2020-2021学年浙江省温州中学高一上学期期中考试数学试题Word版含答案

合集下载

浙江省9 1高中联盟2020-2021学年高一上学期期中考试语文试题 Word版含答案

浙江省9 1高中联盟2020-2021学年高一上学期期中考试语文试题 Word版含答案

2020学年第一学期9+1高中联盟期中考试高一年级语文学科试题考生须知:1.本卷满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场、座位号及准考证号并核对条形码信息;3.所有答案必须写在答题卷上,写在试卷上无效,考试结束后,只需上交答题卷;一、语言文字应用(本大题共12题,选择题每小题3分,共42分。

选择题列出的四个备选项中只有一项是符合题目要求的,不选、多选、错选均不得分)1.下列词语中读音字形全都正确的一项是A.我们文工团的几个同志,就由助攻团的团长分派到各个战斗连去。

大概因为我是个女同志吧,团长对我抓了半天后脑勺.(sháo),最后才叫一个通讯员送我到前沿包扎.(zā)所去。

B.列车一头扎进黑暗,把她们撇.(piě)在冰冷的铁轨旁边。

很久,她们还能感觉到它那越来越轻的震颤.(chàn)。

一切又恢复了寂静,静得叫人愁怅。

C.中秋节,在我的故乡,现在一定又是家家门前放一张竹茶几.(jī),上面供一副.(fù)香烛,几碟瓜果月饼。

孩子们急切地盼那柱香快些焚尽,好早些分摊给月亮娘娘享用过的东西。

D.袁隆平拍去身上在粉笔灰尘,掖.(yē)着讲义夹.(jiá),匆匆来到校园外的早稻试验田。

采用常规法培育出来的早稻常规品种正在勾头散籽,呈现一派丰收景象。

阅读下面的文字,完成2-3题。

(5分)过去史学家一直认为第二次世界大战比较重要,认为1914年到1918年的一战只是欧洲旧的家庭式的争吵。

于是..冷战结束以后,已经有越来越多的世界主流历史学家开始意识到其实一战比二战更重要。

一战不仅为未来洗好了牌,为二十年后的二战奠定了基础,也在精神和文化上基本确立..了延续至今的世界历史文化版图。

【甲】第一次世界大战造成的第一个结果是四个欧洲古老帝国(沙皇俄国、德意志帝国、奥匈帝国、奥斯曼土耳其帝国)的崩溃,整个欧洲文明出现巨大的真空。

【乙】更具灾难性的是“巴黎和会”签署的《凡尔赛和约》虽然结束了战争,却没有产生一种新的精神或文明的尺度。

浙江省杭州之江高级中学2020-2021学年高一上学期期中考试数学试卷含解析 (1)

浙江省杭州之江高级中学2020-2021学年高一上学期期中考试数学试卷含解析 (1)

2020-2021学年浙江省杭州之江高级中学高一(上)期中数学试卷一、选择题(共10小题,每小题4分,共40分).1.已知集合A={1,2,3,4},B={2,5,6,7},则A∩B=()A.{0,2}B.{2}C.{﹣2,0,2}D.{﹣2,2}2.已知命题p:“∃x>0,使得x2﹣x﹣2>0”,则命题p的否定是()A.∀x≤0,总有x2﹣x﹣2>0B.∀x>0,总有x2﹣x﹣2≤0C.∃x>0,使得x2﹣x﹣2≤0D.∃x≤0,使得x2﹣x﹣2>03.“三角形为等边三角形”是“三角形为等腰三角形”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.下列函数中表示同一函数的是()A.y=与B.f(x)=x2+1与g(t)=t2+1C.y=与D.y=与y=x﹣35.若a,b,c为实数,且a<b<0,则()A.ac2≤bc2B.C.ac<bc<0D.0<a2<b26.函数中,有()A.f(x)在(﹣1,+∞)上单调递增B.f(x)在(1,+∞)上单调递减C.f(x)在(1,+∞)上单调递增D.f(x)在(﹣1,+∞)上单调递减7.若正数x,y满足=1,则x+2y的最小值为()A.B.C.25D.278.定义在R上的偶函数f(x)满足:在x∈[0,+∞)上单调递减,则满足f(2x﹣1)<f(1)的x的取值范围是()A.(﹣1,0)B.(1,+∞)∪(﹣∞,0)C.(﹣∞,0)D.(0,1)9.已知集合A={x|ax2﹣2x+a=0}中至多含有一个元素,则实数a的取值范围()A.[﹣1,1]B.[1,+∞)∪(﹣∞,﹣1]C.[﹣1,1]∪{0}D.[1,+∞)∪(﹣∞,﹣1]∪{0}10.函数f(x)对任意x∈R,都有f(x)=f(x+12),y=f(x﹣1)的图形关于(1,0)对称,且f(8)=1,则f(2020)=()A.1B.﹣1C.0D.2二、填空题:本大题共7小题,多空题每小题6分,单空题每小题6分,共36分。

