谓词逻辑-习题与答案

合集下载

谓词逻辑习题及答案

谓词逻辑习题及答案

谓词逻辑习题1. 将下列命题用谓词符号化。

(1)小王学过英语和法语。

(2)2大于3仅当2大于4。

(3)3不是偶数。

(4)2或3是质数。

(5)除非李键是东北人,否则他一定怕冷。

解:(1) 令)(x P :x 学过英语,Q(x):x 学过法语,c :小王,命题符号化为)()(c Q c P ∧ (2) 令),(y x P :x 大于y, 命题符号化为)3,2()4,2(P P → (3) 令)(x P :x 是偶数,命题符号化为)3(P ⌝ (4) 令)(x P :x 是质数,命题符号化为)3()2(P P ∨(5) 令)(x P :x 是北方人;)(x Q :x 怕冷;c :李键;命题符号化为)()(x P c Q ⌝→ 2. 设个体域}{c b a D ,,=,消去下列各式的量词。

(1)))()((y Q x P y x ∧∃∀ (2)))()((y Q x P y x ∨∀∀(3))()(y yQ x xP ∀→∀(4)))()((y yQ y x P x ∃→∀,解:(1) 中))()(()(y Q x P y x A ∧∃=,显然)(x A 对y 是自由的,故可使用UE 规则,得到 ))()(()(y Q y P y y A ∧∃=,因此))()(())()((y Q y P y y Q x P y x ∧∃∧∃∀ ,再用ES 规则, )()())()((z Q z P y Q y P y ∧∧∃ ,D z ∈,所以)()())()((z Q z P y Q x P y x ∧∧∃∀(2)中))()(()(y Q x P y x A ∨∀=,它对y 不是自由的,故不能用UI 规则,然而,对)(x A 中约束变元y 改名z ,得到))()((z Q x P z ∨∀,这时用UI 规则,可得:))()((y Q x P y x ∨∀∀ ))()((z Q x P z x ∨∀∀⇔ ))()((z Q x P z ∨∀ (3)略 (4)略3. 设谓词)(y x P ,表示“x 等于y ”,个体变元x 和y 的个体域都是}321{,,=D 。

谓词逻辑复习题答案

谓词逻辑复习题答案

谓词逻辑复习题答案一、选择题1. 在谓词逻辑中,以下哪个符号表示“或”?A. ∧B. ∨C. →D. ¬答案:B2. 谓词逻辑中的量词“∀”代表什么含义?A. 存在B. 全部C. 任意D. 否定答案:B3. 下列哪个表达式表示“所有的x都满足P(x)”?A. ∃x P(x)B. ∀x P(x)C. ¬∃x ¬P(x)D. ¬∀x ¬P(x)答案:B4. 谓词逻辑中的否定连接词是哪一个?A. ∧B. ∨C. ¬D. →答案:C5. 如果P(x)表示“x是学生”,Q(x)表示“x是老师”,以下哪个表达式表示“x既是学生又是老师”?A. P(x) ∧ Q(x)B. P(x) ∨ Q(x)C. P(x) → Q(x)D. ¬P(x) ∧ ¬Q(x)答案:A二、填空题6. 谓词逻辑中,表达式“∀x (P(x) ∨ Q(x))”可以解释为“对于任意的x,x满足P或Q”。

请将该表达式转换为自然语言:______________________。

答案:对于任意的x,x是P或者x是Q。

7. 如果P(x)表示“x是大的”,Q(x)表示“x是圆的”,那么表达式“∃x (P(x) ∧ Q(x))”可以解释为“存在某个x,x既大又圆”。

请将该表达式转换为自然语言:______________________。

答案:存在某个x,x既大又圆。

8. 表达式“¬∀x P(x)”可以解释为“不是所有的x都满足P(x)”。

请将该表达式转换为自然语言:______________________。

答案:不是所有的x都满足P。

三、简答题9. 解释谓词逻辑中量词“∃”和“∀”的区别。

答案:量词“∃”表示存在,即至少有一个元素满足某个性质或条件;而量词“∀”表示全部,即所有元素都满足某个性质或条件。

10. 给出一个例子,说明谓词逻辑中的“蕴含”如何使用。

谓词逻辑-习题与答案

谓词逻辑-习题与答案

1、设)()()(),,(323221321x x x x x x x x x E ∧∨∧∨∧=是布尔代数],,},1,0[{-∧∨上的一个布尔表达式,试写出),,(321x x x E 的析取范式和合取范式。

