c1=1.1t=0.33mm2 凸凹模圆角半径的确定凹模圆角半径查表4.12得rd1=2.4mm凸模圆角半径rp1=2.4mm2凸凹模刃口的尺寸及尺寸公差的计算(注:未注公差可按IT14计算)dp1=(dmin+0.4×△)=33.296 mmdd1=(dp1+2c)=33.956 mm3凸模通气孔尺寸的确定查表4.15得5mm2)落料凸凹模的尺寸及尺寸公差的计算根据刃口尺寸计算的露体原则查表2.11 得δp=-0.005 δd=+0.008凹模刃口尺寸Dd=(D-x△) =(55-0.5×0.72) mm=54.64 mm凸模刃口尺寸Dp=(Dd-Zmin) =(54.64-0.01) mm=54.63 mm校核|δp|+|δd|=0.005+0.008=0.013 Zmax-Zmin=0.03-0.01=0.02 满足|δp|+|δd|≤Zmax-Zmin 满足要求冲孔凸凹模刃口尺寸计算查2.11,-б=-0.004mm,+б=+0.006mm,磨损系数X=0.5凸模刃口尺寸D=(d+Δ) 0-αP =21+0.5×0.3) 0-0.004mm=21.150-0.004mm 凹模刃口尺寸Dd=(d p+Z min0б=(21.15+0.01) +00.006mm=21.16+00.006mm模具主要零件设计(1)凸模材料选用Cr12MOV,热处理至56-60HRC(2)凹模材料选用Cr12MOV,热处理至58-62 HRC(3)压边圈材料选用45钢,热处理至43-48HRC(4)垫板材料选用45钢,热处理至43-48 HRC(5)凸模固定板材料选用45钢.。

圆筒形件的拉深

圆筒形件的拉深

1.1 拉深系数
1) 材料的力学性能
3) 材料的表面质量
5) 润滑条件
圆筒形件的拉深
2) 材料的相对厚度 t/D
及压边圈的使用 4)
拉深次数
6) 拉深速度
1.2 拉深次数的确定
圆筒形件的拉深
拉深件一般经过几次拉深才能达到最终 尺寸形状。如果拉深件总的拉深系数 m总 大 于第一次允许的极限拉深系数 m1,即: m总> m1。
冲压工艺与模具设计
1.1 拉深系数
圆筒形件的拉深
拉深系数表示拉深后圆筒形件的直 径 d 与拉深前毛坯(或半成品)的直径 D 之比。拉深系数表示拉深时板料的变 形程度,用符号 m 表示。M 是小于1的 系数,m 值越小,说明拉深时变形程度
越大。
1.1 拉深系数
圆筒形件的拉深工件总的Fra bibliotek形系数:圆 筒 形 件 的 多 次 拉 深
说明拉深该工件的实际变形程度比第一
次容许的极限变形程度要小,工件可以一次
拉成。否则需要多次拉深才能成形。
圆筒形件的拉深
1.3 各次拉深工序尺寸的确定
圆筒形件的拉深
1.3 各次拉深工序尺寸的确定
冲压工艺与模具设计

凸缘圆筒形工件的拉深设计要点

凸缘圆筒形工件的拉深设计要点

凸缘圆筒形工件的拉深设计要点凸缘圆筒形工件的拉深设计要点:设计确定拉深模具结构时为充分保证制件的质量及尺寸的精度,凸缘圆筒形工件拉深设计注意点:拉深高度应计算准确,且在模具结构上要留有安全余量,以便工件稍高时仍能适应拉深凸模上必须设有出气孔,并注意出气孔不能被工件抱住面而失去作用3)有凸缘拉深件的高度取决于上模行程,模具中药设计限程器,以便于模具调整4)对于形状复杂,须经多次拉深的零件,需先做拉深模,经试压确定合适的毛坯形状和尺寸再做落料模,并在拉深模上按已定形的毛坯,设计安装定位装置。

5)弹性压料设备必须有限位器,防止压料力过大6)模具结构及材料要和制件批量适应7)模架和模具零件,要尽量是使用标准化8)放入和取出制件必须方便安全2、有凸缘圆筒形件的拉深方法及工艺计算有凸缘筒形件的拉深原理与一般圆筒形件是相同的,但由于带有凸缘,其拉深方法及计算与一般筒形件有一定差别。

