故障诊断技术综述
电气设备故障诊断技术综述

电气设备故障诊断技术综述随着电力事业的不断发展和电气设备的广泛应用,电气设备的性能和故障诊断技术也在不断提高。
下面我们将从故障诊断技术的概念、分类、应用领域和发展趋势等几个方面来综述当前电气设备故障诊断技术的发展状况。
一、故障诊断技术的概念和分类电气设备故障诊断技术是维护电力设备运行、确保电气设备高效运转的关键技术之一。
故障诊断技术是指利用各种手段判断电气设备工作状态的技术,以及在发现故障后,通过分析故障原因及提出相应的解决方案,从而使故障得到彻底排除的技术。
电气设备故障诊断技术可以根据其在应用过程中的特点和实际应用目的的不同,分为机械性故障诊断、电性故障诊断、计算机诊断技术、参数诊断技术等多种类型。
机械性故障诊断是指通过外观检查,查看设备的外形、大小、部件之间的协调性(如传动、制动、悬挂等)等方面的情况,从而判断设备是否存在机械性故障。
电性故障诊断是指通过使用伏安表、电流表、电容表、钳形电流表等照明设备的使用状态,从而诊断出电气设备的工作状态,进一步判断是否存在电性故障。
计算机诊断技术是指利用计算机模拟电气设备的工作状态,通过对设备特定的信号、故障等数据进行全面分析和处理,进而判断是否存在故障的诊断技术。
参数诊断技术是指通过对不同电气设备的参数进行分析和比对,从而诊断设备的工作状态,从而判断是否存在故障的诊断技术。
二、故障诊断技术的应用领域电气设备故障诊断技术的应用范围十分广泛,涉及到电力、交通、通信、水利等众多领域。
下面我们以电力设备的故障诊断技术为例,来具体说明故障诊断技术的应用领域。
1、电力变压器故障诊断技术电力变压器的故障诊断技术是电力系统保护的重要组成部分,它的应用包括: 变压器线圈接地故障、变压器内部断路器及开关的故障、变压器油位及油质因素、变压器油位计和其它附属仪表的故障等方面。
通过各种方式得到的数据,通过计算和分析,对变压器故障进行精确分析,从而更好地保护电力系统的安全运行。
2、电站继电保护系统故障诊断技术电站的继电保护系统是一个非常重要的系统,其故障会直接影响到电站的安全性和稳定性。
风电机组故障诊断综述

风电机组故障诊断综述随着风电技术的快速发展,风电机组的故障诊断成为了风电运维中的重要环节。
本文将对风电机组故障诊断的研究和应用进行综述,包括故障诊断方法、诊断技术和应用案例等方面的内容。
一、故障诊断方法风电机组故障诊断方法主要包括基于物理模型的方法、基于数据驱动的方法和基于统计学方法。
基于物理模型的方法包括使用电气模型、机械模型和流体模型等来建立风电机组的数学模型,通过对模型进行分析和仿真来诊断故障。
基于数据驱动的方法通过采集风电机组的实时数据,使用数据挖掘和机器学习的方法来建立故障模型,从而进行故障诊断。
基于统计学方法则是通过对大量风电机组数据进行统计分析,找出故障的概率分布特征,从而进行故障诊断。
风电机组故障诊断技术主要包括信号处理技术、特征提取技术和故障诊断算法。
信号处理技术主要包括滤波、降噪和特征提取等方法,用于对采集的传感器信号进行预处理。
特征提取技术主要包括时域分析、频域分析和小波分析等方法,用于从采集的数据中提取故障特征信息。
故障诊断算法主要包括贝叶斯网络、支持向量机和神经网络等方法,用于建立故障模型并进行故障诊断。
三、应用案例风电机组故障诊断在实际应用中已取得了一系列的成果。
利用门架振动传感器数据对风电机组变频器输出电流故障进行诊断,通过特征提取和支持向量机算法进行故障诊断,取得了良好的诊断效果。
利用风电机组振动加速度传感器数据对齿轮箱故障进行诊断,通过小波分析和神经网络算法进行故障诊断,也取得了较好的诊断效果。
总结:风电机组故障诊断是风电领域的重要研究方向,不仅对提高风电机组的可靠性和可用性具有重要意义,也对风电运维的效率和经济性有着重要影响。