浙江省温州市瑞安市2020-2021学年七年级上学期期中数学试题(word版含答案)

浙江省温州市瑞安市2020-2021学年七年级上学期期中数学试题(word版含答案)

浙江省温州市瑞安市2020-2021学年七年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.3-的倒数是( ) A .3B .13C .13-D .3-2.下列四个实数中,最小的是( )A .﹣2B C .0D .23.南山隧道工程是温瑞大道快速路的重要节点工程,该工程造价最终报价为376000000元,其中376000000用科学记数法可表示为( ) A .37.6×108B .3.76×108C .3.76×109D .37.6×1074.下列式子中,书写规范的是( ) A .﹣1xB .0.3÷xC .2xD .115xy5.下列各式计算结果为负数的是( ) A .()()23-+-B .()()23---C .()()23-⨯-D .()()23-÷-6.下列各组数中,不相等的一组是( )A .(﹣2)3和﹣23B .12-C .(﹣3)2和﹣32D .﹣(﹣2)和|﹣2|7.在数轴上到-1的点的距离是3的点所表示的数为( ) A .2B .4-或2C .4-D .2-或481的范围为( ) A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间9.为了丰富班级的课余活动,班级预购置5副羽毛球拍和20个羽毛球,一家文具店刚好有促销活动:买一副球拍送2个羽毛球,已知球拍每副a 元,羽毛球每个b 元.经过还价,在原有的促销基础上羽毛球拍每副降价20%,其他不变,最后一共要花( ) A .(4a +10b )元B .(4a +20b )元C .(5a +10b )元D .(5a +20b )元10.有若干张边长都是1的四边形纸片和三角形纸片,从中取一些纸片按如图所示的顺序拼接起来(排在第一位的是四边形),可以组成一个大的平行四边形或一个大的梯形.如果所取的四边形与三角形纸片的和是n ,那么组成的大平行四边形或梯形的周长不可能是( )A .64B .65C .66D .67二、填空题11.在“生活中的数学”知识竞赛中,如将加20分记为+20分,则扣10分记为______分. 12.8的立方根是___.13.用四舍五入法把0.335精确到百分位,所得到的近似数是____. 14.大于﹣2且小于π的所有整数的积等于___. 15.若a ﹣2b =﹣1,则3a ﹣6b +2=_____. 16.若a 2=4,|b |=3,且ab <0,则a +b =_____.17.如图所示是计算机程序计算,若开始输入x =﹣3,则最后输出的结果是____.18.如图,在纸面上有一数轴,点A 表示的数为﹣1,点B 表示的数为3,点C 表示的B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是_______.三、解答题19.把下列各数所对应的序号填在相应的大括号内.①5,②﹣π,③﹣1,④37,,负整数{ …}; 无理数{ …}. 20.计算:(1)﹣12+5﹣(﹣18); (2)(﹣3)×56÷(﹣14);(3)(﹣2)3(4)﹣14﹣24×(131243-+-).21.如图(1),在4×4的方格中,每个小正方形的边长为1.(1)求图(1)中正方形ABCD 的面积;(2)如图(2),若点A 在数轴上表示的数是﹣1,以A 为圆心,AD 为半径画圆弧与数轴的正半轴交于点E ,则点E 所表示的数是 .22.国庆期间,广场上对一片花圃做了美化造型(如图所示),整个造型构成花的形状.造型平面呈轴对称,其正中间“花蕊”部分(区域①)摆放红花,两边“花瓣”部分(区域②)摆放黄花.(1)两边“花瓣”部分(区域②)的面积是 .(用含a 的代数式表示)(2)已知a =2米,红花价格为220元/平方米,黄花价格为180元/平方米,求整个造型的造价(π取3).23.出租车司机小李某天上午运营全是在某条南北走向的路上进行的,如果规定向北为正,向南为负,这天上午他的行车里程(单位:千米)如下: ﹣6.5,+5,﹣7,+10,+6.5,﹣9.(1)若记出发点位置为A ,将最后一位乘客送到目的地时,小李在什么位置? (2)若汽车耗油量为0.2升/千米,小李接送这六位乘客,出租车共耗油多少升? (3)小李师傅接到第三位乘客后,刚好遇上高峰期,遇红灯及堵车等候时间约为32分钟,问第三位乘客需支付车费多少元?24.已知数轴上有A,B两点,点A位于原点左侧,离原点4个单位,点B位于原点右侧,离原点6个单位.已知P、Q是数轴上的两动点,点Q在点P的右侧2个单位处,当点P运动时,点Q也随之运动.现点P从原点O出发,以每秒2个单位的速度沿着O→A→B的路线运动,当点P到达点B时运动停止.设运动时间为t秒.(1)点A表示的数为,点B表示的数为;(2)当t为多少时,P、Q两点所对应的数互为相反数?(3)当Q到点B的距离是P到原点距离的3倍时,求出所有满足条件的t值.。