1)有凸缘拉深件可以看成是一般筒形件在拉深未结束时的半成品,即只将毛坯外径拉深到等于法兰边直径d时的拉深过程就结束。

因此其变形力的压力状态和变形特点与筒形件相同。

2)根据凸缘的相对直径有凸缘筒形件可分为:窄凸缘筒形件和宽凸缘筒形件3、宽凸缘筒形件的工艺计算要点1)毛坯尺寸的技术,毛坯尺寸的计算仍按等面积原理进行,其中要考虑修边余量:根据拉深系数的定义,宽凸缘件总拉深系数仍可表示为:2)判断工件是否一次拉成,这只须比较工件实际所需的总拉深系数和h/d与凸缘件第一次拉深系数和极限拉深系数的相对高度即可。

M总>M1,当h/d4、拉深凸模和凹模的间隙拉深模间隙是指单面间隙,间隙的大小对拉深力,拉深件的质量,拉深模的寿命都有影响,若c值大时,凸缘区变厚的材料通过间隙时,校正和变形的阻力增加,与模具表面的摩擦,磨损严重,使拉深力增加,零件变薄,甚至拉破,模具寿命降低。

间隙小时得到的零件侧壁平直而光滑,质量好,精度较高。

间隙过大时,对毛坯的校直和挤压作用减小,拉深力降低,模具的寿命提高,但零件的质量变差,冲出的零件侧壁不直。

习题答案:第5章拉深

习题答案:第5章拉深

第5章拉深一、填空1.拉深系数m是筒形直径和坯料直径的比值,m越小,则变形程度越大。

(5-1)2.拉深过程中,变形区是坯料的凸缘部分,其它部分是传力区。

(5-1)3.拉深中,产生起皱现象是因为该区域内受较大压应力的作用,导致材料失稳而引起的。

(5-1)4.影响拉深坯料起皱的主要因素有:材料相对厚度,拉深系数和拉深模工作部分的几何形状和尺寸。

(5-1)5.防止圆筒形件拉深起皱的方法通常是采用压料装置,并采用适当的压边力。

(5-1) 6.利用拉深模将一定形状的平面坯料或空心件制成开口件的冲压工序叫做拉深。

(5-1)7.拉深件的壁厚是不均匀的,下部壁厚略有变薄,上部分却有所增厚。

(5-1)8.板料的相对厚度t/D越小,则抗失稳能力越小,越容易起皱。

(5-1)9.一般情况下,拉深件的尺寸精度应在 IT13级以下,不宜高出 IT11 级。

(5-2)10.实践证明,拉深件的平均厚度与坯料厚度相差不大,由于塑性变形前后体积不变,因此,可以按坯料面积等于拉深件表面积原则确定坯料尺寸。

(5-3)11.拉深件的毛坯尺寸确定依据是等面积法。

(5-3)12.确定拉深件坯料形状和尺寸的原则是久里金法则。

(5-3)13.影响极限拉深系数的因素有:材料的组织与力学性能、板料的相对厚度、拉深工作条件等。

(5-4)14.有凸缘拉深件多次拉深必须遵循一个原则,即第一次拉深成有凸缘的工序件时,其凸缘的外径应等于成品零件的尺寸,在以后的拉深工序中仅仅使已拉深成形的工序件的直筒部分参与变形,逐步减少其直径并增加其高度,而第一次拉深时已成形的凸缘外径必须保持不变。

即在以后的拉深工序中不再收缩。

(5-4)15.为了提高工艺稳定性,提高零件质量,必须采用稍大于极限值的拉深系数。

(5-4)16.窄凸缘圆筒形状零件的拉深,为了使凸缘容易成形,在拉深窄凸缘圆筒零件的最后两道工序可采用锥形凹模和锥形压料圈进行拉深。

(5-4)17.压料力的作用为:防止拉深过程中坯料起皱(5-5)18.目前采用的压料装置有弹性压料和刚性压料装置。

圆筒形件拉深工艺计算

圆筒形件拉深工艺计算

拉深工艺与拉深模设计
圆筒形件拉深工艺计算
三、圆筒形件拉深的压料力与拉深力
2.拉深力与压力机公称压力 (2)压力机公称压力
单动压力机,其公称压力应大于工艺总压力Fz。 工艺总压力为 Fz F FY
注意: 当拉深工作行程较大,尤其落料拉深复合时,应使工艺
力曲线位于压力机滑块的许用压力曲线之下。
在实际生产中,可以按下式来确定压力机的公称压力 Fg : 浅拉深 Fg (1.6 ~ 1.8)Fz 深拉深 Fg (1.8 ~ 2.0)Fz
(1)工序件直径的确定
确定拉深次数以后,由表查得各次拉深的极限拉深系
数,适当放大,并加以调整,其原则是:
1)保证m1m2…mn= 2)使m1<m2<…mn
d D
最后按调整后的拉深系数计算各次工序件直径:
d1=m1D d2=m2d1

