药物制剂剂型设计高级教程(英)

药物制剂剂型设计高级教程(英)
药物制剂剂型设计高级教程(英)

INDUSTRIAL PHARMACY: PHARMACEUTICAL DOSAGE FORM DESIGN

GRADUATE COURSE IN PHARMACEUTICS

CREDIT: 3 Hours

1PHARMACEUTICAL DOSAGE FORM DESIGN (3)

1.1INTRODUCTION (3)

1.2AIMS AND OBJECTIVES OF THE COURSE (3)

1.3OBJECTIVES OF INDIVIDUAL STUDY UNITS (4)

1.3.1Review and study of the different phases of product development (4)

1.3.2Principles and factors of importance during development, production

and quality assurance of conventional dosage forms (6)

1.3.3Oral dosage forms (7)

1.3.4Parenteral dosage forms (10)

1.3.5Design of dosage forms for topical and local drug delivery systems (13)

1.3.6Pharmaceutical aerosol products (14)

1.3.7Rectal and vaginal suppositories (15)

1.3.8Novel dosage forms and biotechnology (16)

1.4ASSIGNMENTS (17)

1.5REFERENCES (18)

1.6Study Guide compiled by: (19)

1 PHARMACEUTICAL DOSAGE FORM DESIGN

1.1 INTRODUCTION

To manufacture a pharmaceutical dosage form, it is necessary to combine the unique properties of the drug with the unique properties of the specific dosage form as well as quality control requirements. The whole process starts with the development and clinical evaluation of the substance, proceeds via a preformulation phase for the drug and ends with the dosage form, which may be produced industrially after the necessary scale up procedures.

In this study guide the material that a student will have to manage to successfully complete the course Pharmaceutical Dosage Form Design as part of the Ph.D. in Pharmaceutics is outlined. It describes the aims and objectives of the course and gives information about the study material that the student will have to use.

1.2 AIMS AND OBJECTIVES OF THE COURSE

The aim of this course is to enable the successful student to recognise and understand the development process for pharmaceutical delivery systems that are therapeutically effective, bioavailable, safe and elegant. The objective is to study the different phases in the development of a dosage form. The different phases for conventional dosage forms include the stages in which the substance drug is clinically tested, formulated, manufactured and the quality control procedures related to each stage. Dosage form development using biotechnology and targeted dosage forms will also be studied.

On successful completion of the course, the student should have acquired the necessary background and understanding of the development process for pharmaceutical products so that he/she could, through innovative thoughts and scientific reasoning, design and evaluate new innovative pharmaceutical products.

1.3 OBJECTIVES OF INDIVIDUAL STUDY UNITS

The course is divided into the following three study units each with its own study objectives and assignments, i.e.:

1. Review and study of the different phases of product development,

2. General formulation factors and procedures, principles and factors of

importance during development, production and quality assurance of conventional dosage forms, and

3. Alternative and/or targeted dosage forms and biotechnological products.

1.3.1 Review and study of the different phases of product development

The first step in the research process of drugs is the scientific investigation and study of the specific illness in order to form research teams whose work will lead to the invention and development of new chemical entities with efficient actions.

Research teams in industry are multi-disciplinary and are composed of experts from different scientific fields like chemistry, biochemistry, physics, statistics, medicine, pharmacology, pharmaceutics, physiology, microbiology, etc. The main objective of research is to produce safe drugs that may be preventative, curative or alleviate.

Subordinate objectives are:

1. to understand the molecular basis of biological mechanisms for sick and healthy

persons;

2. to develop new biological test methods;

3. to develop a quantitative understanding of the physical, chemical and

physiological interactions of drugs with biological systems which may lead to new drug design;

4. to understand absorption, transfer and action of a drug;

5. to develop drugs with low toxicity, reproducible action and high specificity for a

given pathological condition, and

6. to develop cost-effective drugs.

The processes of research follows a certain flow pattern for which planning is the starting point; this is followed by laboratory scale synthesis, pharmacological and toxicological selection, patent protection, phases I and II pre-clinical development and testing and the three phases of clinical testing and registration.

The estimated cost for the development of a new drug is approximately $500 million and takes on average between 8 and 15 years. The chance for success is 1 : 8 000 - 10 000 and marketing success approximately 25 %. It is therefore of cardinal importance that high productivity and high effectiveness be the criterion of research because of the high costs involved. Expertise is therefore a prerequisite to be successful in the field of pharmaceutical research.

1.3.1.1 Objectives and outcomes for this study unit

The student must have a broad base of knowledge of the different phases of drug design, testing and product development in order to contribute in a development team and to evaluate the different facets of the process. In the context of this course it is not expected of the student to become an expert on any specific aspect but he/she must rather acquire a broad general working knowledge.

The student must be able to:

1. Understand the essential aspects of a development plan for a new product.

2. Understand the different phases in the development process of a new drug

and be able to describe its essential facets.

3. Understand all the considerations and phases of a multidisciplinary approach

to formulation and dosage form development.

1.3.2 Principles and factors of importance during development, production and

quality assurance of conventional dosage forms

The student must be able to recognise the distinctive properties to be taken into account for the development of a conventional dosage form:

a. a motivation of the choice of dosage form;

b. a general formula;

c. the specific manufacturing steps and processes;

d. precautionary measures and tests to ensure the quality of the product, and

e. test to control the quality.

The following are meant with conventional dosage forms:

1. Oral dosage forms

1.1 Tablets and hard capsules, solutions, emulsions, suspensions, oral

sustained release products.

2. Parenteral dosage forms

2.1 Injections, large volume parenterals, suspensions for injection.

3. Dosage forms for local application

3.1 Ointments, creams and gels.

4. Vaginal dosage forms

5. Suppositories

products

6. Aerosol

1.3.3 Oral dosage forms

In this division of pharmaceutical dosage forms, it is presumed that the choice of route of application had already been made and that the oral route had been chosen (not the other routes such as transdermal, rectal, parenteral, etc.). This choice would have been made taking many factors into account, such as: physical and chemical properties of the drug, type of effect desired, type of illness to be treated, speed of action, duration of action, pharmacokinetic parameters, etc.

Oral dosage forms focus is on all dosage forms taken orally for a local effect in the mouth, throat or gastrointestinal tract or for a systemic effect in the body after absorption from the mouth or gastrointestinal tract.