当前,基于物理模型、数据驱动和统计学的故障诊断方法仍在不断发展,并且越来越多的应用案例也表明了故障诊断技术的可行性和有效性。
相信随着技术的不断进步,风电机组故障诊断将取得更大的发展。
智能故障诊断技术研究综述与展望

文献综述
1、电网故障诊断的研究背景和 意义
1、电网故障诊断的研究背景和意义
随着电力系统的不断发展,电网规模和复杂性不断提升,电网故障对于经济 和社会的影响也越来越大。因此,研究电网故障诊断技术,提高电网运行的可靠 性和安全性,具有重要的理论和实践价值。
2、电网故障诊断的基本技术和 方法
2、电网故障诊断的基本技术和方法
引言
引言
智能故障诊断技术是指借助人工智能、大数据、云计算等现代技术手段,对 设备运行状态进行实时监测与评估,实现故障预测与诊断的目的。随着工业领域 的不断发展,设备规模和复杂性不断增加,传统故障诊断方法已难以满足实际需 求。因此,智能故障诊断技术成为当前研究的热点和难点。
综述
1、智能故障诊断技术的基础理 论研究
谢谢观看
电网故障诊断的基本技术和方法包括:基于故障录波数据分析的故障诊断、 基于信号处理和模式识别的故障诊断、基于人工智能的故障诊断等。
2、电网故障诊断的基本技术和方法
其中,基于故障录波数据分析的故障诊断是通过对故障录波数据的分析,提 取故障特征,从而确定故障的位置和类型。该方法主要适用于复杂的电网系统, 但需要解决数据传输和存储等问题。基于信号处理和模式识别的故障诊断是通过 对电网中的信号进行实时监测和分析,运用模式识别技术对电网的运行状态进行 分类和识别,从而发现和诊断电网中的故障和异常情况。
展望
5、加强人才培养与团队建设:培养具有多学科背景的专门人才,建立专业的 研究团队,推动智能故障诊断技术的持续发展。
结论
结论
智能故障诊断技术作为现代设备管理的重要支撑,对于提高生产效率和设备 运行可靠性具有重要意义。本次演示综述了智能故障诊断技术的最新研究成果与 发展趋势,涉及基础理论研究、应用研究、系统集成研究和未来发展等多个方面。 通过总结前人研究成果和不足,指出了当前研究中存在的空白和需要进一步探讨 的问题,并提出了未来发展的趋势和建议。
故障诊断方法综述

故障诊断方法综述故障诊断是指在设备或系统出现故障时,通过一系列的方法和技术,找出故障原因并进行修复的过程。
故障诊断方法的选择和应用,直接影响到故障诊断的效率和准确性。
本文将综述常见的故障诊断方法。
1. 经验法经验法是指通过经验和直觉来判断故障原因的方法。
这种方法的优点是简单易行,但缺点是准确性不高,容易出现误判。
因此,经验法只适用于一些简单的故障诊断。
2. 分析法分析法是指通过对故障现象进行分析,找出故障原因的方法。
这种方法的优点是准确性高,但缺点是需要一定的专业知识和技能。
分析法适用于大多数故障诊断,但需要进行系统性的分析和判断。
3. 测试法测试法是指通过对设备或系统进行测试,找出故障原因的方法。
这种方法的优点是直观、准确,但缺点是需要专业的测试设备和技术。
测试法适用于大多数故障诊断,但需要进行系统性的测试和分析。
4. 模拟法模拟法是指通过模拟故障现象,找出故障原因的方法。
这种方法的优点是可以在不影响正常运行的情况下进行故障诊断,但缺点是需要专业的模拟设备和技术。
模拟法适用于一些特殊的故障诊断,如电路板故障等。
5. 统计法统计法是指通过对设备或系统的历史数据进行统计分析,找出故障原因的方法。
这种方法的优点是可以发现一些隐蔽的故障,但缺点是需要大量的数据和专业的统计技术。
统计法适用于一些长期运行的设备或系统的故障诊断。
故障诊断方法的选择和应用,需要根据具体情况进行综合考虑。
在实际应用中,可以根据故障现象的特点和设备或系统的特点,选择合适的故障诊断方法,以提高故障诊断的效率和准确性。