dn=mndn-1
拉深工艺与拉深模设计
圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
极限拉深系数[m]
从工艺的角度来看,[m]越小越有利于减少工序数。
拉深工艺与拉深模设计
圆筒形件拉深工艺计算
一、拉深系数与极限拉深系数
2.影响极限拉深系数的因素
(1)材料的组织与力学性能 (2)板料的相对厚度t / D
t/D
[m]
(3)拉深工作条件
1)模具的几何参数 2)摩擦润滑 3)压料圈的压料力
拉深工艺与拉深模设计
圆筒形件拉深工艺计算
二、拉深次数与工序件尺寸
1.拉深次数的确定 (2)推算方法
1)由表4.4.1或表4.4.2中查得各次的极限拉深系数; 2)依次计算出各次拉深直径,即
d1=m1D;d2=m2d1;…;dn=mndn-1; 3)当dn≤d时,计算的次数即为拉深次数。

第六章拉深(5—7)

第六章拉深(5—7)

②变形情况:直边流入凹模的速度>圆角部分
∴直边对圆角的变形有带动作用,因此,可减少圆角的拉应力σL。 ③直边与圆角相互影响程度决定于r/B和H/B r/B↓→ 直边对圆角变形影响↑ H/B↑→ 直边对圆角变形影响↑
(二)盒形件毛坯形状与尺寸的确定 1、一次拉深成形的低盒形件坯料 作图法: (1)直边——按弯曲变形
不能用来作为判断依据
m
d d D 2d
2.三种成形方法
(1)
t 3% D
可不用压料圈,但行程终了要整形,
(2)
t 0.5% ~ 3% 采用压料装置拉深 D t 3% D
采用压料筋或反拉深方法
(3)
1. 带直壁 h (0.1 ~ 0.2)d 或带凸缘球形件 dt d (0.2 ~ 0.3)d 有利于球面成形(防皱) 2. 高度小于 r 的浅球形件 问题----------起皱、坯料偏移、回弹 (1)
di mi d i 1
(i=2,3,4…n)
以后各次拉深系数——其值与凸缘宽度及外形尺寸无关,可 查表5-11,与无凸缘拉深相同。
(二)拉深方法
1.小凸缘圆筒件拉深
前几道按无凸缘拉深→最后两道拉为带锥形凸缘件→再整形成平面凸缘。
2.宽凸缘圆筒件拉深方法
表面质量较差,需最后增加整形 工序,适用于薄、深、中小件 (dt<200mm)
查表5-14
ri——各次拉深后工序件口部圆角半径
(2)相对高度 当 r rd 也可用H/r表示 首次拉深查表5-13
拉深系数m大于表5-12或相对高度H/r小于表5-13可一次拉深成形。
(四)盒形件多工序的拉深方法及工序件尺寸的确定 盒形件多次拉深的变形特点: (与筒形件多次拉深不同;与盒形件首次拉深不同)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若某相邻两阶梯直径比值dn/dn-1小于相应圆筒 形件的极限拉深系数时,则由直径dn-1到dn按 凸缘件的拉深办法,其拉深顺序由小阶梯到大 阶梯依次拉深。
若mΣ>m(极限拉深系数),则该零件只 需拉深一次,否则必须多次拉深。
多次拉深时,拉深次数的确定:
取首次拉深系数为m1,则m1=d1/D,故d1=m1D 取第二次拉深系数为m2,则m2=d2/d1
故d2=m2d1=m1m2D … 第n次拉深时,工作直径则为:dn=m1m2m3……mnD 因而mΣ=m1m2m3…mn
工序图:
二、有凸有凸缘圆筒形件的拉深将毛坯拉深至某一时刻 达到零件所要求的凸缘直径dt时不再拉深。
毛坯直径为 :D d2t1 4d1h1 3.44d1r
当圆角半径rd=rp=r时,第一次拉深 系数为 :
m1
d1 D
1
d t1 d1
2
h1 4
d1
3.44 r d1
对于中小型零件(d t<200mm), 采用减小圆筒形部分直径、增加 高度来达到,而圆角半径rp和rd 在整个变形过程中基本保持不变。
用此方法制成的零件,表面质量较差, 容易在筒壁部分和凸缘上残留有中间工 序中形成的圆角部分弯曲和厚度的局部 变化的痕迹,所以最后要加一道整形工 序。
2.改变圆角半径并减小圆筒形直径
当工件的相对拉深高度h/d>h1/d1时,则该 工件就不能用一道工序拉深出来,而需 要两次或多次才能拉出。
以后各次拉深的拉深系数为mn=dn/dn-1。
(二)窄凸缘圆筒形件拉深
对 dt / d 1.11.4 之间的凸缘件称为窄凸缘件。
这类零件因凸缘很小,可以当作一般圆筒形件 进行拉深,只在倒数第二道工序时才拉出凸缘 或拉成具有锥形的凸缘,而最后通过校正工序 压成水平凸缘。
旋转零件的拉深
一、无凸缘圆筒形件的拉深
(一)拉深系数与拉深次数 拉深系数:每次拉深后圆筒形件的直径与拉深 前毛坯(或半成品)的直径之比。
首次:m1=d1/D; 以后各次:m2=d2/d1;m3=d3/d2;…mn=dn/dn-1
式中m1、m2、m3…mn—各次的拉深系数; D—毛坯直径; d1、d2、d3、…dn—各次半成品(或工件)的直径
0.25 d1
D 2
d
2 t
0.43
rp
rd
0.14 d1
rp2
rd2
以后各次拉深高度为(rpn、rdn均按零件中 性层计算)
hn
0.25 dn
D
2
d2t 0.43 rpn rdn
0.14 dn
rpn2
rdn
2