Oral dosage forms can be divided into two main groups on the grounds of the physical state of the dosage form during consumption, i.e. solid oral dosage forms (tablets, capsules or powders) and liquid oral dosage forms (solutions, syrups, emulsions and powders for suspensions).

Three steps are distinguished during the development of oral dosage forms, i.e.:

1. the choice of the type of dosage form;

2. the formulation and manufacture thereof, and

3. the evaluation and control of the quality of the product.

In order to develop oral products it is necessary to know specific properties and characteristics of this type of dosage form. This guide will help student get this knowledge or to refresh their memories.

1.3.3.1 Outcomes: Choice of the type of oral dosage form

Students must be able to give an opinion (with the necessary motivations) on the choice of the type of dosage form for a specific drug taking into account preformulation data at their disposal.

The choice of the type of dosage form rests on the one hand on the type of effect required (i.e. speed of action, duration of action, blood concentrations and pharmacokinetic parameters) and on the other hand on physicochemical properties and required dosage of the drug. Physicochemical properties of importance include: physical form of the drug (liquid or solid), solubility in the presence of moisture and heat, taste, flow and compressibility properties, etc.

1.3.3.2 Outcomes: Formulation and manufacture of oral dosage forms

In the case of oral solid dosage forms (especially tablets), the choice of the method of manufacture has a specific influence on the composition of the formula. The primary aim during preparation of mixtures for tabletting is to ensure good flow and compressibility properties whereas mixtures for encapsulation must mainly possess good flow properties.

Drug-related properties that may influence the choice of method of manufacture of solid oral dosage forms include: Flow and compressibility, dose size and chemical stability. In the case of liquid oral dosage forms the solubility, dose size and drug

(辅料)

stability play a major role.

The combination of drug(s) and excipients plays an important role in the physical and chemical properties of the final product and determines to a great extent the final quality and effectiveness of the product.

1. In the case of liquid oral dosage forms the choice of excipients rests mainly on

two requirements, i.e. (1) ensuring maximum physical and chemical product stability and (2) ensuring acceptable organoleptic product properties (i.e. taste, colour, consistency, etc.)

2. In the case of solid dosage forms the choice of excipients is determined by

factors such as: the type of product and effect required. The chosen method of manufacture, and the influence of excipients on the flow and compressibility properties of the mixture/granulate. The acquirement of/and assurance of good tabletting properties (exclusion of tabletting problems such as laminating, capping, punch and the adhesion, etc. In general the inclusion of excipients must contribute positively to the quality and effectiveness of the final product.

Students must be able to make knowledgeable contributions with regard to composition of formulas for a chosen oral dosage form as well as the decision on the method of manufacture considering the available preformulation data. They must also be able to identify problems during tabletting and relate these to problems during formulation and/or manufacture and be able to recommend remedial actions.

1.3.3.3 Outcomes: Evaluation of oral dosage forms

In-process evaluation as well as evaluation of the final product is necessary in order to ensure that the product received by the patient complies with all requirements with regard to quality (assay), effectiveness and safety. In-process evaluation is aimed at discovering and solving formulation and manufacturing problems as soon as possible, whereas the aim of final product evaluation is to ensure quality effectiveness and safety of the product.

The tests mentioned must entail the determination of physical properties and assay of the product and comparing these with official requirements or standards (including shelf-life and expire date in the final package with the aid of accelerated and long term stability trials). From the formulator's viewpoint, it is important to keep the following in mind: Quality is built into a product through good manufacturing and laboratory practices; it cannot be tested into the product!

Students must be able to point to and motivate the in-process evaluation tests for the chosen dosage form. To identify and motivate the times during which these tests must be done, motivate the different evaluation tests on the final product, be able to

evaluate the results of these tests and be able to make relevant conclusions from the data.

1.3.4 Parenteral dosage forms

The therapeutic effectiveness, biological availability and safety valid for all pharmaceutical dosage forms are also applicable to parenteral dosage forms. Seeing that the highly effective first line of body defence, i.e. the skin and mucus membranes is bypassed during application of parenteral dosage forms, a number of unique demands and considerations are to be met, i.e.:

1. Sterility.

2. Product must be free of foreign particles.

3. Absence of pyrogens.

4. Choice of raw materials, solvents and excipients. The choice of raw materials,

solvents and excipients is limited. Toxicity and irritating properties of many raw materials limit their choice in parenteral dosage forms. For the same reasons pH and isotonicity are also of importance in the case of these products.

5. Choice of packaging materials. Because of the inmate contact of parenteral

components with packaging material and because of the fact that these products as water solutions are subjected to high temperatures during sterilisation, the packaging material may have a large influence on the physiological acceptability or stability of the product. For these reasons different pharmacopoeia specify specific requirements for packaging materials for sterile products.

6. The product must be non-toxic, non-irritating and not sensitising.

7. Stability. Drugs and excipients are mostly in solution or in any case in contact

with water and the product is subjected to sterilisation processes such as

heating, ionising, radiation, gas sterilisation, etc. which may enhance breakdown reactions. These breakdown reactions may in turn lead to toxicity, irritating properties and can in certain instances cause physical contamination.

8. Physiological factors, i.e. absorption, irritation, etc.

All activities or actions, be they at the industrial, dispensing or application level, are aimed at the incorporation and preservation of these properties in the product. These properties must be built into the product during manufacturing processes and maintained by formulation, packaging and storage. It is the duty of the Industrial pharmacist, be it in his own capacity or in conjunction with other members of the product development team, to ensure these properties.

In case of the industrial pharmacist, the duty entails the following:

* Knowledge of the formulation and composition of different physical forms of parenteral products.

* Unique and differentiating properties of this dosage form and the quality control measures applicable.

In order to satisfy the aims the student must renew his knowledge of the theoretical principles emphasised below with the use of the given references in order to be able to apply these in practice during the formulation or planning of parenteral dosage forms.

1.3.4.1 Outcomes: The influence of pharmaceutical and biological factors in

parenteral formulation and application

The student must be able to integrate the different factors having an influence on formulation and manufacture of parenteral dosage forms into the product development process.

1. The chemical and physical properties of drug and excipients.

2. The requirements for raw material and packaging material.

3. The volume of the injection.

4. The purpose of the preparation.

5. The route of application and the biopharmaceutical parameters involved.

1.3.4.2 Outcomes: The composition and properties of/and requirements for the

different physical forms of parenteral dosage forms

The student must know the basic composition and properties as well as the methods of manufacture and requirements of the different physical forms of injectables and must be able to convert these into the whole product development process.

solutions.