浙江省温州新力量联盟2020-2021学年高一上学期期中联考数学试题 含答案

浙江省温州新力量联盟2020-2021学年高一上学期期中联考数学试题 含答案

1200
x
10000 x
.
所以
L(x)
1 3
x
2
1200
40x 250, 0
x
10000 x
,
x
x
80 80
,1000x
N
*
.
(Ⅱ)当 0 x 80 时, L(x) 1 (x 60)2 950 . 3
此时,当 x 60 时, L x 取得最大值 L 60 950 万元.
【解析】(Ⅰ)因为每件药品售价为 0.05 万元,则 x 千件药品销售额为 0.051000x 万元,
依题意得:
-6-

0
x
80
时,
L(x)
(0.05 1000 x)
1 3
x2
10 x
250
1 3
x2
40x
250
.

x
80
时,
L(
x)
(0.05
1000x)
51x
10000 x
1450
250
-7-
∴ f x 不是“同域函数”.
(2)当 1 a 0 ,即 a 1 0 ,
设 x0 b
b2 4a(a 1) 2a
,则
f
x 的定义域
A
0, x0 .
①当
b 2a
0 ,即 b
0
时,
f
x 的值域
B
0,
a 1 .
若 f x 为“同域函数”,则 x0 a 1 ,
3
从而, b a 1 ,
x
mn
四、解答题:本大题共 6 个大题,满分 82 分.解答题应写出必要的文字说明、证明过程和演算 步骤.