答: 析取范式:)()()()()(),,(321321321321321321x x x x x x x x x x x x x x x x x x E ∧∧∨∧∧∨∧∧∨∧∧∨∧∧= 合取范式:)()()(),,(321321321321x x x x x x x x x x x x E ∨∨∧∨∨∧∨∨∨=2.设P(x):x 是大象,Q(x):x 是老鼠,R(x,y):x 比y 重,则命题“大象比老鼠重”的符号化为答: ∀x ∀y ( (P(x) ∧ Q(x)) → R(x,y))3.设L(x):x 是演员,J(x):x 是老师,A(x , y):x 钦佩y ,命题“所有演员都钦佩某些老师”符号化为( B )。

A 、)),()((y x A x L x →∀;B 、))),()(()((y x A y J y x L x ∧∃→∀ ;C 、)),()()((y x A y J x L y x ∧∧∃∀;D 、)),()()((y x A y J x L y x →∧∃∀ 。

4.下列各式中哪个不成立( A )。

A 、)()())()((x xQ x xP x Q x P x ∀∨∀⇔∨∀ ;B 、)()())()((x xQ x xP x Q x P x ∃∨∃⇔∨∃;C 、)()())()((x xQ x xP x Q x P x ∀∧∀⇔∧∀;D 、Q x xP Q x P x ∧∀⇔∧∀)())((。

5.用推理规则证明)()(a G a P ∧⌝是))()((,)(,))()((,)))()(()((x G x S x a S a R a Q x R x Q x P x ↔∀∧⌝∧→∀的有效结论。

谓词逻辑习题及答案

谓词逻辑习题及答案

谓词逻辑习题1. 将下列命题用谓词符号化。

(1)小王学过英语和法语。

(2)2大于3仅当2大于4。

(3)3不是偶数。

(4)2或3是质数。

(5)除非李键是东北人,否则他一定怕冷。

解:(1) 令)(x P :x 学过英语,Q(x):x 学过法语,c :小王,命题符号化为)()(c Q c P ∧ (2) 令),(y x P :x 大于y, 命题符号化为)3,2()4,2(P P → (3) 令)(x P :x 是偶数,命题符号化为)3(P ⌝ (4) 令)(x P :x 是质数,命题符号化为)3()2(P P ∨(5) 令)(x P :x 是北方人;)(x Q :x 怕冷;c :李键;命题符号化为)()(x P c Q ⌝→ 2. 设个体域}{c b a D ,,=,消去下列各式的量词。

(1)))()((y Q x P y x ∧∃∀ (2)))()((y Q x P y x ∨∀∀(3))()(y yQ x xP ∀→∀(4)))()((y yQ y x P x ∃→∀,解:(1) 中))()(()(y Q x P y x A ∧∃=,显然)(x A 对y 是自由的,故可使用UE 规则,得到 ))()(()(y Q y P y y A ∧∃=,因此))()(())()((y Q y P y y Q x P y x ∧∃∧∃∀ ,再用ES 规则, )()())()((z Q z P y Q y P y ∧∧∃ ,D z ∈,所以)()())()((z Q z P y Q x P y x ∧∧∃∀(2)中))()(()(y Q x P y x A ∨∀=,它对y 不是自由的,故不能用UI 规则,然而,对)(x A 中约束变元y 改名z ,得到))()((z Q x P z ∨∀,这时用UI 规则,可得:))()((y Q x P y x ∨∀∀ ))()((z Q x P z x ∨∀∀⇔ ))()((z Q x P z ∨∀ (3)略 (4)略3. 设谓词)(y x P ,表示“x 等于y ”,个体变元x 和y 的个体域都是}321{,,=D 。