3%
1
三、阶梯形零件的拉深
判断阶梯形零件能否一次拉出:
只要求得总的拉深系数mΣ,然后查得各次的拉深 数值,就能估出拉深次数来。
(二)以后各次拉深的特点和方法
以后各次拉深与首次拉深相比的不同之处::
(1)圆筒形毛坯的壁厚及力学性能都不均匀。 以后各次拉深时,材料已有加工硬化,毛坯的 筒壁要经过两次弯曲才被凸模拉入凹模内,变 形更为复杂,所以它的极限拉深系数要比首次 拉深大,而且后一次都应略大于前一次。 即m1<m2<…<mn
求出工件的高度与最小直径之比 h/dn,该比值若小于圆筒形件一 次拉深成形的最大相对高度(可 由表5-6查得),则工序次数为1, 即可一次拉出。
多次拉深的阶梯形零件的拉深方法如下:
若任意两相邻阶梯直径的比值dn/dn-1都大于相应的圆 筒形件的极限拉深系数,则其拉深方法为由大阶梯到 小阶梯依次拉出。
d4=18.3mm<20mm(工件直径),对拉深极限拉深系 数 可 以 适 当 放 大 一 点 , 现 调 整 为 : m1=0.53、m2=0.76、 m3=0.79和m4=0.81。各次拉深直径可调整确定为
d1 0.53 78mm 41.3mm d2 0.76 41.3mm 31.4mm d3 0.79 31.4mm 24.8mm d4 0.81 24.8mm 20mm
(6)选取各次半成品底部的圆角半径: 取r各1=次5m半m成、品r2=底4.部5m的m圆、角r3=半4m径m的、rpr分4=别3.5为m:m。
(7)计算各次拉深高度: 第n道拉深工件的高度为: hn=0.25(Dk1…kn-dn)+0.43drnn (dn 0.32rn )
为其k中1=,Dk/d1,…kk2n=是d第1/d12…、k2n、=d…n-1n/d次n,的于拉是深比,分别
(5)确定各次拉深直径:由表5-3(4-3)查得各次 拉 深 的 极 限 拉 深 系 数 m1=0.50、m2=0.75、 m3=0.78、m4=0.80,则各次拉深直径为
d1 0.50 78mm 39mm d2 0.75 39mm 29.3mm d3 0.78 29.3mm 22.8mm d4 0.80 22.8mm18.3mm
(三)宽凸缘圆筒形件的多次拉深
宽凸缘件的拉深原则:
零件的拉深系数大于第一次拉深系数极限值, 或者零件的相对高度小于第一次拉深的最大相 对高度值,则该零件可一次拉成。反之,则该 零件需要多次拉深。 除第一次拉深外,以后各次的拉深与拉深圆筒 形件本质一样。
宽凸缘件多次拉深工艺通常有两种情况:
1.减小圆筒形直径并增加高度
2.毛坯的相对厚度t/D 相对厚度t/D小时,容易起皱,防皱压边圈的压 力加大,引起的摩擦阻力也大,因此极限拉深 系数相应地加大。
3.拉深模的凸模圆角半径rp和凹模圆角半径rd
rp过小时,筒壁部分与底部的过渡区的弯曲变形 加大,使危险断面的强度受到削弱,使极限拉深 系数增加。 rd过小时,毛坯沿凹模圆角滑动的阻力增加,筒 壁的拉应力相应加大,提高了极限拉深系数值。
