多级放大电路的设计
多级放大电路的设计和实验

多级放大电路的设计和实验一、教学目的熟悉两级(或多级)放大电路设计和调试的一般方法。
电压放大倍数的测量,幅频特性的测量方法。
可用计算机辅助设计和仿真。
二、设计指标电压放大倍数A u :≥5000(绝对值) 输入电阻R i :≥1kΩ输出电阻R o :≤3kΩ 通频带宽BW :优于100Hz~1MHz 电源电压V CC :+12V -20V 负载电阻R L :3kΩ输出最大不失真电压:5V (峰峰值) 电路要求:无自激、负反馈任选 三、实验电路及实验结果根据设计要求进行了理论计算,设计电路图如图1:图11、在仿真软件Multisim 2001中绘制电路图,调试后输出波形不失真,放大倍数满足要求,完成表格1。
第一级 第二级 ICUBUCUE IC UBUCUE 1.59mA 2.326V 11.990V1.606V2.519mA3.267V 12.407V2.543V2、各级的电压放大倍数如下表,输出波形如下图: 第一级第二级总电压放大倍数 输入电压 (mVrms) 输出电压 (mVrms) 电压放大倍数 输入电压 (mVrms) 输出电压 (mVrms) 电压放大倍数 0.1418.466608.466653774627各级的输出波形如图2图23、电路的输入输出电阻的测量(1)用输出换算法测量放大器输入电阻R i 选取Rs=1 kΩ,完成表3,利用公式s o2o1o1i R u u u R -=计算输入电阻。
表3 放大器输入电阻R 不接R s 时输出电压 uo1(V rms) 串接R s 时输出电压 u o2(V rms) 输入电阻R i (kΩ) 0.6530.4593.3(2)用开路电压法测量放大器输出电阻Ro选取RL=3 kΩ,完成表4,利用公式L oLooo )1(R u u R -=计算输出电阻。
开路输出电压U oo (V rms)连接负载时电压u oL (V rms)输出电阻R o (kΩ)1.301 0.6532.9774、思考题(1)避免自激振荡的措施主要有哪些?你在电路中是如何避免自激振荡的? (2)你是如何分配各级电路的电压放大倍数的?分配依据是什么? (3)如果引入负反馈,目的是什么?效果如何?。
多级放大电路的课程设计

多级放大电路的课程设计一、课程目标知识目标:1. 学生能理解多级放大电路的基本原理,掌握其组成部分及各自功能。
2. 学生能够描述多级放大电路中各级之间的信号传输特性,解释信号放大的过程。
3. 学生能够运用数学表达式计算多级放大电路的电压增益、功率增益等关键参数。
技能目标:1. 学生能够设计简单的多级放大电路,并使用仿真软件进行模拟测试。
2. 学生能够运用所学知识分析多级放大电路在实际应用中可能出现的问题,并提出改进措施。
3. 学生能够通过实验操作,验证多级放大电路的性能,并准确记录实验数据。
情感态度价值观目标:1. 学生能够认识到多级放大电路在电子技术中的重要性,增强对电子学科的兴趣和热情。
2. 学生在学习过程中,培养合作精神,学会与他人共同探讨问题、解决问题。
3. 学生能够关注电子技术的发展,了解多级放大电路在生活中的应用,提高科技素养。
课程性质:本课程为电子技术基础课程,以理论教学和实践操作相结合的方式进行。
学生特点:学生处于高中阶段,具备一定的电子基础知识,对新鲜事物充满好奇,动手能力强。
教学要求:结合学生特点,注重理论与实践相结合,提高学生的实际操作能力,培养学生解决问题的能力。
在教学过程中,关注学生的情感态度,激发学生学习兴趣,提高教学效果。
通过分解课程目标为具体学习成果,便于后续教学设计和评估。
二、教学内容本章节教学内容主要包括以下几部分:1. 多级放大电路基本原理:介绍多级放大电路的概念、组成及工作原理,使学生了解信号在多级放大电路中的传递过程。
2. 多级放大电路的级联方式:分析常见的级联方式,如共射极、共基极、共集电极级联,以及它们的特点和适用场景。