谓词逻辑复习题答案

谓词逻辑复习题答案

谓词逻辑复习题答案
1. 谓词逻辑中的谓词是用来表示什么?
答案:谓词逻辑中的谓词是用来表示一个或多个对象之间关系的符号。

2. 什么是量词?
答案:量词是用来表示某个属性或关系在一定范围内的普遍性或存在
性的逻辑符号。

3. 存在量词和全称量词的区别是什么?
答案:存在量词表示在某个范围内至少存在一个对象满足某种属性或
关系,而全称量词表示在某个范围内的所有对象都满足某种属性或关系。

4. 谓词逻辑中的等价关系有哪些?
答案:谓词逻辑中的等价关系包括逻辑等价、逻辑蕴含和逻辑逆否。

5. 如何使用谓词逻辑表达“所有学生都爱学习”?
答案:可以使用全称量词表达为:∀x(S(x) → L(x)),其中S(x)表示
x是学生,L(x)表示x爱学习。

6. 如何使用谓词逻辑表达“存在一个学生不爱学习”?
答案:可以使用存在量词表达为:∃x(S(x) ∧ ¬L(x)),其中S(x)表示x是学生,L(x)表示x爱学习,¬L(x)表示x不爱学习。

7. 谓词逻辑中的合取、析取和否定如何表示?
答案:合取用符号∧表示,析取用符号∨表示,否定用符号¬表示。

8. 谓词逻辑中的蕴含和等价如何表示?
答案:蕴含用符号→表示,等价用符号↔表示。

9. 谓词逻辑中的量词可以嵌套使用吗?
答案:可以,量词可以嵌套使用,但需要注意量词的作用域。

10. 如何使用谓词逻辑表达“每个学生都有一个朋友”?
答案:可以使用全称量词和存在量词嵌套表达为:∀x(S(x) →
∃y(F(x, y) ∧ P(y))),其中S(x)表示x是学生,F(x, y)表示x和y是朋友,P(y)表示y是人。

谓词逻辑试题讲解及答案

谓词逻辑试题讲解及答案

谓词逻辑试题讲解及答案1. 定义谓词逻辑中的量词。

谓词逻辑中的量词用来表示对某个集合中所有元素或某些元素的断言。

主要有两种量词:全称量词(∀)和存在量词(∃)。

全称量词表示对所有对象都成立的断言,而存在量词表示至少有一个对象满足断言。

2. 解释谓词逻辑中的谓词。

谓词逻辑中的谓词是对一个或多个对象的属性或关系的描述。

例如,谓词“P(x)”可以表示“x是偶数”。

谓词可以是一元的(一个参数),二元的(两个参数),或者多元的(多个参数)。

3. 给出一个谓词逻辑表达式,并解释其含义。

表达式:∀x∈N, ∃y∈N, x=2y含义:对于所有自然数x,都存在一个自然数y,使得x等于2y的倍数。

4. 判断下列命题是否为真,并给出理由。

命题:∀x∈R, x^2 ≥ 0答案:真。

理由:对于所有实数x,x的平方都是非负的。

5. 将下列自然语言命题转化为谓词逻辑表达式。

命题:所有人都是聪明的。

表达式:∀x(P(x) → C(x))解释:对于所有个体x,如果x是人(P(x)),那么x是聪明的(C(x))。

6. 证明:如果一个数是偶数,那么它的平方也是偶数。

证明:设x为任意整数,如果x是偶数,即存在一个整数k使得x=2k。

那么x^2 = (2k)^2 = 4k^2 = 2(2k^2),由于2k^2是整数,所以x^2是偶数。

7. 判断下列命题是否为假,并给出理由。

命题:存在一个实数x,使得x^2 < 0。

答案:假。

理由:实数的平方不可能是负数,因为任何实数的平方都是非负的。

8. 将下列命题转化为谓词逻辑表达式。

命题:没有比2大的偶数。

表达式:∀x∈N, (x > 2 ∧ x是偶数) → 假解释:对于所有自然数x,如果x大于2并且是偶数,则该命题为假。

9. 证明:如果一个数是奇数,那么它的平方也是奇数。

证明:设x为任意整数,如果x是奇数,即存在一个整数k使得x=2k+1。

那么x^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1,由于2k^2 + 2k是整数,所以x^2是奇数。