2020-2021学年高一上学期数学期中考试卷含答案

2020-2021学年高一上学期数学期中考试卷含答案

选择题.本大题共10小题,每题5分,共50分.在每题给出的 四个选项中,只有一项为哪一项符合题目要求的.请把答案填涂在答题卡上.1.如图,阴影部分表示的集合是 ( )A 、B ∩[CU (A ∪C)] B 、(A ∪B)∪(B ∪C)C 、(A ∪C)∩( CUB)D 、[CU (A ∩C)]∪B 2.全集 U={1,2,3,4,5},A={1,5},B CUA,那么集合 B 的个数是〔 〕 A 、5 B. 6C. 7D. 83.假设函数)(x f 在区间(),a b 上是减函数,在区间(),b c 上也是减函数,那么函数)(x f在区间(),a c 上〔 〕[来源:Z|xx|]A 、必是减函数B 、必是增函数C 、是增函数或是减函数D 、无法确定增减性4.如果集合A={x|ax2+2x +1=0}中只有一个元素,那么a 的值是 〔 〕A 、0B 、0 或1C 、1D 、不能确定5.函数()11)(0--=x x f ( )A 、是奇函数B 、是偶函数C 、既是是奇函数,又是偶函数D 、既不是是奇函数,又不是偶函数 6.要得到y =3×(13)x 的图像,只需将函数y =(13)x 的图像( )A 、向左平移3个单位B 、向右平移3个单位C 、向左平移1个单位D 、向右平移1个单位7.有关方程345x x x+=的根的情况的四种说法中,正确的选项是〔 〕A 、只有一个有理数根B 、只有一个无理数根C 、共有两个实数根D 、没有实数根8.指数函数xx x x d y ,c y ,b y ,a y ====在同一坐标系内的图象如下图,那么a 、b 、c 、d 的大小顺序是〔 〕A 、c d a b <<<B 、c d b a <<<[来源:学科网]C 、d c a b <<<D 、d a c b <<<9.设)(x f 是奇函数,且在(0,+∞)内递增, 又0)3(=-f ,那么0)(<⋅x f x 的解集是( ) A 、{x|x<-3,或0<x<3} B 、{x|-3<x<0,或x>3} C 、{x|x<-3,或x>3} D 、{x|-3<x<0,或0<x<3}10.函数22,(1)(),()(,)(21)36,(1)x ax x f x f x a x a x ⎧-+≤=-∞+∞⎨--+>⎩若在上是增函数,那么实数a 的取值范围是〔 〕A 、1(,1]2B 、1(,)2+∞C 、[1,)+∞D 、[2.)+∞二.填空题.本大题共4小题,每题5分,计20分.请把答案填在答题卷的相应位置的横线上.11.计算:25.0log 10log 255+= ;214964-⎪⎭⎫ ⎝⎛+32827⎪⎭⎫ ⎝⎛= .12.函数f(x)=⎩⎨⎧4x -4,x≤1,x2-4x +3,x>1的图像和函数g(x)=log2x 的图像共有____个交点.13.0<a <1, 0<b <1,假设1)3(log <-x b a,那么x 的取值范围是 .14.集合M={a |65a ∈N ,且a ∈Z},用列举法表示集合 M= .三.解答题.本大题共6小题,计80分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题卷的指定区域内.15.〔12分〕函数)(log )(3b ax x f +=的图象经过点A (2,1)、 B 〔5,2〕, 〔1〕求函数)(x f 的解析式及定义域;〔2〕求⎪⎪⎭⎫⎝⎛+÷213)14(f f 的值. [来源:学+科+网] 16.〔12分〕假设}06ax |x {B },06x 5x |x {A 2=-==+-=,且A B A = , 求由实数a 组成的集合M . 17 〔14分〕函数[]2()22,5,5f x x ax x =++∈-① 当1a =-时,求函数的最大值和最小值;② 求实数a 的取值范围,使()y f x =在区间[]5,5-上是单调函数18.(14分) 函数122)12()(+-+=x x a x f .(1) 是否存在实数a 使得f(x)为奇函数?假设存在,求出a 的值并证明;假设不存在,说明理由;w(2) 在(1)的条件下判断f(x)的单调性,并用定义加以证明. 版权所有:高考资源网(www.k s 5 )19.(14分)根据市场调查,某种新产品投放市场的30天内,每件销售价格P(元)与时间t(天)的关系如下图,日销售量Q(件)与时间t(天)之间的关系如表所示.(1) 根据图像,写出该产品每件销售价格P 与时间t 的函数解析式; (2) 在所给的直角坐标系中,根据表中提供的数据描出实数对(t ,Q)的对应点,并确定日销售量Q 与时间t 的一个函数解析式; (3) 在这30天内,哪一天的日销售金额最大? (日销售金额=每件产品销售价格×日销售量) 20.〔14分〕 函数2|1|(),04x m f x m x +-=>-,满足(2)2f =-,(1) 求实数m 的值;(2) 判断()y f x =在区间(,1]m -∞-上的单调性,并用单调性定义证明;(3) 假设关于x 的方程()f x kx =有三个不同实数解,求实数k 的取值范围.参考答案题 号 1234567[来源:学科网ZXXK]8910答 案 A CDBDDAADD11.2;258. 12.3 13.(3 , 4) 14.{1,2,3,4}-。