滚动轴承故障诊断方法与技术综述

滚动轴承故障诊断方法与技术综述引言:滚动轴承作为机械设备中常用的零部件之一,承担着支撑和传递载荷的重要作用。
然而,由于使用环境的恶劣和工作条件的复杂性,滚动轴承往往容易出现各种故障。
因此,为了保证机械设备的正常运行和延长轴承寿命,对滚动轴承的故障进行准确诊断非常重要。
一、故障诊断方法1. 观察法观察法是最常用的故障诊断方法之一。
通过观察滚动轴承的外观和运行状态来判断是否存在故障。
例如,如果发现滚动轴承有异常噪声、温度升高、润滑油泡沫、振动加剧等现象,很可能是轴承出现了故障。
2. 振动诊断法振动诊断法是一种先进的故障诊断方法,可以通过检测轴承的振动信号来判断轴承是否存在故障。
通过分析振动信号的频谱图,可以确定轴承故障的类型和位置。
常用的振动诊断方法包括时域分析、频域分析和小波分析等。
3. 声音诊断法声音诊断法是一种通过听觉判断轴承故障的方法。
通过专业人员对轴承产生的声音进行听觉分析,可以判断轴承是否存在异常。
常见的轴承故障声音包括金属碰撞声、摩擦声和振动声等。
4. 热诊断法热诊断法是一种通过测量轴承的温度来判断轴承故障的方法。
由于轴承在故障状态下会产生摩擦热,因此轴承的温度可以间接反映轴承的工作状态。
通过测量轴承的温度分布,可以判断轴承是否存在异常。
二、故障诊断技术1. 模式识别技术模式识别技术是一种基于机器学习的故障诊断技术,可以根据轴承的振动信号和声音信号等特征,通过训练模型来识别轴承的故障类型。
常用的模式识别技术包括支持向量机、神经网络和决策树等。
2. 图像诊断技术图像诊断技术是一种通过图像处理和分析来判断轴承故障的技术。
通过对轴承的外观图像进行特征提取和分类,可以实现对轴承故障的自动诊断。
常用的图像诊断技术包括边缘检测、纹理分析和目标识别等。
3. 声音信号处理技术声音信号处理技术是一种通过对轴承声音信号进行滤波、频谱分析和特征提取等处理,来判断轴承故障的技术。
通过对声音信号的频谱图和时域图进行分析,可以判断轴承故障的类型和位置。
电力系统中的故障诊断与恢复技术综述

电力系统中的故障诊断与恢复技术综述电力系统是现代社会中不可或缺的基础设施之一,对于保障能源供应、维持社会运转至关重要。
然而,由于各种原因,电力系统中的故障时有发生,给电力系统的稳定运行带来了威胁。
为了及时准确地诊断和恢复电力系统的故障,保障其可靠运行,研究人员和工程师们不断努力探索和应用各种故障诊断与恢复技术。
本文将对电力系统中的故障诊断与恢复技术进行综述,以期为相关领域的研究工作和实践提供参考。
一、故障诊断技术1. 传统故障诊断方法传统故障诊断方法是指基于经验和专家知识的故障诊断方法。
这些方法主要依靠工程师的经验和专业知识进行分析,通过现场观察、故障现象特征分析等手段,判断电力系统中的故障类型和位置。
这些方法虽然经验丰富的工程师可以根据实际情况进行准确判断,但是对于复杂的故障情况和大规模电力系统来说,其局限性也变得越来越明显。
2. 基于模型的故障诊断方法随着计算机技术的发展,基于模型的故障诊断方法逐渐成为研究热点。
这种方法以电力系统的数学模型为基础,在计算机中建立相应的模型进行仿真和分析,通过对模型的状态估计和优化计算,诊断电力系统中的故障。
基于模型的故障诊断方法具有较高的准确性和可靠性,在实际应用中得到了广泛应用。
3. 基于数据驱动的故障诊断方法基于数据驱动的故障诊断方法是指基于历史故障数据或实时采集的数据进行故障诊断。
这种方法主要通过数据处理和分析,利用数据模式和变化规律来诊断电力系统中的故障。
通过大数据技术、机器学习和人工智能等方法,可以从庞大的数据中挖掘出有价值的信息,有助于提高故障诊断的效率和准确性。
二、故障恢复技术1. 自动切换技术自动切换技术是指通过自动化装置和控制系统实现电力系统在故障发生时的自动切换和恢复。