谓词公式考试题目及答案

谓词公式考试题目及答案

谓词公式考试题目及答案一、选择题1. 谓词公式中,谓词的参数可以是:A. 常量B. 变量C. 函数D. 所有以上选项答案:D2. 下列哪个不是谓词逻辑表达式?A. ∀x P(x)B. ∃y Q(y)C. ¬R(x, y)D. x + y = z答案:D二、填空题3. 谓词逻辑中,全称量词的符号是______。

答案:∀4. 谓词逻辑中,存在量词的符号是______。

答案:∃三、简答题5. 简述谓词公式的一般形式。

答案:谓词公式的一般形式是P(x1, x2, ..., xn),其中P是一个谓词,x1, x2, ..., xn是参数,参数可以是常量、变量或函数。

6. 解释谓词逻辑中的量词。

答案:谓词逻辑中的量词用来表示对变量的量化,包括全称量词(∀)和存在量词(∃)。

全称量词表示对所有可能的值都成立,而存在量词表示至少存在一个值使得命题成立。

四、计算题7. 给定谓词公式:∀x ∃y R(x, y),解释其含义。

答案:该谓词公式的含义是对于所有的x,都存在一个y,使得R(x, y)成立。

8. 如果有谓词公式:∃x (P(x) ∧ Q(x)),它表示什么?答案:该谓词公式表示存在至少一个x,使得P(x)和Q(x)同时成立。

五、论述题9. 论述谓词逻辑与命题逻辑的区别。

答案:谓词逻辑与命题逻辑的主要区别在于谓词逻辑引入了量词和谓词,能够表达更复杂的关系和属性。

命题逻辑主要处理简单的命题和它们的逻辑关系,而谓词逻辑则可以表达涉及个体和属性的更复杂的逻辑结构。

10. 描述谓词逻辑在数学证明中的应用。

答案:谓词逻辑在数学证明中应用广泛,它可以用来形式化地表达数学概念和定理,以及它们的证明过程。

通过谓词逻辑,数学家可以更精确地定义数学对象和它们的性质,以及使用逻辑推理来证明数学命题的正确性。

谓词逻辑习题及答案

谓词逻辑习题及答案

谓词逻辑习题1. 将下列命题用谓词符号化。

(1)小王学过英语和法语。

(2)2大于3仅当2大于4。

(3)3不是偶数。

(4)2或3是质数。

(5)除非李键是东北人,否则他一定怕冷。

解:(1) 令)(x P :x 学过英语,Q(x):x 学过法语,c :小王,命题符号化为)()(c Q c P ∧ (2) 令),(y x P :x 大于y, 命题符号化为)3,2()4,2(P P → (3) 令)(x P :x 是偶数,命题符号化为)3(P ⌝ (4) 令)(x P :x 是质数,命题符号化为)3()2(P P ∨(5) 令)(x P :x 是北方人;)(x Q :x 怕冷;c :李键;命题符号化为)()(x P c Q ⌝→ 2. 设个体域}{c b a D ,,=,消去下列各式的量词。