2020-2021学年初一(上)期中考试数学试卷(含答案)

2020-2021学年初一(上)期中考试数学试卷(含答案)

2020-2021学年初一(上)期中考试数 学(考试时间90分钟 满分100分)18分)1.如图是加工零件尺寸的要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( )A .Φ45.02B .Φ44.9C .44.98D .Φ45.012.下列运算中正确的是( )A .2(2)4-=- B .224-= C .3(3)27-=- D .236= 3.若37x =是关于x 的方程70x m +=的解,则m 的值为( ) A .3- B .13- C .3 D .134.若单项式12m a b -与212n a b 是同类项,则mn 的值是( ) A .3 B .6 C .8 D .95.下列各式中,是一元一次方程的是( )A .852020x y -=B .26x -C .212191y y =+D .582x x +=6.下列计算正确的是( )A .8(42)8482÷+=÷+÷B .1(1)(2)(1)(1)12-÷-⨯=-÷-= C .3311311636624433434⎛⎫⎛⎫⎛⎫-÷=-⨯=-⨯+-⨯=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ D .[](2)(2)40--+÷= 7.下列方程的解法,其中正确的个数是( ) ①14136x x ---=,去分母得2(1)46x x ---= ②24132x x ---=,去分母得2(2)3(4)1x x ---= ③2(1)3(2)5x x ---=,去括号得22635x x ---=④32x =-,系数化为1得32x =- A .3 B .2 C .1 D .08.2020年国庆档电影《我和我的家乡》上映13天票房收入达到21.94亿元,并连续10天拿下票房单日冠军.其中21.94亿元用科学记数法可表示为( )A .821.9410⨯元B .82.19410⨯元C .100.219410⨯元D .92.19410⨯元9.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若0n q +=,则m ,n ,p ,q 四个有理数中,绝对值最小的一个是( )A .pB .qC .mD .n二、填空题(本题共有9小题,每小题3分,共27分)10.如果数轴上A 点表示3-,那么与点A 距离2个单位的点所表示的数是 .11.比较大小:78- 89-(填“>”“<”或“=”) 12.历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示,例如多项式2()25f x x x =+-,则(1)f -= .13.用四舍五入法将3.694精确到0.01,所得到的近似值为 .14.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如()2222153x x x x --+=-+-,则所捂住的多项式为 .15.“☆”是新规定的某种运算符号,设a ☆b =ab a b +-,若2 ☆8n =-,则n = .16.“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知2m n +=-,4mn =-,则2(3)3(2)mn m n mn ---的值为 .17.某校为学生购买名著《三国演义》100套、《西游记》80套,共用12 000元,《三国演义》每套比《西游记》每套多16元,求《三国演义》和《西游记》每套各多少元?设西游记每套x 元,可列方程为 .18.观察下列一组算式:2231881-==⨯,22531682-==⨯,22752483-==⨯,22973284-==⨯……根据你所发现的规律,猜想22201920178-=⨯ .三、按要求解答(第19小题8分,第20小题5分,第21小题10分,共23分)19.计算题(每小题4分,共8分) ①3511114662⎛⎫---- ⎪⎝⎭ ②[]31452(3)5211⎛⎫-⨯-÷-+ ⎪⎝⎭20.(本题5分)化简并求值:222212(2)()2x xy y xy x y ⎡⎤⎛⎫---+- ⎪⎢⎥⎝⎭⎣⎦,其中x 、y 的取值如图所示.21.解方程(每小题5分,共10分)①3(202)10y y --= ②243146x x --=-四、解答题(第22、23小题4分,第24小题5分,共13分)22.(本题4分)解一元一次方程的过程就是通过变形,把一元一次方程转化为x a =的形式.下面是解方程20.30.410.50.3x x -+-=的主要过程,请在如图的矩形框中选择与方程变形对应的依据,并将它前面的序号填入相应的括号中.解:原方程可化为4153x +-=( ) 去分母,得3(203)5(104)15x x --+=( )去括号,得609502015x x ---=( )移项,得605015920x x -=++( )合并同类项,得1044x =(合并同类项法则) 系数化为1,得 4.4x =(等式的基本性质2)23.(本题4分)阅读材料,回答问题.计算:121123031065⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭解:原式的倒数为211213106530⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭ =2112(30)31065⎛⎫-+-⨯- ⎪⎝⎭=203512-+-+=10-故原式=110- 根据材料中的方法计算113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭. 