当电力系统中的故障导致某一分支或电源失效时,自动切换技术可以将电源或负荷迅速切换到备用分支或电源上,以确保电力系统持续供电。
这种技术具有快速、可靠的特点,可以减少故障对电力系统的影响。
故障诊断理论方法综述

故障诊断理论方法综述故障诊断的主要任务有:故障检测、故障类型判断、故障定位及故障恢复等。
其中:故障检测是指与系统建立连接后,周期性地向下位机发送检测信号,通过接收的响应数据帧,判断系统是否产生故障;故障类型判断就是系统在检测出故障之后,通过分析原因,判断出系统故障的类型;故障定位是在前两部的基础之上,细化故障种类,诊断出系统具体故障部位和故障原因,为故障恢复做准备;故障恢复是整个故障诊断过程中最后也是最重要的一个环节,需要根据故障原因,采取不同的措施,对系统故障进行恢复一、基于解析模型的方法基于解析模型的故障诊断方法主要是通过构造观测器估计系统输出,然后将它与输出的测量值作比较从中取得故障信息。
它还可进一步分为基于状态估计的方法和基于参数估计的方法,前者从真实系统的输出与状态观测器或者卡尔曼滤波器的输出比较形成残差,然后从残差中提取故障特征进而实行故障诊断;后者由机理分析确定系统的模型参数和物理元器件之间的关系方程,由实时辨识求得系统的实际模型参数,然后求解实际的物理元器件参数,与标称值比较而确定系统是否发生故障及故障的程度。
基于解析模型的故障诊断方法都要求建立系统精确的数学模型,但随着现代设备的不断大型化、复杂化和非线性化,往往很难或者无法建立系统精确的数学模型,从而大大限制了基于解析模型的故障诊断方法的推广和应用。
二、基于信号处理的方法当可以得到被控测对象的输入输出信号,但很难建立被控对象的解析数学模型时,可采用基于信号处理的方法。
基于信号处理的方法是一种传统的故障诊断技术,通常利用信号模型,如相关函数、频谱、自回归滑动平均、小波变换等,直接分析可测信号,提取诸如方差、幅值、频率等特征值,识别和评价机械设备所处的状态。
基于信号处理的方法又分为基于可测值或其变化趋势值检查的方法和基于可测信号处理的故障诊断方法等。
基于可测值或其变化趋势值检查的方法根据系统的直接可测的输入输出信号及其变化趋势来进行故障诊断,当系统的输入输出信号或者变化超出允许的范围时,即认为系统发生了故障,根据异常的信号来判定故障的性质和发生的部位。
基于知识的故障诊断方法综述

基于知识的故障诊断方法综述引言故障诊断是解决各种技术问题的关键步骤之一,它涉及到从已知的问题描述中推断出可能的故障原因,并采取相应的措施进行修复。
基于知识的故障诊断方法是一种通过利用专家知识和经验来进行故障诊断的方法。
本文将对基于知识的故障诊断方法进行综述,包括其定义、分类、应用领域以及优缺点等内容。
定义基于知识的故障诊断方法是一种利用专家知识和经验来进行故障判断和定位的方法。
它通过建立一个包含领域专家知识的模型,结合实际问题中出现的异常情况,根据预先定义好的规则和逻辑判断,推测可能存在的故障原因,并给出相应的解决方案。
分类基于知识的故障诊断方法可以按照不同的分类标准进行分类,下面将介绍几种常见的分类方式:基于规则推理基于规则推理是一种常见而直观的基于知识的故障诊断方法。
它通过事先定义好的规则库,将故障现象与规则进行匹配,从而推断出可能的故障原因。
这种方法的优点是易于理解和实现,但需要手动编写大量的规则,并且对专家知识的获取和表示要求较高。
基于案例推理基于案例推理是一种基于经验的故障诊断方法。
它通过建立一个案例库,将已知的故障案例存储起来,并根据当前问题与案例之间的相似度进行匹配,从而找到最相似的故障案例,并借鉴其解决方案。
这种方法可以充分利用历史数据和经验,但对案例库的构建和维护要求较高。
基于知识图谱基于知识图谱是一种以图结构来表示和组织知识的故障诊断方法。