(1)))()((y Q x P y x ∧∃∀ (2)))()((y Q x P y x ∨∀∀(3))()(y yQ x xP ∀→∀(4)))()((y yQ y x P x ∃→∀,解:(1) 中))()(()(y Q x P y x A ∧∃=,显然)(x A 对y 是自由的,故可使用UE 规则,得到 ))()(()(y Q y P y y A ∧∃=,因此))()(())()((y Q y P y y Q x P y x ∧∃∧∃∀ ,再用ES 规则, )()())()((z Q z P y Q y P y ∧∧∃ ,D z ∈,所以)()())()((z Q z P y Q x P y x ∧∧∃∀(2)中))()(()(y Q x P y x A ∨∀=,它对y 不是自由的,故不能用UI 规则,然而,对)(x A 中约束变元y 改名z ,得到))()((z Q x P z ∨∀,这时用UI 规则,可得:))()((y Q x P y x ∨∀∀ ))()((z Q x P z x ∨∀∀⇔ ))()((z Q x P z ∨∀ (3)略 (4)略3. 设谓词)(y x P ,表示“x 等于y ”,个体变元x 和y 的个体域都是}321{,,=D 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、设)()()(),,(323221321x x x x x x x x x E ∧∨∧∨∧=是布尔代数],,},1,0[{-∧∨上的一个布尔表达式,试写出),,(321x x x E 的析取范式和合取范式。

答: 析取范式:)()()
()()(),,(321321321321321321x x x x x x x x x x x x x x x x x x E ∧∧∨∧∧∨∧∧∨∧∧∨∧∧= 合取范式:)()()(),,(321321321321x x x x x x x x x x x x E ∨∨∧∨∨∧∨∨∨=
2.设P(x):x 是大象,Q(x):x 是老鼠,R(x,y):x 比y 重,则命题“大象比老鼠重”的符号化为
答: ∀x ∀y ( (P(x) ∧ Q(x)) → R(x,y))
3.设L(x):x 是演员,J(x):x 是老师,A(x , y):x 钦佩y ,命题“所有演员都钦佩某些老
师”符号化为( B )。

A 、)),()((y x A x L x →∀;
B 、))),()(()((y x A y J y x L x ∧∃→∀ ;
C 、)),()()((y x A y J x L y x ∧∧∃∀;
D 、)),()()((y x A y J x L y x →∧∃∀ 。

4.下列各式中哪个不成立( A )。

A 、)()())()((x xQ x xP x Q x P x ∀∨∀⇔∨∀ ;
B 、)()())()((x xQ x xP x Q x P x ∃∨∃⇔∨∃;
C 、)()())()((x xQ x xP x Q x P x ∀∧∀⇔∧∀;
D 、Q x xP Q x P x ∧∀⇔∧∀)())((。

5.用推理规则证明)()(a G a P ∧⌝是
))()((,)(,))()((,
)))()(()((x G x S x a S a R a Q x R x Q x P x ↔∀∧⌝∧→∀的有效
结论。

证明:(1) ))()(()(x P x Q x xP ∧→∀ P
(2) ))()(()(a P a Q a P ∧→ US(1)
(3) ))()((a R a Q ∧⌝ P
(4) )(a P ⌝ T(2)(3)I
(5) ))()((x G x S x ↔∀ P
(6) )()(a G a S ↔ US(5)
(7) )()(a G a S → T(6)E,I
6、符号化命题“有些病人相信医生,但是没有病人相信法轮功,因此医生都不信法轮功”。

用演绎法证明其结论。

(P(x):x 是病人,D(x):x 是医生,Q(x):x 是法轮功练习者,L(x , y):x 相信y )
解:前提:)))(),(()((,
)),()(()((y Q y x L y x P x y x L y D y x P x ⌝→∀→∀→∀∧∃ 结论:))()((y Q y D y ⌝→∀
演绎推理:
(1)))
,()(()((y x L y D y x P x →∀∧∃ P (2))),()(()(y e L y D y e P →∀∧ ES(1)
(3))))(),(()((y Q y x L y x P x ⌝→∀→∀ P
(4)))(),(()(y Q y e L y e P ⌝→∀→ US(3)
(5))(e P T(2)I
(6)))(),((y Q y e L y ⌝→∀ T(4)(5)I
(7))(),(c Q c e L ⌝→ US(6)
(8)))
,()((y e L y D y →∀ T(2)I (9)),()(c e L c D → US(8)
(10))()(c Q c D ⌝→ T(9)(7)I
(11)))()((y Q y D y ⌝→∀ UG(10)
7、给定推理
①))()((x G x F x →∀ P
②)()(y G y F →
US ① ③)(x xF ∃
P ④)(y F
ES ③ ⑤)(y G
T ②④I ⑥)(x xG ∀ UG ⑤
)())()((x xG x G x F x ∀⇒→∀∴
推理过程中错在( )。