对于大型零件(d t>200mm),采用改 变圆角半径rp和rd,逐渐减小筒形部 分的直径来达到。零件高度基本上 一开始即已形成,而在整个过程中 基本保持不变。此法对厚料更为合 适。 用此方法制成的零件表面光滑平整,而 且厚度均匀,不存在中间拉深工序中圆 角部分的弯曲和局部变薄的痕迹。
但是,这种方法只用于毛坯较厚的情况, 以保证在第一次拉深成大圆角的曲面形 状时不致起皱。
4.润滑条件及模具情况
润滑条件良好、凹模工作表面光滑、间隙正常, 减小摩擦阻力改善金属的流动情况,使极限拉深 系数减小。
5.拉深方式
采用压边圈拉深时,因不易起皱,极限拉深系 数可取小些。不用压边圈时,极限拉深系数可 取大些。
零件总的拉深系数mΣ:
mΣ=d/D
d—零件的直径; D—该零件所需要的毛坯直径。
反拉深的特点:
材料的流动方向有利于相互抵消拉深时形成的 残余应力;
材料的弯曲与反弯曲次数较少,加工硬化也少, 有利于成形;
毛坯与凹模接触面大,材料的流动阻力也大, 材料不易起皱;
其拉深力比正拉深力大20%左右。
反拉深的主要缺点:
拉深凹模壁厚不是任意的,它受拉深系数的影 响,如拉深系数很大、凹模壁厚又不大,强度 就会不足,因而限制其应用。
(三)圆筒形拉深件的工序计算
例:确定图示圆筒件(材料:08钢)所需 的拉深次数及拉深程序。
计算步骤: (1)修边余量:
取δ=6mm (2)毛坯直径:
D≈78mm
(3)确定是否用压边圈:毛坯相对厚度,
t 102 1 102 1.28查表5-8(4-12),应采用压边圈。
D
78
(4)确定拉深次数:采用查表法,当 t 1.28%, h 73.5 3.7 (包括修边余量后的h为 D73.5mm)时d ,20由表5-4(4-5)查得n=4。
在拉深宽凸缘件时需注意:
在凸缘直径dt之后,在以后各次拉深中, 凸缘直径dt不再变化,因为凸缘尺寸的微 小减小都会引起很大的变形抗力,而使 底部危险断面处被拉裂。
要求正确计算拉深高度和严格控制凸模 进入凹模的深度。
各次拉深高度确定如下:
第一次拉深高度为(rp、rd均按零件中性层 计算)
h1
制订拉深工艺时,为了减少拉深次数, 希望采用小的拉深系数(大的拉深比)。
但拉深系数过小,将会在危险断面产生 破裂。
要保证拉深顺利进行,每次拉深系数应 大于极限拉深系数。
影响极限拉深系数的因素:
1.板料的内部组织和力学性能 板料塑性好、组织均匀、晶粒大小适当、屈强 比小时,板料的拉深性能好,可以采用较小的 极限拉深系数。
(2)拉深力在变形区(dn-1一dn)保持不变,直 至拉深终了之前。
(3)破裂往往出现在拉深的末尾,而不是发 生在初始阶段。
(4)稳定性较首次拉深好。
以后各次拉深有正拉深与反拉深两种方法:
正拉深的拉深方向与上一次拉深方向一致; 反拉深的拉深方向与上一次拉深方向相反,工
件的内外表面相互转换。
相关文档
最新文档