它通过将领域专家知识以及实际问题中出现的异常情况进行抽象和建模,构建一个包含实体、关系和属性等元素的知识图谱,并利用图上的推理算法来进行故障诊断。
这种方法可以灵活地表示复杂的知识关系,但对知识图谱的构建和维护要求较高。
应用领域基于知识的故障诊断方法在许多领域都有广泛的应用,下面将介绍几个常见的应用领域:工业自动化在工业自动化领域,设备故障会导致生产线停机,影响生产效率。
基于知识的故障诊断方法可以帮助工程师快速定位故障原因,并采取相应的措施进行修复,从而减少停机时间和生产损失。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故障诊断技术综述标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-故障诊断技术综述一引言故障诊断技术是一门紧密结合生产实际的工程科学,是现代化生产发展的产物。
随着现代科学技术在设备上的应用,设备的结构越来越复杂,功能也越来越完善,自动化程度越来越高,由于许多无法避免的因素影响,会导致设备出现各种故障,从而降低或失去预定的功能,甚至会造成严重的乃至灾难性的事故。
不言而喻,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践证明,研究故障诊断技术具有重要的现实意义。
二故障诊断技术的定义故障诊断技术就是在设备运行中或基本不拆卸设备的情况下,掌握设备的运行状况,根据对被诊断对象测试所取得的有用信息进行分析处理,判断被诊断对象的状态是否处于异常状态或故障状态,判断劣化状态发生的部位或零部件,并判定产生故障的原因,以及预测状态劣化的发展趋势等。
其目的是提高设备效率和运行可靠性,防患于未然,避免故障的发生。
三故障诊断技术的构成环节从故障诊断的流程看,通常诊断系统由信号采集、信号处理、状态识别和诊断决策四大部分构成。
其中,信号采集是基础,信号分析和处理是关键,状态识别(包括判断和预报)是核心,决策与管理是最终目标。
前3个环节是基本环节。
1.信号采集信息采集的基本任务是获取有用的信息。
这是故障诊断的基础和前提,监测获取到的有用信息越多,监测数据越真实,越容易判断出故障原因。
在运行过程中,必然会有力、热、振动及能量等各种量的变化,由此会产生各种不同的信息,根据不同的诊断需要,选择能表征设备工作状态的不同信息,如振动、压力及温度等,是十分必要的。
这些信号一般是用不同的传感器来拾取的。
只有采集到反映设备实际状态的信号,诊断的后续工作才有意义,因而信号采集是故障诊断技术中不可缺少的重要环节。
(1) 常用的设备状态监测技术分类1) 振动信号监测技术对设备的振动信号测试和分析,能获得机体、转子或其他零部件的振动幅值、频率和相位3个基本要素,经过对信号的分析、处理与识别,可了解到设备的振动特点、结构强弱、振动来源、故障部位和故障原因,为诊断决策提供依据。
故利用振动信号诊断故障的技术较为普遍。
2) 声信号监测诊断技术声信号监测诊断技术包括:噪声诊断、超声波诊断和声发射诊断技术。
其中噪声的分析与诊断通常有两个目的:一是寻找机器发出噪声的主要声源,以便采取相应措施降低噪声;二是利用噪声信号判别故障。
从噪声信号中提取特征信号,可以检测出故障的原因和发生故障的部位。
利用声波信号进行监测与诊断故障的方法有:声音监听法、频谱分析法及声强法。
3) 温度信号监测诊断技术温度参数在许多工业部门生产中很重要,因为不恰当的温度变化往往意味着热故障的发生。
从被测设备的某一部分的温度异常变化可以判断设备是否存在故障。
温度信号的测量技术主要有物体温度的直接测量和热红外线分析技术。
4)润滑油的分析诊断技术大部分机械设备运动部件的摩擦表面须加入润滑油来润滑,当润滑油流经摩擦表面后会产生一系列物理化学性能变化,于是携带了设备运转状态的内在信息。