1. Parenteral

suspensions.

2. Parenteral

emulsions.

3. Parenteral

products.

4. Freeze-dried

5. Large volume parenteral solutions.

The following factors are of special importance:

1. Excipients and how this relates to the route of application.

2. Toxicity and irritation potential.

3. The role of pH.

4. Stabilization.

5. Sterilization

methods.

6. Particle or drop size where applicable.

1.3.5 Design of dosage forms for topical and local drug delivery systems

Dosage forms for topical and local application cover a wide variety of dosage forms, i.e. liquids (solutions, emulsions and suspensions), semi-solid preparations (ointments and pastes) and powders. The most important function of skin preparations is protection against external influences, concentration of actives in the skin to effect healing and absorption of the active ingredient through the skin to give a systemic action.

The effectiveness of preparations for local application is influenced by the following properties of the active ingredient: concentration, solubility, distribution coefficient, dissolution rate as determined by the physical form of the drug (i.e. particle size, surface, etc.) and permeability inside or through the skin. The second important factor determining the effectiveness of preparations for local application is the condition of the skin, i.e. water content, degree of injury of skin surface, place of application, treated skin surface, pre-treatment of skin and age of patient.

The topical carrier material affects contact between skin and active ingredient. The goal of the carrier material is to ensure the effectiveness of the active ingredient. Important properties of dosage forms for local application are that it must be non-irritating or sensitising, cosmetically acceptable, stable and easy to apply.

The biological activity of a topically applied application is mainly dependent on the rate of release from the carrier and penetration into the skin. While formulating preparations for local application, it must also be kept in mind that irritation or sensitisation of the skin must be prevented. The release of the active ingredient form the carrier and more specifically the rate of release as well as biological activity is dependent on:

* the chemical structure of the drug;

* the physical state of the drug;

* the type of dosage form;

* the presence/absence of penetration enhances, and

* the pharmaceutical manufacturing procedure.

Changes in the physical properties of a preparation can enhance the diffusion of the

active from carrier into the skin. Factors enhancing release from the carrier include a

high active ingredient concentration in order to get a high carrier-skin concentration gradient, a high activity coefficient in the carrier to enhance release and a favourable distribution coefficient between carrier and the skin.

1.3.5.1 Objectives and outcomes for topical and local delivery systems

The student must know the basic composition and properties as well as the methods

of manufacture and requirements of the different physical forms of topical dosage

forms and must be able to convert these into the whole product development process.

1.3.6 Pharmaceutical aerosol products

Aerosol products are unique delivery systems since they contain a propellant(s) to

force the product out of the container in the required form and quantity that are necessary. The product contains the drug that may be formulated in a solution, emulsion or suspension. The propellant either can be liquefied or compressed gases.

Aerosol products can be used to deliver drugs for local action (on skin, in the nose

and lungs) or systemic action where it is also applied via the nose and lungs. In the

瓣膜case of aerosol products for local application it is supplied with valves enabling the

user to determine the amount marked off or released. In the case of inhalation aerosol products, a specific quantity is released each time the valve is activated.

The principles of formulation of solutions, emulsions or suspensions are applicable in

this case but the influence of the propellant on the stability of the product must be

taken into account.

1.3.6.1 Objectives and outcomes for aerosol products

The following aspects are important for the student to know about the formulation of aerosol products:

1. Which propellants - compressed and liquefied gases;

2. Different valve systems - continuous spray and soigné;

3. Different containers for products - glass, metal or synthetic material;

4. What kind of action of aerosol products - foam, spray or solid stream products;

5. Which factors influencing the particle size in case of inhalation aerosol

products;

6. Typical formula for a suspension inhalation aerosol product and a local solution

aerosol product, and

7. Method of manufacture - schematic diagram.

1.3.7 Rectal and vaginal suppositories

Two kinds of suppositories are most often formulated:

1. Rectal suppositories: The formulation of rectal suppositories is basically the

same as that of suspensions, solutions and emulsions with a special carrier medium (the base) which is solid at room temperature but which melts at body temperature and/or dissolves in rectal fluids. The purpose is to deliver drugs for either local or systemic action.

2. Vaginal suppositories: Vaginal suppositories are formulated in the same way

as solution tablets or solution suppositories. The purpose is only for local action.

Apart from solid forms, liquid forms are also used for both rectal and vaginal application, i.e. enemas and irrigation solutions ("douches"). In the case of semi-solid dosage forms, the types of base used are important for effectiveness.

1.3.7.1 Objectives and outcomes for suppositories

Aspects of importance with regard to these dosage forms that the student must know and understand are:

1. Physiology and anatomy of the route used for application of the dosage forms.

2. The properties of suppository based available,

3. The differences in formulation of water soluble and water insoluble drugs in

suppositories,

4. Quality assurance tests that must be carried out on rectal and vaginal

suppositories.

1.3.8 Novel dosage forms and biotechnology

New ways to deliver drugs and unique ways to target and/or localise it at target areas in the patient's body are discovered almost weekly. It is mainly done to make dosage easier, more effective and to get fewer side effects. Technological developments make it possible to realise new and innovative delivery methods and systems.

1.3.8.1 Aims and objectives for novel drug delivery

The student must have the necessary knowledge of the principles by which drugs are targeted, localised and automatically delivered and must know how the dosage forms are formulated and manufactured. After studying this subject, the student must be able to describe and give the methods of manufacture of these new drug delivery systems. They should also be able recognise the potential use of new and innovative

drugs such as proteins, peptides etc. and be able to propose suitable dosage forms and delivery systems for these drugs.

1.4 ASSIGNMENTS

The following assignments must be completed:

1. Give an overview of the essential aspects (different phases) of a development

plan for a new pharmaceutical product.

2. Write in three pages a protocol for the development of an aspirin effervescent

tablet. The object being to produce a clear solution after effervescence.

3. You must formulate a proposal for the formulation of a benzodiazepine

(diazepam) injection. Reason and supply reasons for differences in considerations and formulas when an intramuscular or an intravenous injection must be prepared.

4. You are instructed to formulate a Tetracaine HCl preparation for local

application. Reason out and supply the reasons (with the necessary references) for your considerations during formulation. Give the differences in considerations and the formula when you were to prepare a gel, ointment or cream. Give the specification for raw materials, motivation for inclusion of excipients and quality control measures that must be met during the product development process for this product.

5. You must formulate an inhalation aerosol product of salbutamol in either a

suspension or a solution system. You must use non-fluorinated propellants.