3. 多级放大电路参数计算:讲解电压增益、功率增益、带宽等参数的计算方法,使学生能够运用公式进行计算。
4. 多级放大电路设计:引导学生学习如何设计简单的多级放大电路,包括选择合适的元器件、搭建电路和调试。
5. 多级放大电路仿真与实验:运用仿真软件(如Multisim、Proteus等)进行电路设计和测试,以及实验室实际操作,验证电路性能。
晶体管阻容耦合多级放大电路设计

晶体管阻容耦合多级放大电路设计晶体管(三极管)阻容耦合多级放大电路是一种常见的电子放大器电路,它通常由多个级联的放大器组成,每个级别都使用晶体管进行放大。
这种电路的设计目标是实现高增益和低失真的信号放大。
首先,我们需要确定电路的放大增益要求和频率响应。
这将决定电路中每个级别的放大倍数和频率特性。
接下来,我们选择适合的晶体管型号和工作点,以确保电路在工作时具有稳定的工作性能。
理想情况下,晶体管应具有高增益和低噪声。
在设计阻容耦合多级放大电路时,我们需要确定每个级别的输入和输出阻抗。
输入阻抗应尽可能大,以确保信号源与放大器之间的匹配。
输出阻抗应尽可能小,以便将信号传递给下一个级别的放大器或负载。
为了实现这些要求,我们可以使用电容耦合和电阻器来构建电路的每个级别。
具体来说,输入端可以使用耦合电容器连接到上一个级别的输出,输出端可以通过负载电阻连接到下一个级别的输入。
这种耦合方式可以有效地传递信号,并提供适当的阻抗匹配。
在设计每个级别的放大电路时,我们需要考虑功耗和热量问题。
为了确保电路的稳定性和可靠性,我们需要选择合适的电阻和电容值,并确保电路在工作时不会过热。
此外,我们还需要确保信号的直流偏置电压的稳定性和精确度。
这可以通过添加适当的偏置电路来实现,例如电源电压分压器、偏置电流源等。
最后,在设计阻容耦合多级放大电路时,我们还需要考虑信号的幅度和相位失真问题。
为了实现低失真放大,我们可以采用反馈电路或其他补偿方法来纠正失真。
总结起来,晶体管(三极管)阻容耦合多级放大电路设计涉及到确定电路的放大增益要求和频率响应、选择合适的晶体管型号和工作点、确定每个级别的输入和输出阻抗、处理功耗和热量问题、确保直流偏置电压的稳定性和精确度,并解决信号的幅度和相位失真问题。
通过合理设计和优化,我们可以实现高增益和低失真的信号放大。
多级放大电路设计与调试实验报告

多级放大电路设计与调试实验报告1多级放大电路设计与调试实验报告一,实验目的:1( 自行设计,安装,调试一个放大电路,满足规定实验要求2( 对实验电路的设计,调试过程进行分析,用实验验证模拟电路分析所采用的近似方法的可行性及同实际电路特性相比的差异性。
3( 学会在对电路进行检测后,对对应的问题和不足进行对应调节,有针对性对元件进行调整的方法。
二,实验设备:直流稳压电源,函数信号发生器,交流毫伏表,万用电表,双踪示波器,BJT 三极管,电容器,电阻,导线若干。
三,实验原理:由小功率BJT组成的电压放大电路可以对交流小信号起到线性放大作用,但是由于BJT的技术特性所限,其构成电路只能在一定范围信号电压,一定信号频带宽度,一定范围环境温度内达到线性放大的目的,超出限度,便可能出现信号失真,噪声增大,甚至烧毁电路的结果,因此对电路的设计要根据具体工作要求,选取符合要求的电路组态,元件参数进行设计。
此次实验所规定的所要满足的技术参数如下:电源电压VCC=12V;电压增益音视颇简称=40dB;输入电阻Ri(20k;最大输出电压VOM (有效值)>1V;频带宽度30Hz~30KHz;负载电阻RL=2k;信号源内阻RS=1k;使用环境温度:-10~+60鉴于电路的上述工作要求,在对电路组态以及元件选取的时候有如下考虑: 1,由于电路电压增益要达到40DB,也就是要电压放大100倍,因此要选用一种高增益的电路组态,由BJT放大电路三种组态知,其中共发射极放大电路增益大,因此可选用其做为放大电路的一部分。
2,对电路输入电阻的要求为Ri>20k,而共射极放大电路的输入电阻一般较小,很难满足此种要求,考虑加入另一级电路以提高输入电阻,而射极输出电路具有高输入阻抗的特点,因此选用共集电极射极输出电路做为放大电路的输入级。