润滑油分析诊断技术即监测润滑系统中的某些物化特性,从中获取设备内部的故障信息。
主要有:油品的理化性能分析技术、油样所含磨损金属颗粒的铁谱分析技术以及润滑油的光谱分析技术。
5)其他无损检测诊断技术无损检测是在不损坏工件或原材料工作状态的前提下,对被检验部件的表面和内部质量进行检查的一种测试手段。
可以检测出设备、零部件的表面及其材料内部、零部件之间的结合部是否有缺陷,包括气孔、夹渣、裂纹及腐蚀等缺陷。
常规无损检测方法有:超声检测(UltrasonicTesting,UT);射线检测(RadiographicTesting,RT);磁粉检测(Magnetic particle Testing,MT);渗透检验(PenetrantTesting,PT);涡流检测(EddycurrentTesting,ET)。
非常规无损检测技术有:声发射(AcousticEmission,AE);泄漏检测(Leak Testing,LT);光全息照相(OpticalHolography);红外热成像(InfraredThermography);微波检测(MicrowaveTesting)。
2. 信号处理这是将采集到的信号进行分类处理、加工,获得能表征机器特征的过程,也称特征提取过程。
信号处理是故障诊断技术的核心之一,也是理论研究的热点之一。
它实际上就是特征量的选择提取技术,几乎包括现代所有的信息处理技术所能提供的手段,如数字信号处理、时间序列分析、信息理论、图像识别及应用数学等。
频谱分析技术是传统的信号分析和处理方法,如FFT分析、倒谱分析、短时傅里叶分析和Wigner—Ville分布等,在传统的工程中占有非常重要的地位。
但傅里叶变换和倒谱分析只适合平稳信号的分析,而对于工程领域中广泛存在的非稳态信号,虽然引入了傅里叶分析和Wigner—Ville分布,但二者的分析能力并不理想。
近年来出现的小波分析、几何分形及混沌等新的信息处理技术,在诊断领域得到了很好的应用。
小波分析作为“数学显微镜”,具有很优秀的“探微”能力,无论多么复杂的信号,只要选取适当的小波,进行适当次数的变换,就可以发现其中所包含的特征量。
几何分形和混沌则模拟自然界的方式来处理信息。
3. 状态识别对设备进行状态监测的目的就是要识别设备是否运转正常。
当监测出设备出现故障,则要判定属于哪类故障,故障的原因、性质、程度如何,因此设备诊断过程就是对设备运行状态的识别过程。
状态识别是将经过信号处理获得的设备特征参数与规定的允许参数或判别参数进行比较、对比,以判断机器的运行状态,是否存在故障及确定故障的性质、类别、部位和原因,预测故障的发展趋势。
为此应正确制订相应的判别准则和诊断策略。
故障状态识别方法如下:(1)对比诊断法目前应用较广,首先对多种工艺参数的多种信息进行数据采集和存储,这些信息包括振动幅值、频率、相位、转速、位移、模态、温度、压力和流量等。
然后建立相应信息的数据库,同时作出趋势分析等图谱。
将机器设备正常运行状态的多种信息保存下来,当设备发生故障时,把当前数据和正常运行状态的数据进行比对,再结合故障表现的信息特征,利用诊断知识,作出故障原因和故障状态的判定。
(2)函数诊断法故障征兆和故障原因之间存在着一定的函数关系,经过对设备运行参数的计算,可以预测故障或者识别设备已经存在的故障。
这在设备设计阶段也是必需的。
(3)模拟试验诊断法设备有很多故障,它表现的征兆与故障原因之间的关系是未知的或是不确定的,必须通过模拟试验,研究故障形成的机理和特征,解答产生这种故障的原因,提出表现这类故障的特征参数以及各种参数之间的定量关系等。
(4)故障树诊断法故障树分析不仅是可靠性设计的一种有效方法,也是故障诊断技术的一种有效方法。