A 、①->②;
B 、②->③;
C 、③->④;
D 、④->⑤;
E 、⑤->⑥
8、用逻辑推理证明:
所有的舞蹈者都很有风度,王华是个学生且是个舞蹈者。

因此有些学生很有风度。

证明:设P(x):x 是个舞蹈者; Q(x) :x 很有风度; S(x):x 是个学生; a :王华 上述句子符号化为:
前提:))()((x Q x P x →∀、)()(a P a S ∧ 结论:))()((x Q x S x ∧∃ ……3分
①)()(a P a S ∧
P ②))()((x Q x P x →∀
P ③)()(a Q a P →
US ② ④)(a P
T ①I ⑤).(a Q
T ③④I ⑥)(a S
T ①I ⑦)()(a Q a S ∧
T ⑤⑥I ⑧)()((x Q x S x ∧∃ EG ⑦
9、证明:)()())()((x xQ x xP x Q x P x ∃∨∀⇒∨∀
)
()(())()(()
()()()()(x xQ x xP x Q x P x x xQ x P x x xQ x xP ∃→∀⌝⇒∨∀∃→∀⌝⇔∃∨∀本题可证 ① ))((x xP ∀⌝ P (附加前提)
②))((x P x ⌝∃ T ①E
③)(a P ⌝ ES ②
④))()((x Q x P x ∨∀ P
⑤)()(a Q a P ∨ US ④
⑥)(a Q T ③⑤I
⑦)(x xQ ∃ EG ⑥
⑧)()((x xQ x xP ∃→∀⌝
CP
10、符号化命题“每个学术会的成员都是工人并且是专家,有些成员是青年人,所以有的
成员是青年专家”;并用演绎方法证明上面推理。

(F(x):x 是学术会成员;H(x):x 是工人;G(x):x 是专家;R(x):x 是青年人)
符号化:前提 ))()((,))()()((x R x F x x H x G x F x ∧∃∧→∀
结论 ))()()((x G x R x F x ∧∧∃
推理演绎:(1) ))()((x R x F x ∧∃ P
(2) )()(c R c F ∧ ES(1)
(3) ))()()((x H x G x F x ∧→∀ P
(4) ))()()((c H c G c F ∧→ US(3)
(5) F(c) T(2)I
(6) )()(c H c G ∧ T(5)(4)I
(7) R(c) T(2)I
(8) G(c) T(6)I
(9) )()()(c G c R c F ∧∧ T(5)(7)(8)I
(10) ))()()((x G x R x F x ∧∧∃ EG(9)
11.符号化下列各命题,并说明结论是否有效(用推理规则)。

任何人如果他喜欢美术,他就不喜欢体育。

每个人或喜欢体育,或喜欢音乐,有的人不喜欢音乐,因而有的人不喜欢美术。

解:设)(x P :x 喜欢美术,)(x Q :x 喜欢体育,)(x R :x 喜欢音乐。

论域:人。

命题形式化为:前提:))()((x Q x P x ⌝→∀,))()((x R x Q x ∨∀,)(x R x ⌝∃
结论:)(x P x ⌝∃。

证明:(1))(x R x ⌝∃ P
(2) )(a R ⌝ ES(1)
(3) ))()((x R x Q x ∨∀ P
(4) )()(a R a Q ∨ US(4)
(5) )(a Q T(2)(4)I
(6) ))()((x Q x P x ⌝→∀ P
(7) )()(a Q a P ⌝→ US(6)
(8) )(a P ⌝ T(5)(7)I
(9) )(x P x ⌝∃ EG(8)
∴ 结论有效。

相关文档
最新文档