3,由电路设计要求放大信号的频带宽度为30Hz~30Khz,而放大电路中对交流信号频率响应起主要作用的是电路中的偶合电容,旁路电容,以及三极管的极间电容,因此要设法调节这些电容的大小,以满足频带宽度的要求。
什么是多级放大电路如何设计一个多级放大器

什么是多级放大电路如何设计一个多级放大器多级放大电路是指由多个放大器级联组成的电路,用于提高输入信号的幅度,并有较大增益的电子设备。
在设计一个多级放大器之前,我们需要了解多级放大器的基本原理以及设计要点。
一、多级放大器的原理多级放大器是通过将多个放大器级联连接起来,以便连续放大信号的电压或功率。
它由输入级、中级和输出级组成。
1. 输入级:输入级负责接收输入信号并将其转化为电压或电流信号。
它通常包含一个低噪声放大器,其作用是增加输入信号的幅度,并将它传递给中级放大器。
2. 中级:中级放大器是多级放大器的核心部分,它的作用是增加电压或功率的增益。
中级通常包含多个级别的放大器,其中每个级别都提供一定的增益。
3. 输出级:输出级负责将信号放大到所需的幅度,并驱动负载电阻或其他负载。
输出级通常包含高功率放大器,以确保输出信号具有足够的驱动能力。
二、多级放大器的设计要点在设计一个多级放大器时,需要考虑以下几个要点:1. 增益和带宽:多级放大器的设计目标之一是在实现所需增益的同时保持足够的带宽。
增益与带宽的折衷是设计的关键考虑因素之一。
2. 输入和输出阻抗匹配:为了最大限度地传递信号并减少反射,需要确保输入和输出阻抗与信号源和负载的阻抗相匹配。
3. 稳定性:多级放大器必须具有良好的稳定性,以确保不会出现自激振荡或非线性失真。
这可以通过使用稳定的放大器设计和适当的负反馈技术来实现。
4. 噪声:多级放大器的设计应尽可能减少噪声的引入,并提供清晰的信号放大。
5. 功率供应:多级放大器需要合适的功率供应以保证其正常工作。
供应电压和电流必须满足放大器的工作要求,并且应提供稳定和纹波较小的电源。
三、一个多级放大器的示例设计以下是一个四级放大器的示例设计,以演示多级放大器的设计过程:1. 输入级:- 使用低噪声MOSFET放大器作为输入级,以提供高增益和低噪声。
- 输入级的增益设置为10倍,输入阻抗为50欧姆。
2. 中级:- 选择两个通用增益放大器级别级联,每个级别的增益为5倍。
放大电路多级设计

放大电路多级设计I. 引言放大电路是电子设备中常见的一种电路结构,用于将信号放大以增强其幅度或功率。
在某些应用中,单级放大电路可能无法满足要求,因此需要通过多级放大电路进行设计。
本文将探讨放大电路多级设计的原理和方法,以及其在实际应用中的一些考虑因素。
II. 基本放大电路在开始讨论多级设计之前,我们先回顾一下基本的放大电路。
放大电路通常由放大器、输入电路和输出电路组成。
其中放大器负责将输入信号放大,输入电路负责对输入信号进行预处理,输出电路负责将放大后的信号传递给外部载荷。
III. 多级放大电路设计原理多级放大电路通过将多个放大器级联来实现更高的增益。
每个放大器级别都增加了总体放大电路的增益,并且可以实现更高的带宽。
多级放大电路的设计要考虑以下几个因素:1. 总增益要求:根据具体应用的需求,确定所需的总增益。
随着级数的增加,总增益也会相应增加。
2. 频率响应:多级放大电路的频率响应应该与应用场景的要求相匹配。
因此,在设计过程中要考虑各级放大器的带宽以及相位延迟等参数。
3. 稳定性:在级联放大器时,必须考虑反馈和补偿电路的设计,以确保整个放大电路的稳定性。
IV. 多级放大电路设计方法多级放大电路的设计可以通过以下步骤进行:1. 确定总增益要求:根据应用需求确定所需的总增益。
2. 选择放大器类型:选择适合应用需求的放大器类型,如共射放大器、共基放大器或共集放大器等。
3. 确定各级增益:根据总增益要求和放大器性能参数,计算每个级别的增益。
4. 考虑稳定性:设计反馈和补偿电路以确保整个放大电路的稳定性。