24.(本题5分)在某地住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图形如图所示). (1)用含m ,n 的代数式表示该广场的面积S ;(2)若m ,n 满足2(6)50m n -+-=,求出该广场的面积.五、解答题(第25、26小题6分,第27小题7分,共19分)25.(本题6分)列代数式或一元一次方程解应用题请根据图中提供的信息,回答下列问题:(1)一个水瓶与一个水杯分别是多少元?(2)甲、乙两家商场都销售该水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打8折;乙商场规定:买一个水瓶赠送两个水杯,单独购买的水杯仍按原价销售.若某单位想在一家商场买5个水瓶和20个水杯,请问选择哪家商场更合算?请说明理由.26.(本题6分)下表中的字母都是按一定规律排列的.我们把某格中的字母的和所得多项式称为特征多项式,例如第1格的“特征多项式”为62x y +,第2格的“特征多项式”为94x y +,回答下列问题.(1)第3格的“特征多项式”为 ,第4格的“特征多项式”为 ,第n 格的“特征多项式”为 ;(n 为正整数)(2)求第6格的“特征多项式”与第5格的“特征多项式”的差.27.(本题7分)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D 就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;②若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?参考答案一、选择题(每小题2分,共18分)二、填空题(每小题3分,共27分)19.计算题(每小题4分,共8分)①原式=3511114662--+┈┈┈┈┈┈┈┈┈┈1分 =5131116642--++ =1224-+┈┈┈┈┈┈┈┈┈┈3分 =14┈┈┈┈┈┈┈┈┈┈4分 ②原式=14582211⎛⎫-⨯-÷ ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈2分 =24--┈┈┈┈┈┈┈┈┈┈3分=6-┈┈┈┈┈┈┈┈┈┈4分20.解:原式=22221242x xy y xy x y ⎛⎫---+- ⎪⎝⎭┈┈┈┈┈┈┈┈┈┈1分 =22221242x xy y xy x y --+-+┈┈┈┈┈┈┈┈┈┈2分 =272x xy -┈┈┈┈┈┈┈┈┈┈3分 当2x =,1y =-时┈┈┈┈┈┈┈┈┈┈4分原式=2722(1)112-⨯⨯-=┈┈┈┈┈┈┈┈┈┈5分21.解方程(每小题5分,共10分)①3(202)10y y --=解:60610y y -+=┈┈┈┈┈┈┈┈┈┈2分61060y y +=+┈┈┈┈┈┈┈┈┈┈3分770y =┈┈┈┈┈┈┈┈┈┈4分10y =┈┈┈┈┈┈┈┈┈┈5分 ②243146x x --=- 解:3(2)122(43)x x -=--┈┈┈┈┈┈┈┈┈┈1分361286x x -=-+┈┈┈┈┈┈┈┈┈┈2分361286x x -=-+┈┈┈┈┈┈┈┈┈┈3分310x -=┈┈┈┈┈┈┈┈┈┈4分103x =-┈┈┈┈┈┈┈┈┈┈5分 四、解答题(第22、23小题4分,第24小题5分,共13分)22.③;②;④;①┈┈┈┈┈┈┈┈┈┈4分23.解:原式的倒数为132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭┈┈┈┈┈┈┈┈┈┈1分 1322(42)61437⎛⎫=-+-⨯- ⎪⎝⎭792812=-+-+14=-┈┈┈┈┈┈┈┈┈┈3分故原式=114-┈┈┈┈┈┈┈┈┈┈4分 24.解:(1)S 7220.52m n n m mn =⋅-⋅=┈┈┈┈┈┈┈┈┈┈2分 (2)由题意得6050m n -=⎧⎨-=⎩,解得65m n =⎧⎨=⎩┈┈┈┈┈┈┈┈┈┈3分当6m =,5n =时 S 7651052=⨯⨯=┈┈┈┈┈┈┈┈┈┈5分五、解答题(第25、26小题6分,第27小题7分,共19分)25.解:(1)设一个水瓶x 元,则一个水杯是(48)x -元┈┈┈┈┈┈┈┈┈┈1分34(48)152x x +-=┈┈┈┈┈┈┈┈┈┈2分40x =┈┈┈┈┈┈┈┈┈┈3分∴4848408x -=-=┈┈┈┈┈┈┈┈┈┈4分答:一个水瓶40元,一个水杯8元.(2)甲商场需付款:80%(540208)288⨯⨯+⨯=(元)┈┈┈┈┈┈┈┈┈┈5分 乙商场需付款:5408(2052)280⨯+⨯-⨯=(元)┈┈┈┈┈┈┈┈┈┈6分 ∴选择乙商场更划算.26.解:(1)126x y +;158x y +;3(1)2n x ny ++┈┈┈┈┈┈┈┈┈┈3分(2)(2112)(1810)x y x y +-+┈┈┈┈┈┈┈┈┈┈5分32x y =+┈┈┈┈┈┈┈┈┈┈6分27.(1)①是┈┈┈┈┈┈┈┈┈┈1分②5或11┈┈┈┈┈┈┈┈┈┈3分(2)设运动时间为t 秒,则BC t =,6AC t =-依题意,得C 是【A ,B 】的理想点时有16=3t t -,∴92t = C 是【B ,A 】的理想点时有1(6)3t t =-,∴32t = A 是【C ,B 】的理想点时有16=63t -⨯,∴4t =B 是【C ,A 】的理想点时有1=6=23t ⨯ 答:点C 运动92秒、32秒、4秒、2秒时,C ,A ,B 中恰有一个点为其余两点的理想点.┈┈┈┈┈┈┈┈┈┈7分。