Give a motivation for your formulae and give the quality assurance tests that you will do on the final product.

6. You must formulate a suppository of cyclizine hydrochloride. Give a motivation

for your formula and supply the quality assurance tests that you will perform during the development phase and on the final product.

7. Give the basic principles of the methods of delivery, the manufacturing

methods and the quality control procedures applicable for a new non-traditional drug delivery system of your choice (approximately 3 pages typed).

Completed assignments must demonstrate that the student understands the course material and is able to apply the knowledge in practice. During the evaluation of assignments, focus will be placed on assessing the originality of answers, correct interpretation of the problem, and applicability of the student’s approach.

When doing the assignments concentrate on getting the information from the references listed at the end of this study guide.

1.5 REFERENCES

Prerequisite

The student must have a thorough knowledge of the different types of dosage forms, the formulation thereof and the production processes unique to a specific dosage form.

Prescribed work

1. Lachman, L., Liebermann, H.A. & Konig, J.L. 1986. The theory and practice of

industrial pharmacy, 3rd ed., Chapter 5 to 21.

Other works that may be consulted

1. AULTON, M.E. 1988. Pharmaceutics: the science of dosage form design.

Churchill Livingstone : Edinburg.

2. BANKER, G.S. & RHODES, C.T. 1990. Chapters 8 - 12 & 16. Modern

Pharmaceutics. 2nd edition. Marcel Dekker : New York.

3. BARTLING, D. & HADAMICK, H. 1990. Development of a drug - its long way

from laboratory to patient. Darmstadt, Germany.

4. OSBORNE, D.W. & AMANN, A.H. 1990. Topical drug delivery formulations.

New York : Marcel Dekker Inc. p. 1-12; 197-211.

1.6 STUDY GUIDE COMPILED BY:

Melgardt M. de Villiers, Ph.D., Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71209, E-mail: devilliers@https://www.360docs.net/doc/5e17927809.html,.

药剂学名词解释

药剂学复习资料 名词解释 1. 药剂学:是研究药物制剂的基本理论、处方设计、制备工艺、质量控制和合理使用等 内容的综合性应用技术科学。 2. 剂型:是把药物加工制成适合于患者需要的给药方式。 3. 制剂:根据药典和颁布标准,将药物制成适合于临床需要并符合一定质量标准的药剂。 4. 首过效应:某些药物口服后在通过肠粘膜及肝脏而经受灭活代谢后,进入体循环的药量 减少、药效降低效应。 5. 药典:是一个国家记载药品标准、规格的法典,一般由国家药典委员会组织编撰,并 由政府颁布、执行,具有法律约束力。 6. 处方:指医疗和生产部门药剂调制的一种重要书面文件,有法定处方、协定处方、医师 处方和秘方之分。 7. 处方药:必须凭职业医师或执业助理医师的处方才可以调配、购买,并在医生的指导下 使用的药物=品。 8. 非处方药:不需要凭借执业医师或职业助理医师的处方,消费者可以自行判断购买和使 用的药品。 9. GMP:药品生产质量管理规范 10. GLP :药物非临床研究质量管理规范 11. 临界相对湿度:水溶性药物在相对湿度较低的环境下,几乎不吸湿,而当相对湿度增 大到一定值时,吸湿量急剧增加,一般把这个吸湿量开始急剧增加的相对湿度叫临界相对湿度。12. 分配系数:物质在两种不相混的溶剂中平衡时的浓度比。不同的物质在同一对溶剂中的 分配系数不同,可利用该原理对物质分离纯化。 13. 生物利用度:是指药物被机体吸收进入血液循环的相对量和速率,用F表示,F=(A/D) X100% A为进入体循环的量,D为口服剂量。 14. 新药:我国未生产过的药品及已生产的药品中:(1)增加新的适应症(2)改变给药途 径(3)改变剂型。 15. 药品注册:是指国家食品药品监督管理局根据药品注册申请人的申请,依照法定程序, 对拟上市销售的药品的安全性、有效性、质量可控性等进行审查,并决定是否同意其申请的审批过

药剂学药物制剂的设计原则

药剂学-药物制剂的设计原则 药物制剂的设计原则 一、制剂设计的基本原则 在给药途径及剂型确定后,针对药物的基本性质及制剂要解决的关键问题,重要的工作就是选择适宜辅料和工艺将其制备成质量可靠和病人应用方便的药物制剂。药物制剂直接用于病人,无论经哪个途径用药,都应把质量放在最重要的位置,稍有不慎,轻则迨误疾病治疗,重则给病人将带来生命危害,同时也将给生产厂家带来不可估量的信誉损失和经济损失。药品的质量构成包括安全性、有效性、稳定性和顺应性。此外,对于制剂的设计者和生产者,制剂的生产成本和药品的价格也应是考虑的因素之一。 1、安全性 药物制剂的安全性问题来源于药物本身,也与药物剂型与制剂的设计有关。任何药物在对疾病进行有效治疗的同时,也可能具有一定的毒副作用。有些药物在口服给药时毒副作用不明显,但在注射给药时可能产生剌激性或毒副作用。例如布洛芬、诺氟沙星的口服制剂安全有效,但在设计成肌肉注射液时却出现了严重剌激性。一些药物在规定的剂量范围内的毒副作用不明显,但在超剂量用药或制剂设计不合理使药物吸收过快时产生严重后果,这类情况对于象茶碱、洋地黄、地高辛、苯妥英钠等治疗指数较小、药理作用及毒副作用都很强的药物更需要引起注意,临床上要求对这类药物进行血药浓度监测,就是为了尽量减少事故的发生。 对于药物制剂的设计者来说,必须充分了解用药目的、药物的药理、药效、毒理和药动学性质以确定给药途径、剂型及剂量。应该注意,在某些药物的新剂型及新制剂设计过程中,由于改变了剂型、采用新辅料或新工艺而提高了药物的吸收及生物利用度时,需要对制剂的