5. 考虑频率响应:根据应用的频率要求,选择适当的带宽和延迟参数。
V. 实际应用考虑因素在实际应用中,多级放大电路的设计还需要考虑以下几个因素:1. 电源供电:选择合适的电源供电电压和容量,以确保放大电路的正常工作。
2. 噪声:多级放大电路的设计要考虑电路内部和外部噪声的影响,并采取相应的措施进行抑制。
3. 温度稳定性:温度对电子元件性能有较大的影响,因此设计中需要考虑温度对放大电路的稳定性的影响,并采取相应的温度补偿措施。
3.16多级放大电路的设计及测试

3.16多级放大电路的设计及测试一、 实验预习与思考设计任务和要求 (1) 基本要求:用给定的三极管2SC1815(NPN ),2SA1015(PNP )设计多级放大器,已知12CC V V =+,12EE V V =-,要求设计差分放大器恒流源的射极电流31~1.5EQ I mA =,第二放大级射极电流42~3EQ I mA =;差分放大器的单端输入单端输出不失真电压增益至少大于10倍,主放大级的不失真电压增益不小于100倍;双端输入电阻大于10K Ω,输出电阻小于10Ω,并保证输入级和输出级的直流电位为零。
给出设计过程,画出设计的电路,并标明参数。
首先设计,第一级的差分放大电路.要使两端串联的电阻值一样.然后集电极的两个电阻的阻值也要差不多.最后为确保发射极上的电阻为无穷大,则需要利用长尾式差分电路,确定其发射极电阻来构成一个电流源.然后设计主放大部分,要使发射极和集电极上的电阻的差值足够大,以使其达到放大100倍的要求,但还要确保阻值的合理性,以使三极管不会处于截止区或者饱和区.最后设计输出级电路.要选用尽可能小的电阻,以确保输出电阻可以足够的小,以达到要求.最后还要注意避免互补输出级出现交越失真的现象.参数:R1=R2=5kΩ,R5=10kΩ,R3=8.87kΩ,R6=R7=10kΩ,C2=1pF,C1=4μF,R12=1Ω,R9=1kΩ,R10=R11=1Ω.二、 实验目的(1) 理解多级直接耦合放大电路的工作原理和设计方法。
(2) 学习并熟悉设计高增益的多级直接耦合放大电路的方法。
(3) 掌握多级放大器的性能指标的测试方法。
(4) 掌握在放大电路中引入负反馈的方法。
三、 实验原理与测量方法直耦式多级放大器的主要设计任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出电压增益足够高的多级放大器,可对小信号进行不失真地放大。
多级放大电路课程设计

多级放大电路课程设计一、教学目标本节课的教学目标是让学生掌握多级放大电路的基本原理和分析方法,能够运用所学知识分析和解决实际问题。
具体目标如下:1.知识目标:•了解多级放大电路的组成和作用;•掌握放大电路的静态工作点和动态工作点调整方法;•熟悉多级放大电路的频率特性和失真现象;•掌握多级放大电路的测试和调试方法。
2.技能目标:•能够运用多级放大电路分析方法,分析和解决实际电路问题;•能够运用示波器、信号发生器等实验设备进行多级放大电路的测试和调试;•能够绘制多级放大电路的原理图和测试曲线。
3.情感态度价值观目标:•培养学生的科学思维和实验操作能力;•增强学生对电子技术的兴趣和自信心;•培养学生团队合作和交流分享的学习态度。
二、教学内容本节课的教学内容主要包括多级放大电路的基本原理、分析方法、测试和调试方法。
具体内容包括:1.多级放大电路的组成和作用:介绍多级放大电路的基本组成部分,如输入级、输出级、中间级等,以及它们的作用和相互关系。
2.放大电路的静态工作点和动态工作点调整:讲解如何通过调整偏置电阻等元件的值,使得放大电路在合适的静态工作点工作,以及如何通过反馈网络调整动态工作点。
3.多级放大电路的频率特性和失真现象:分析多级放大电路的频率特性,如低频特性和高频特性,以及失真现象的产生原因和解决方法。
4.多级放大电路的测试和调试方法:介绍使用示波器、信号发生器等实验设备进行多级放大电路的测试和调试的方法,如测试放大倍数、频率响应等。