它是从研究系统中最不希望发生的故障状态出发,按照一定的逻辑关系从总体到部件一层层地进行逐级细化,推理分析故障形成的原因,最终确定故障发生的最初基本原因、影响程度和发生概率。
分析步骤是:①选择顶事件。
②建立故障树。
③求故障树的结构函数。
④定性分析。
⑤定量分析。
(5)模糊诊断法模糊数学能够处理各种边界不明的模糊集合的数量关系。
因在机械设备故障分析中,复杂的机械设备系统可能会出现各种故障,大多数情况下,故障原因和相应症状之间的相互关系,一般没有明确的规律可循,常出现许多异常症状与故障程度之间边界不明的模糊关系,因此很难甚至不可能用精确的数学模型来描述。
利用模糊数学分析方法就能将各种故障及其症状视为两类不同的模糊集合,它们之间的关系能够用一个模糊关系矩阵来描述。
两个模糊集合中,集合之间的相互关系就可以映射来确定。
(6)神经网络诊断法人工神经网络模型是在现代神经生理学和心理学的研究基础上,模仿人的大脑神经元结构特性而建立的一种非线性动力学网络系统,它由大量的简单的非线性处理单元高度并联、互联而成。
利用计算机仿真,并行处理信息,具有对人脑某些基本特性的简单的数学模拟能力。
人工神经网络在故障诊断领域的应用主要集中在三个方面:一是从模式识别角度应用神经网络作为分类器进行故障诊断;二是从预测角度应用神经网络作为动态预测模型进行故障预测;三是从知识角度建立基于神经网络的诊断专家系统。
(7)专家系统诊断法故障诊断专家系统,是人们根据长期的实践经验和大量的故障信息知识,设计出一种智能计算机程序系统,以解决复杂的难以用数学模型来精确描述的系统故障诊断问题。
这种智能程序与传统的计算机应用程序有着本质上的不同。
在专家系统中,求解问题的知识已不再隐含在程序和数据结构中,而是单独构成一个知识库。
每个知识单元描述一个比较具体的情况,以及在该情况下应采取的措施。
专家系统总体上提供了一种推理机制,根据不同的处理对象,从知识库中选取不同的知识元构成不同的求解序列,或者说生成不同的应用程序,以完成某一指定任务。
这种分离为问题的求解带来极大的便利和灵活性。
通常专家系统由五个部分组成:知识库、推理机、数据库、解释程序以及知识获取程序。
4. 诊断决策根据对设备状态的判断,决定应采取的对策和措施,同时应根据当前信号预测设备状态可能发展的趋势,进行趋势分析。
四故障诊断技术的发展趋势将当前不断发展的前沿科技运用于设备故障诊断技术是故障诊断学的发展方向。
当今故障诊断技术的发展趋势是传感器的精密化、多维化,诊断理论、诊断模型的多元化,诊断技术的智能化。
随着人工智能技术的迅速发展,特别是知识工程、专家系统、模糊逻辑和神经网络在诊断领域中的进一步应用,故障诊断技术将得到更加深入与系统的研究。
具体来说表现在如下方面:1. 融合现代人工智能,结合多种智能诊断技术现代智能技术包括专家系统、模糊逻辑、神经网络及进化计算等。
现代智能方法在设备故障诊断技术中已得到了广泛的应用,随着智能科技的不断发展,将多种不同的智能技术结合起来的混合诊断系统,是智能故障诊断研究的一个发展趋势。
结合方式主要有基于规则的专家系统与神经网络的结合,实例推理与神经网络的结合,模糊逻辑、神经网络与专家系统的结合等。
其中,模糊逻辑、神经网络与专家系统结合的诊断模型是最具发展前景的,也是目前人工智能领域的研究热点之一。
2. 采用最新的传感技术,融合多元传感技术一方面,采用最新激光测试技术。
目前激光技术已在军事、医疗等领域逐步走向成熟。
完全可以将该项技术运用于设备的故障监测诊断中,这样可以获得更加准确的信息。
另一方面,在进行设备故障诊断时,可采用多个传感器同时对设备的各个位置进行监测,然后按照一定的方法对这些信息进行处理。
这样,对设备可以进行全方位、多角度的监测与维护,以便对设备的运行状态有整体的、全方面的了解。