剂量以及适应症予以重新审查或修正,对于毒性很大的药物或治疗指数小的药物一般不制备成缓释制剂、也不采用微粉化工艺加速其溶解。 2、有效性 在保证安全性的同时,药物制剂的有效性是设计的重要考虑。药品的有效性与给药途径有关,也与剂型及剂量有关。第一节已经强调了给药途径对药效的影响,如硝酸甘油通过透皮、舌下粘膜吸收以及颊粘贴等取得不同的治疗或预防效果。又如硫酸镁在口服时是有效的泻药,而在制备成静脉注射液时则起到了解痉镇静的作用。即使在同一给药途径,不同的剂型也可能产生不同的治疗效果。溶液剂、分散片、口溶片等制剂能够较快地起效,迅速地起到抗菌、镇痛、退热、止咳等作用,但往往维持时间较短,需要频繁用药,如布洛芬分散片、布洛芬颗粒剂等。将其设计成缓释制剂时则能够维持更长的作用时间,每天1-2次即可维持全天的镇痛作用。象高血压、精神焦虑等慢性、长期性疾病的治疗以及预防性治疗等选择缓释剂型具有优越性。 在保证用药安全的前提下,通过合理的制剂处方及工艺设计可以提高药物治疗的有效性,对于某些口服难溶性药物、胃肠道吸收差的药物,使用高效崩解剂、增溶剂、固体分散技术或微粉化技术等可以提高药物的溶解速度及吸收,提高其治疗有效性。将一些药物制备成脂质体、微球、乳剂等剂型,不仅提高了药物的有效性,还能减少毒副作用。前列腺素E1具有强烈血管扩张作用,在制备成乳状型注射液后,其有效性比溶液型注射液有数倍的提高,剂量降低至原来的1/10~1/5,同时还减小了药物对血管的剌激性。 3、稳定性 稳定性是保证药物制剂安全性和有效性的基础。不仅要考虑在处方配伍及工艺过程中的药物稳定性,而且还要考虑在贮存期以及使用期间的稳定性。药物的化学不稳定导致有效剂量降低,形成新的未知(或已知)毒副作用的有关物质;药物制剂的物理不稳定性导致液体剂

药剂学药物制剂的设计原则

药剂学药物制剂的设计 原则 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

药剂学-药物制剂的设计原则 药物制剂的设计原则 一、制剂设计的基本原则 在给药途径及剂型确定后,针对药物的基本性质及制剂要解决的关键问题,重要的工作就是选择适宜辅料和工艺将其制备成质量可靠和病人应用方便的药物制剂。药物制剂直接用于病人,无论经哪个途径用药,都应把质量放在最重要的位置,稍有不慎,轻则迨误疾病治疗,重则给病人将带来生命危害,同时也将给生产厂家带来不可估量的信誉损失和经济损失。药品的质量构成包括安全性、有效性、稳定性和顺应性。此外,对于制剂的设计者和生产者,制剂的生产成本和药品的价格也应是考虑的因素之一。 1、安全性 药物制剂的安全性问题来源于药物本身,也与药物剂型与制剂的设计有关。任何药物在对疾病进行有效治疗的同时,也可能具有一定的毒副作用。有些药物在口服给药时毒副作用不明显,但在注射给药时可能产生剌激性或毒副作用。例如布洛芬、诺氟沙星的口服制剂安全有效,但在设计成肌肉注射液时却出现了严重剌激性。一些药物在规定的剂量范围内的毒副作用不明显,但在超剂量用药或制剂设计不合理使药物吸收过快时产生严重后果,这类情况对于象茶碱、洋地黄、地高辛、苯妥英钠等治疗指数较小、药理作用及毒副作用都很强的药物更需要引起注意,临床上要求对这类药物进行血药浓度监测,就是为了尽量减少事故的发生。 对于药物制剂的设计者来说,必须充分了解用药目的、药物的药理、药效、毒理和药动学性质以确定给药途径、剂型及剂量。应该注意,在某些药物的新剂型及新制剂设计过程中,由于改变了剂型、采用新辅料或新工艺而提高了药物的吸收及生物利用度时,需要对制剂的剂量以及适应症予以重新审查或修正,对于毒性很大的药物或治疗指数小的药物一般不制备成缓释制剂、也不采用微粉化工艺加速其溶解。 2、有效性

最新药剂学名词解释整理版

名词解释 1、药剂学(Pharmaceuticals) 药剂学是研究药物制剂的基本理论、处方设计、制备工艺和合理应用的综合性技术科学。 2、药典(Pharmacopoeia) 药典是一个国家记载药品标准、规格的法典,一般由国家药典委员会组织编纂、出版,并由政府颁布、执行,具有法律约束力。 3、处方药(prescription drug) 必须凭执业医师或执业助理医师的处方才能调配、购买,并在医生指导下使用的药品。可以在国务院卫生行政部门和国务院药品监督管理部门共同指定的医学、药学专业刊物上介绍,但不得在大众传播媒介发布广告或者以其他方式进行以公众为对象的广告宣传。 4、非处方药(nonprescription drug) 不需执业医师或执业助理医师处方,消费者可以自行判断、购买和使用的药品。 5、GMP(Good Manufacturing Practice) 《药品生产质量管理规范》,是药品生产和质量管理的基本准则,适用于药品制剂生产的全过程和原料药生产中影响成品质量的关键工序。 6、助溶剂(hydrotropy agent) 多为低分子化合物,与难溶性药物形成可溶性分子络合物、复盐或分子缔合物等,以增加药物在溶剂中溶解度。 7、潜溶剂(cosolvent) 系指能形成氢键的混合溶剂。(P23)在混合溶剂中各溶剂在某一比例时,药物的溶解度比在各单纯溶剂中的溶解度大,而且出现极大值,这种现象叫做潜溶(cosolvency),这种溶剂称为潜溶剂。 8、酊剂(tincture) 指药物用规定浓度的乙醇浸出或溶解制成的澄清液体制剂,亦可用流浸膏或浸膏溶解稀释制成,可供内服或外用。(P149) 9、芳香水剂(aromatic waters) 指芳香挥发性药物(多半为挥发油)的饱和或近饱和水溶液。(P147) 10、絮凝(flocculation) 混悬微粒形成絮状聚集体的过程称为絮凝。(P153) 在一定条件下,微粒表面带有同种电荷时粒子间产生排斥力,而且双电层越厚,则排斥力越大,微粒越稳定。如在微粒分散体系中加入一定量的某种电解质,离子选择性地被吸附于微粒表面,中和微粒表面的电荷,而降低表面带电量及双电层厚度,使微粒贱的斥力下降,颗粒聚集而形成絮状物,但振要后可重新分散均匀。将这种现象叫做絮凝,加入的电解质称絮凝剂。 11、反絮凝(deflocculation)