三、教学方法本节课采用多种教学方法,以激发学生的学习兴趣和主动性。
具体方法包括:1.讲授法:通过讲解多级放大电路的基本原理和分析方法,使学生掌握相关知识。
2.讨论法:学生进行小组讨论,分享各自对多级放大电路的理解和疑问,促进学生之间的交流和合作。
3.案例分析法:通过分析实际电路案例,使学生能够将所学知识应用于实际问题中。
4.实验法:安排学生进行多级放大电路的实验操作,培养学生的实验操作能力和科学思维。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电工电子技术课程设计报告题目:多级放大电路的设计二级学院机械工程学院年级专业 14 动力本学号 1401250029学生姓名周俊指导教师张云莉教师职称讲师报告时间:2015.12.28目录第一章.基本要求和放电电路的性能指标 (1)第二章.概述和任务分析 (5)第三章.电路原理图和电路参数 (6)第四章.主要的计算过程 (9)第五章.电路调试运算结果 (11)第六章.总结 (12)制作调试步骤及结果 (12)收获和体会 (13)第七章.误差和分析 (14)第八章.参考文献 (15)第一章.基本要求和放电电路的性能指标1. 基本要求:用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知V CC =+12V, -V EE =-12V ,要求设计差分放大器恒流源的射极电流I EQ3=1~1.5mA ,第二级放大射极电流I EQ4=2~3mA ;差分放大器的单端输入单端输出不是真电压增益至少大于10倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10kΩ,输出电阻小于10Ω,并保证输入级和输出级的直流点位为零。
设计并仿真实现。
2. 放电电路的性能指标:第一种是对应于一个幅值已定、频率已定的信号输入时的性能,这是放大电路的基本性能。
第二种是对于幅值不变而频率改变的信号输出时的性能。
第三种是对应于频率不变而幅值改变的信号输入时的性能。
1.1第一种类型的指标:1.放大倍数放大倍数是衡量放大电路放大能力的指标。
它定义为输出变化量的幅值与输入变化量的幅值之比,有时也称为增益。
虽然放大电路能实现功率的放大,然而在很多场合,人们常常只关心某一单项指标的放大的倍数,比如电压或者电流的放大倍数。
由于输出和输入信号都有电压和电流量,所以存在以下四中比值:(1-1)1.(1-2)(1-3)(1-4)式中的错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
、错误!未找到引用源。
都是正弦信号的有效值。
需要注意的是,若输出波形出现明显失真,则此值就失去意义了,因此在输出端要有监视失真的措施(如用示波器观察波形)。
其他指标也是如此。
2.输入电阻作为一个放大电路,一定要有信号源来提供输入信号。
例如扩大机就是利用话筒将声音转成电信号提供放大电路的。
放大电路与信号源相连,就要从信号源取电流。
取电流的大小表明了放大电路对信号源的影响程度,所以我们定义一个指标,来衡量放大电路对信号源的影响,叫做输入阻抗。
当信号频率不是很高时,输入电流错误!未找到引用源。
与输入电压错误!未找到引用源。
基本同相,因此通常用输入电阻来表示。
它定义为:(1-5)从图1-1中可见,错误!未找到引用源。
就是向放大电路输入端看进去的等效电阻。
错误!未找到引用源。
越大,表明它从信号源取的电流越小,放大电路输入端所得到的电压错误!未找到引用源。
越接近信号电压错误!未找到引用源。
因此作为测量仪表用的放大电路其错误!未找到引用源。
要大。
但是对于晶体管来说,错误!未找到引用源。
大则取电流小,讲减低放大倍数。
所以在需要放大倍数大而错误!未找到引用源。
为固定值的情况 2. 下,晶体管放大电路的错误!未找到引用源。
又以小一些为好。
3.输出电阻放大电路讲信号放大后,总要送到某装置区发挥作用。