2020-2021学年高一上学期期中备考金卷 数学(A卷) Word版含答案

2020-2021学年高一上学期期中备考金卷 数学(A卷) Word版含答案

(新教材)2020-2021学年上学期高一期中备考金卷数学(A )注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{1,0,}A m ,{1,2}B,若{1,0,1,2}A B ,则实数m 的值为( )A .1或0B .0或1C .1或2D .1或22.“关于x 的不等式220ax x a -+>的解集为R ”的一个必要不充分条件是( ) A .01a <<B .103a <<C .01a ≤≤D .0a <或13a >3.若不等式20ax bx c ++>的解集为{|12}x x -<<,那么不等式()()2112a x b x c ax ++-+>的解集为( ) A .{|21}x x -<<B .{|2x x <-或1}x >C .{|0x x <或3}x >D .{|03}x x <<4.已知0x >,0y >,若1x y +=,则1xy的最小值为( )A .4B .14 C .2D .125.函数1()1f x x x=+-的定义域是( )A .RB .[1,)-+∞C .(,0)(0,)-∞+∞D .[1,0)(0,)-+∞6.对于定义在R 上的任意奇函数()f x ,均有( ) A .()()0f x f x --> B .()()0f x f x --≤ C .()()0f x f x ⋅->D .()()0f x f x ⋅-≤7.已知偶函数()f x 的图象经过点(1,3)--,且当0a b ≤<时,不等式()()0f b f a b a-<-恒成立,则使得(2)30f x -+<成立的x 取值范围为( ) A .(3,)+∞B .(1,3)C .(,1)(3,)-∞+∞ D .[1,3]8.记max{,,}x y z 表示,,x y z 中的最大者,设函数2()max{42,,3}f x x x x x =-+---, 若()1f m <,则实数m 的取值范围是( ) A .(1,1)(3,4)-B .(1,3)C .(1,4)-D .(,1)(4,)-∞-+∞二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.已知{|10}A x x =+>,{2,1,0,1}B =--,则()A B R中的元素有( )A .2-B .1-C .0D .110.已知正数,a b ,则下列不等式中恒成立的是( ) A .122a b ab++≥ B .11()4a b a b ⎛⎫++≥⎪⎝⎭C .222a b ab ab+≥ D .2abab a b>+ 11.下列函数()f x 中,满足对任意()12,0,x x ∈+∞,当12x x >时,都有()()12f x f x >的是( )A .()2f x x =B .()1f x x=C .()f x x =D .()21f x x =+12.已知函数2, 0(),0ax x f x x ax x ≥⎧=⎨-<⎩,若函数的值域为[)0,+∞,则下列的a 值满足条件的是( ) 此卷只装订不密封班级 姓名 准考证号 考场号 座位号A .21=aB .3-=aC .0=aD .4=a第Ⅱ卷三、填空题:本大题共4小题,每小题5分.13.已知集合{}221,(1),33A m m m m =+--+,若1A ∈,则2020m =________.14.