15 药物制剂的设计

第十五章药物制剂的设计 一、概念与名词解释 1 .preformulation 2. hygroscopicity 3. RH 4.factorial design 5.多晶型 6.单纯形优化法 7.效应面优化法 8.析因设计 9.星点设计 10.正交设计 11.均匀设计法 12.药品注册 13.绝对生物利用度 14.相对生物利用度 二、判断题(正确的划√,错误的打X) 1.固体制剂中药物吸收的速度主要受药物的溶出过程及跨膜转运过程的限制。( ) 2.药物制剂的设计是决定药品的安全性、有效性、可控性、稳定性和顺应性的重要环节。( ) 3.液体制剂不存在崩解、分散过程,溶液型制剂甚至没有溶出过程,

因此药物的吸收相对较快。( ) 4.单纯改变剂型的新制剂,如果可检索到原料药的毒理资料,可免做所有相关实验。( ) 5.根据新制剂的适应证进行相应的药理学评价,已上市的原料药可用资料替代。( ) 6.单纯改变剂型的制剂不要求进行临床实验,但要求进行新制剂与参比制剂之间的生物等效性试验。( ) 7.处方前工作包括通过实验研究或从文献资料中获得所需科学情报资料,获得原料药物及其有关性质。( ) 8.多晶型药物的生物活性相同,对多晶型的研究及相应的生物活性研究不作为药物处方设计前研究的内容。( ) 9.多晶型物的化学成分相同,晶型结构不同,某些物理性质,如密度、熔点、溶解度、溶出速度等不同。( ) 10.药物的晶型不影响其吸收速度和临床药效。( ) 11.药物以解离型或非解离型存在不影响药物通过生物膜被吸收。 12.对于缓、控释制剂,《中华人民共和国药典》规定应在临床前进行动物体内与普通制剂多次给药的比较。( ) 13.以静脉注射的生物利用度定为100%,该药的其他制剂与静脉注射剂比较所得的生物利用度称为相对生物利用度。( ) 14.溶解度和pKa的测定影响以后许多研究工作,进行处方前工作开始时,必须首先测定溶解度和pKa。( ) 15一个药物有几种多晶型物存在时,必须保证批与批之间都能一定

《药剂学》试题及答案

药剂学习题 第一篇药物剂型概论 第一章绪论 一、单项选择题【A型题】 1.药剂学概念正确的表述是() A、研究药物制剂的处方理论、制备工艺和合理应用的综合性技术科学 B、研究药物制剂的基本理论、处方设计、制备工艺和合理应用的综合性技术科学 C、研究药物制剂的处方设计、基本理论和应用的技术科学 D、研究药物制剂的处方设计、基本理论和应用的科学 E、研究药物制剂的基本理论、处方设计和合理应用的综合性技术科学 2.既可以经胃肠道给药又可以经非胃肠道给药的剂型是() A.合剂 B.胶囊剂 C.气雾剂 D.溶液剂 E.注射剂 3.靶向制剂属于() A.第一代制剂 B.第二代制剂 C.第三代制剂 D.第四代制剂 E.第五代制剂 4.药剂学的研究不涉及的学科() A.数学 B.化学 C.经济学 D.生物学 E.微生物学 5.注射剂中不属于处方设计的有() A.加水量 B.是否加入抗氧剂 C. pH如何调节 D.药物水溶性好坏 E.药物的粉碎方法 6.哪一项不属于胃肠道给药剂型() A.溶液剂 B.气雾剂 C.片剂 D.乳剂 E.散剂 7.关于临床药学研究内容不正确的是() A.临床用制剂和处方的研究 B.指导制剂设计、剂型改革 C.药物制剂的临床研究和评价 D.药剂的生物利用度研究 E.药剂质量的临床监控 8.按医师处方专为某一患者调制的,并明确指明用法和用量的药剂称为() A.药品 B.方剂 C.制剂 D.成药 E.以上均不是 9.下列关于剂型的表述错误的是() A、剂型系指为适应治疗或预防的需要而制备的不同给药形式 B、同一种剂型可以有不同的药物 C、同一药物也可制成多种剂型 D、剂型系指某一药物的具体品种 E、阿司匹林片、扑热息痛片、麦迪霉素片、尼莫地平片等均为片剂剂型 10.关于剂型的分类,下列叙述错误的是() A、溶胶剂为液体剂型 B、软膏剂为半固体剂型 C、栓剂为半固体剂型 D、气雾剂为气体分散型 E、气雾剂、吸入粉雾剂为经呼吸道给药剂型