这个装置我们通常称为负载。
比如扬声器就是扩大机的负载。
当我们在原来的扬声器两端再并联一个扬声器时,它两端的电压讲要下降,这种现象说明向放大电路的输出端看进去有一个等效内阻,通常称为输出电阻,记为错误!未找到引用源。
,如图1-1所示。
图1-1求输出电阻错误!未找到引用源。
的等效电路通常测定输出电阻的办法是输入端加正弦波实验信号,测出负载开路时的输出电压错误!未找到引用源。
,再测出接入负载错误!未找到引用源。
时的输出电压错误!未找到引用源。
则读者可自行证明(1-6)输出电阻越大,表明接入负载后,输出电压的幅值下降越多。
因此错误!未找到引用源。
反映了放大电路带负载能力的大小。
1.2 第二种类型的指标:4.通频带当只改变输入信号的频率时,发现放大电路的放大倍数是随之变化的,输出波形的相位也发生变化。
这就需要有一定的指标来反映放大电路对于不同频率的信号的适应能力。
一般情况下,放大电路只适用于放大一个特定频率范围的信号,当信号频率太高或太低时,放大倍数都有大幅度的下降,如图1-2所示。
3.图1-2 放大电路的频率指标当信号频率升高而使放大倍数下降为中频时放大倍数(记作错误!未找到引用源。
)的0.7倍时,这个频率称为上限截止频率,记作错误!未找到引用源。
同样,使放大倍数下降为错误!未找到引用源。
的0.7倍时的低频信号频率称为下线截止频率,记作错误!未找到引用源。
我们将错误!未找到引用源。
和错误!未找到引用源。
之间形成的频带称为通频带,记作错误!未找到引用源。
,即(1-7)通频带越宽,表明放大电路对信号频率的适应能力越强。
对于收录机、扩大机来说,通频带宽意味着可以将原乐曲中丰富的高、低音都能完美的播放出来。
然而有些情况下则希望频带窄,如带通滤波电路等。
1.3 第三种类型的指标:5.最大输出幅值最大输出幅值指的是当输入信号再增大就会使输出波形的非线性失真系数超过额定数值(比如10%)时的输出幅值。
我们以错误!未找到引用源。
(或错误!未找到引用源。
)表示。
一般指有效值,也有以封至峰值表示的,二者差错误!未找到引用源。
倍。
6.最大输出功率与效率最大输出幅值是输出不失真时的单项(电压和电流)指标。
此外还应该有一个综合性的指标即最大输出功率。
它是输出信号基本不失真的情况下输出的最大功率,记作错误!未找到引用源。
前面我们说过,输入信号的功率都是很小的,经过放大电路,得到了较大的功率输出。
这些多出来的能量石由电源提供的,放大电路只不过是实现 4.了有控制的能量转换。
既然是能量的转换,就存在转换效率的问题。
也就是说,不能只看输出功率的大小,还应该看能量的利用率如何。
效率错误!未找到引用源。
定义为(1-8)式中错误!未找到引用源。
为直流电源消耗的功率。
7.非线性失真系数由于晶体管等器件都具有非线性的特性,所以当输出幅度大了之后,有时需要讨论它的失真问题。
我们在这里定义的非线性失真系数,是指放大电路在某一频率的正弦波输入信号下,输出波形的谐波成分总量和基波成分之比。
用错误!未找到引用源。
表示基波和各种谐波的幅值,则失真系数D定义为:(1-9)以上三类指标是以输入信号的幅值的频率来划分的。
一般来说,第一类指标多适用于输入为低频小信号时的情况;第二类指标多适用于输入信号幅值小但频率变化范围宽的情况;第三类指标则多适用于低频但输出幅值较大的情况。
第二章.概述和任务分析多级放大电路的概述:在我们日常生活和科学研究等工作中,常常会遇到放大电路。
这些放大电路的形式不通,性能指标也不同,使用的元器件也不相同,但它们都是用来进行信号的放大,其基本工作原理都是一样的。
在这些放大电路中,管放大电路时构成各种复杂电路的基本单元。
本文以几个简单的放大电路为例,介绍放大电路的组成原理、工作原理、性能指标及计算方法。
由于单级放大电路的放大倍数有限,不能满足实际的需要,因此实 5. 用的放大电路都是由多级组成的。
如图。
通常可分为两大部分,即电压放大(小信号放大)和功率放大(大信号放大),前置级一般跟据信号源是电压源还是电流源来选定,它与中间级主要的作用是放大信号电压。