药剂学名词解释-四合一

1 绪论 1.Pharmaceutics (Pharmacy) 药剂学: 是研究药物制剂的基本理论,处方设计,制备工艺,质量控制,合理使用等内容的综合性应用技术科学. 2.Dosage forms剂型: 适合于疾病的诊断、治疗或预防的需要而制备的与一定给药途径相适应的给药形式,就叫做药物剂型,简称剂型. 3.Pharmaceutical preparations药物制剂:各种剂型中的具体药物或者为适应治疗或预防的需要而制备的不同给药形式的并规定有适应症、用法和用量的具体品种,简称制剂. 4.DDS 指在防治疾病的过程中所采用的不同于普通剂型的各种新型的给药形式和方法 5.Pharmacopoeia 药典:是一个国家记载药品标准,规格的法典,一般由国家药典委员会组织编著,出版,并由政府颁布,执行,具有法律约束力. 6.Formulation生产处方:是制剂生产或者调配的重要书面文件,是配料和成本核算的依据,包括药物,用量,配制方法以及工艺等内容。 7.Prescription医师处方: 医生对病人用药的重要书面文件,包括药品的种类,数量和用法。 8.Prescritption (Ethical) drug 处方药: 必须凭执业医师或执业助理医师的处方才可调配,购买并在医生指导下使用的药品. 9.OTC非处方药: 不需凭执业医师或执业助理医师的处方,消费者可以自行判断,购买和使用的药品. 2液体制剂 10.Liquid preparations液体制剂: 指药物分散在适宜的分散介质中形成的供内服或外用 的液体形态的制剂。 11.Solubilizer增溶剂: 指具有增溶能力的表面活性剂.Solubilization增溶: 指某些难溶性药物在表面活性剂作用下,在溶剂中溶解度增大并形成澄清溶液的过程 12.Hydrotropy agents助溶剂: 指难溶性药物与加入的第三种物质在溶剂中形成可溶性分子间的络合物,复盐或缔合物等,以增加药物在溶剂中的溶解度,这第三种物质称为助溶剂。 13.Cosolvents 潜溶剂: 使药物的溶解度出现极大值的混合溶剂cosolvency 潜溶:混合溶剂中各溶剂达某一比例时药物溶解度出现极大值的现象 14.Solutions溶液剂: 指药物溶解于溶剂中形成的澄明液体制剂。15.Aromatic waters芳香水剂: 指芳香挥发性药物的饱和或近饱和的水溶液16.Syrups 糖浆剂:指含药物的浓蔗糖水溶液17.Tinctures 酊剂: 指药物用规定浓度乙醇浸出或溶解而制成的澄清液体制剂 18.Spirits醑剂: 指挥发性药物的浓乙醇溶液19.Glycerins 甘油剂: 指药物溶于甘油中制成的专供外用的溶液剂。20.Paints 涂剂: 用纱布、棉花蘸取后涂搽皮肤,口或喉部黏膜的液体制剂21.Sols溶胶剂: 指固体药物微粒分散在水中形成的非均匀状态的液体制剂,又称疏水胶体溶液,属热力学不稳定系统。 22.Suspensions混悬剂: 指难溶性固体微粒分散在分散介质中形成的非均匀的液体制剂。属热力学不稳定体系。23.Flocculating agents 絮凝剂: 使混悬微粒絮凝时加入的电解质或使混悬剂产生絮凝作用的附加剂 24.Emulsions 乳剂: 指两种互不相溶的液体,其中一种液体以小液滴状态分散在另一种液体中所形成的非均相分散体系。 25.Emulsifying agents/Emulsifier:乳化剂: 能显著降低油水两相表面张力并能在乳滴周围形成牢固的乳化膜的物质26.Liniments搽剂:指专供揉搽皮肤表面用的液体制剂 27.Lotions洗剂:指专供涂抹,敷于皮肤的外用液体制剂28.Nasal drops滴鼻剂:专供滴入鼻腔内使用的液体制剂29.Ear drops 滴耳剂:供滴入耳腔内的外用液体制剂30.Gargles 含漱剂:指用于喉咙,口腔清洗的液体制剂31.Drop dentifrices 滴牙剂:指用于局部牙孔的液体制剂32.mixtures /mists合剂:指以水为溶剂含一种或一种以上的药物成分的内服液体制剂。

药剂学药物制剂的设计原则

精心整理药剂学-药物制剂的设计原则 药物制剂的设计原则 一、制剂设计的基本原则 在给药途径及剂型确定后,针对药物的基本性质及制剂要解决的关键问题,重要的工作就是选择适宜辅料和工艺将其制备成质量可靠和病人应用方便的药物制剂。药物制剂直接用于病人,无论 但在 对于药物制剂的设计者来说,必须充分了解用药目的、药物的药理、药效、毒理和药动学性质以确定给药途径、剂型及剂量。应该注意,在某些药物的新剂型及新制剂设计过程中,由于改变了剂型、采用新辅料或新工艺而提高了药物的吸收及生物利用度时,需要对制剂的剂量以及适应症予以重新审查或修正,对于毒性很大的药物或治疗指数小的药物一般不制备成缓释制剂、也不采用微粉化工艺加速其溶解。

2、有效性 在保证安全性的同时,药物制剂的有效性是设计的重要考虑。药品的有效性与给药途径有关,也与剂型及剂量有关。第一节已经强调了给药途径对药效的影响,如硝酸甘油通过透皮、舌下粘膜吸收以及颊粘贴等取得不同的治疗或预防效果。又如硫酸镁在口服时是有效的泻药,而在制备成静脉注射液时则起到了解痉镇静的作用。即使在同一给药途径,不同的剂型也可能产生不同的治疗效果。溶液剂、分散片、口溶片等制剂能够较快地起效,迅速地起到抗菌、镇痛、退热、止咳等作用, 乳剂 ,3 定性,形成新的未知(或已知)毒副作用的有关物质;药物制剂的物理不稳定性导致液体剂型的沉淀、沉降、分层等,固体制剂的变形、破碎、软化、液化等现象;药物的生物学不稳定性导致制剂的污损、霉变、染菌等严重问题。所有这些问题或使制剂的有效剂量发生变化、制剂的均匀性变差,或使药品外观发生不良变化等,从而影响治疗及影响病人及医护人员的顺应性。制剂设计中的稳定性考虑不仅是与处方成分配伍有关,也与采用的制备工艺有关,如前述所提及的葡萄糖注射液、维生素C、

药剂学历年版试题

南昌大学药学系04级~07级药剂学试题(新剂型部分) 04级A卷 一、单项选择题 1、下列属于控制扩散为原理的缓控释制剂的方法为() A、控制粒子大小 B、采用不溶性高分子材料为阻滞剂制备的骨架片 D、制成溶解度小的盐C、用蜡质类为基质制成溶蚀性骨架片 2、在速度曲线图最低点所对应的横坐标,即为() A、药物最稳定的 B、药物最不稳定的 C、反应速度的最高点 D、反应速度的最低点。 3、15g水溶性物质A与20g水溶性物质B(值分别为78%和60%),两者混合物的值为()。 A、26.2% B、46.8% C、66% D、52.5% 4、下列哪一辅料不能用作初级渗透泵控释片的半透膜材料?() A、醋酸纤维素 B、乙基纤维素 C、羟丙甲纤维素 D、丙烯酸树脂(100,100) 5、下列制剂技术(或剂型)静脉注射没有靶向性的是() A、纳米粒 B、乳剂 C、小分子溶液型注射剂 D、脂质体 6、下列叙述不属于结肠定位释药系统优点的是() A、避免首过效应 B、有利于多肽、蛋白质类大分子药物的吸收 C、固体制剂在结肠中的转运时间很长,可达20~30h,因此的研究对缓、控释制剂,特别是日服一次制剂的开发具有指导意义 D、治疗小肠局部病变 7、以明胶、阿拉伯胶为囊材,采用复凝聚法制备微囊时,其中一个步骤是将调到 3.7,其目的是() A、使阿拉伯胶荷正电 B、使明胶荷正电 C、使阿拉伯胶荷负电 D、使明胶荷负电 二、填空题

1、滴丸本质上是一种采用熔融法制备的。 2、对口服缓控释制剂进行体外评价时,一般需要进行试验,测定不同取样时间点的药物释放百分数。 3、药物的靶向从到达的部位讲可以分为三级,第一级指到达特定的 ,第二级指到达特定的,第三级指到达细胞内的特定部位,如细胞器。 4、将一些难溶性药物研制为环糊精或环糊精衍生物的包合物的主要目的是。 5、纳米乳属于稳定系统,制备纳米乳时,只要处方合适,纳米乳可以自发形成或通过轻微搅拌形成,不需要高速搅拌,基于此性质,发展出了自乳化给药系统。 6、微粒分散体系由于高度分散具有一些特殊的性能,其中之一是:微粒分散体系是多相体系,分散相和分散介质之间存在着相界面,因而会出现大量的现象。 7、在微球(或微囊)制备的方法中,先制备、、或型乳液,然后除去分散相中的挥发性有机溶剂得到微球(或微囊)的方法称为法。 三、判断题 1、如果采用作为载体材料制备固体分散体,可以考虑采用熔融法。() 2、观察纳米粒、脂质体等微粒的形态的电子显微镜主要有透射电镜和扫描电镜。() 3、为了避免网状内皮系统的巨噬细胞所吞噬,延长脂质体在体内的循环时间,采用聚乙二醇等对脂质体进行修饰,研制出了免疫脂质体。() 4、在脂质体的各种制备方法中,乙醇注入法目前可以用于工业化生产脂质体。() 四、名词解释 1、固体分散体 2、缓控释制剂 五、简答题 1、列举促进药物经皮吸收的各种方法 2、抗疟疾药物蒿甲醚系脂溶性药物,在水中几乎不溶。其现有口服制剂,如片剂、胶囊剂因其难溶于水可能存在生物利用度低的问题;其现有注射剂以油作为溶剂,药效发挥较慢,使其在临床快速抢救中的应用受到限制。请你根据所学的药物新剂型和制剂新技术知识,为蒿甲醚设计不少于2种新剂型,说明所设计的新剂型的优点,并简单介绍至少一种制备方法。(提示:1。可以考虑增加药物的水溶性,设计更为优越的口服、注射剂型;2。肝脏是疟原虫红内期的首先和主要寄生处)

新剂型

1、新制剂与新剂型的开拓方向 开发新药剂要求有多学科知识与技术,包括药理学、毒理学、生物化学、药代动力学、药剂学、临床医学等知识的合作,要承受开发与投资风险。但为了适应畜牧. 养殖业发展与兽药市场激烈竞争的需要,又必须不断有新产品推出。为了做到这一点,从目前市场经济的角度要求,既要发展能用于工厂化养殖或群体商品化养殖的产品,也要开发供农家养殖用的品种,例如抗菌、抗病毒、抗寄生虫药剂及用于防治代谢性疾病、促进生产与繁殖、预防动物应激反应性疾病、治疗消化系与呼吸系疾病的制剂等。剂型包括注射剂、口服液、片剂、丸剂、透皮(浇泼)剂、缓释剂、微囊剂、气雾剂和饲料添加剂等新品种。 除了化学合成药剂以外,要重视发展生物源性药剂,例如天然中草药制剂,海洋药物制剂,微生态制剂,基因药剂等。 2、新制剂与新剂型的发展品种 总结本题内介绍的品种为: (1)新制剂与新剂型,新剂型有:口服液、透皮(浇泼)剂、气雾剂、缓释药囊、反刍兽瘤胃控释剂、长效控释药丸、饲料药物微囊;新制剂为:(阿苯哒唑)瘤胃控释剂、速眠新、眠乃静、胸腺素、硝丙合剂、阿维菌素(虫克星)注射液、阿维菌素口服液、阿维菌素透皮(浇泼)剂、阿维菌素控释药丸剂、球立清(复方马杜拉霉素)、地克珠利预混剂、单诺沙星注射剂、复方左旋咪唑透皮(浇泼)剂、环丙沙星透皮剂、环丙沙星注射液、二氢吡啶预混剂,喹乙醇注射剂、禽Ⅱ多能!号添加剂、多效囊支灵冲剂、禽感冒药“芪普蒽”、增茸素、特效增茸宝、复方胆素注射液、鸡蔓合剂、复方熊胆眼药吡喹酮脂质体、三氮脒脂质体、免疫激活素、多糖铁、多糖锌、多糖锰、多糖铜等 (2)有开发前景的新药剂与新剂型:动物用基因重组促生长激素;天然动植物药材提取 制剂:弹丸剂(皮下埋植剂)。

药剂学重点知识总结(精华篇)

第一章绪论 一、概念: 药剂学:是研究药物的处方设计、基本理论、制备工艺和合理应用的综合性技术科学。 制剂:将药物制成适合临床需要并符合一定质量标准的制剂。 药物制剂的特点:处方成熟、工艺规范、制剂稳定、疗效确切、质量标准可行。 方剂:按医生处方为某一患者调制的,并明确指明用法和用量的药剂称为方剂。 调剂学:研究方剂调制技术、理论和应用的科学。 二、药剂学的分支学科: 物理药学:是应用物理化学的基本原理和手段研究药剂学中各种剂型性质的科学。 生物药剂学:研究药物、剂型和生理因素与药效间的科学。 药物动力学:研究药物吸收、分布、代谢与排泄的经时过程。 三、药物剂型:适合于患者需要的给药方式。 重要性: 1、剂型可改变药物的作用性质 2、剂型能调节药物的作用速度 3、改变剂型可降低或消除药物的毒副作用 4、某些剂型有靶向作用 5、剂型可直接影响药效 第二章药物制剂的基础理论 第一节药物溶解度和溶解速度 一、影响溶解度因素: 1、药物的极性和晶格引力 2、溶剂的极性 3、温度 4、药物的晶形 5、粒子大小 6、加入第三种物质 二、增加药物溶解度的方法: 1、制成可溶性盐 2、引入亲水基团 3、加入助溶剂:形成可溶性络合物 4、使用混合溶剂:潜溶剂(与水分子形成氢键) 5、加入增溶剂:表面活性剂(1)、同系物 C链长,增溶大(2)、分子量大,增溶小(3)、加入顺序(4)用量、配比 第二节流变学简介 流变学:研究物体变形和流动的科技交流科学。 牛顿液体:一般为低分子的纯液体或稀溶液,在一定温度下,牛顿液体的粘度η是一个常数,它只是温度的函数, 粘度随温度升高而减少。 非牛顿液体:1、塑性流动:有致流值 2、假塑性流动:无致流值 3、胀性流动:曲线通过原点 4、触变流动:触变性,有滞后现象 第三节粉体学

相关文档
最新文档