中间级一般都用共发射极电路或组合电路组成。
末级要求有一定的输出功率供给负载RL,称为功率放大器,一般由共集电极电路,或互补推挽电路,有时也用变压器耦合放大电路。
多级放大电路的放大倍数:第三章. 电路原理图和电路参数电路原理图电路参数的选择和计算1.参数的选择:6.电容全部选用10μf ,电阻在下列值范围波动:Rs=5.1 K Ω,Rb12=33 K Ω,R1=0~100 K Ω,Rb11=24,Rc1=5.1 K Ω,Re12=0~1 K Ω,Re11=1.8 K Ω,Rb22=47 KΩ,Re22=0~330 Ω,R2=0~25 K Ω,Re21=1 K Ω,Rb2=20 K Ω,Rc2=3 K Ω,Rb3=0~680K Ω,Re3=2.2 K Ω,RL=3 K Ω,Vcc=12V,由Auf=(Re11+Re12+Rf)/Rf>20知,Rf<0.146 K Ω2.计算参数:一级放大电路的静态工作点 :12112b b b CC B R R R V U +=; K K K V U B 12601218+=; 3=B U V121b b CC B R R V I +=;A =μ25.0B I 1E BE B E C R U U I I -=≈;K V V I I E C 6.43.03-=≈ A =≈μ6.0E C I I()11E C C CC CE R R I V U +-≈;()K K V U CE 6.41218+-≈V U CE 4.1≈BC I I =β; 4.225.06.0=A A =μμβ 电压放大倍数: 错误!未找到引用源。
=beL r R \=-β;(RL’=RC1 //RE2 ) Au=12.06034.2-=-KK 输入电阻 Ri: b1i R R = // 错误!未找到引用源。
// 错误!未找到引用源。
错误!未找到引用源。
= 0.43 K7.输出电阻 Ro: Ro ≈错误!未找到引用源。
; Ro ≈错误!未找到引用源。
=12k 二级放大电路的静态工作点 :222122b b b CC B R R R V U +=;K K K V U B 4.96.264.918+= 8.4=B U V2221b b CC B R R V I +=;K K V I B 4.94.2618+=A =μ5.0B I2e BE B E C R U U I I -=≈;K V V I I E C 43.08.4-=≈ A =≈μ2.1E C I I()22E C C CC CE R R I V U +-≈;()K K I V U C CE 4618+-≈V U CE 6≈B C I I =β;4.25.02.1=A A =μμβ 电压放大倍数: Au=beL r R \=-β (RL’=RC1 //RE2 ) Au=12.06034.2-=-KK 输入电阻 Ri: b1i R R =// 错误!未找到引用源。
// 错误!未找到引用源。
Ri = 0.28 K输出电阻 Ro: Ro ≈ Rc1Ro ≈ Rc1=6k三级放大电路的静态工作点 :()e BE CC B R R U V I β++-=1b ;310026.0-⨯=B IB C I I β=;A =μ3.1C I 8.A=≈μ2.1E C I Ie C CC CE I I V U -≈;43.118⨯-≈V U CEV U CE 8.12≈输入电阻 Ri : b1i R R = //()[]L R `1rbe β++Ri = 461K // ( 1.32+ 51 0.25) Ri = 0.07 K输出电阻 Ro: Ro =Re // β++1`s be R rRo =14.5 k第四章. 主要的计算过程直耦式多级放大电路的主要涉及任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出一个电压增益足够高的多级放大器,可对小信号进行不失真的放大。