已知{|1}A x y x ==-,{|1}B x x m =≤+,若x A ∈是x B ∈的必要条件,则m 范围是 .15.已知一元二次方程220x mx +-=的一个根为2,那么另一根为_______;m 的值为__________. 16.给出下列8个命题:①0b a a b ->-⇒>;②20b ab a a <<⇒>;③1100a b a b>>⇒<<;④22a b ac bc >⇒>;⑤,a b c d ac bd >>⇒>;⑥c ab c a b>⇒>;⑦()220a ba b c c c >⇒>≠;⑧,a b c d a c b d >>⇒->-,其中正确的命题的序号是 .(将你认为的所有正确的命题的序号都填上)四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)设(){}210A x x a x a =-++<,{}23100B x x x =--<,若A B ⊆,求实数a 的取值范围.18.(12分)已知二次函数2()43f x x x =-+,非空集合{|0}A x x a =≤≤.(1)当x A ∈时,二次函数的最小值为1-,求实数a 的取值范围;(2)当 时,求二次函数2()43f x x x =-+的最值以及取到最值时x 的取值.在①1a =,②4a =,③5a =,这三个条件中任选一个补充在(2)问中的横线上,并求解. 注:如果选择多个条件分别解答,按第一个解答计分.19.(12分)已知二次函数2()41f x mx x ,且满足(1)(3)f f .(1)求函数()f x 的解析式;(2)若函数()f x 的定义域为(2,2),求()f x 的值域.20.(12分)已知函数2()2f x x ax b =+-. (1)若23b a =,求不等式()0f x ≤的解集;(2)若0a >,0b >,且2()1f b b b a =+++,求a b +的最小值.21.(12分)作出下列函数的图象并求其值域. (1)1(,2)y x x x =-∈≤Z ; (2)2243(03)y x x x =--≤<.22.(12分)已知函数()()21f x x ax a =-+-∈R .(1)若函数()f x 在区间[)21,a -+∞上单调递减,求a 的取值范围; (2)若()f x 在区间1,12⎡⎤⎢⎥⎣⎦上的最大值为14-,求a 的值.(新教材)2020-2021学年上学期高一期中备考金卷数学(A )答案第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D 【解析】由题意得{1,0,}A m ,{1,2}B ,且{1,0,1,2}A B ,所以1m或2.2.【答案】C【解析】因为关于x 的不等式220x ax a -+>的解集为R , 所以函数2()2f x x ax a =-+的图象始终落在x 轴的上方,即2440Δa a =-<,解得01a <<,因为要找其必要不充分条件,对比可得C 选项满足条件. 3.【答案】D【解析】因为不等式20ax bx c ++>的解集为{|12}x x -<<, 所以1-和2是方程20ax bx c ++=的两根,且0a <,所以121b a -=-+=,2ca=-,即b a =-,2c a =-,代入不等式()()2112a x b x c ax ++-+>整理得()230a x x ->,因为0a <,所以230x x -<,所以03x <<,故选D . 4.【答案】A 【解析】∵21()24x y xy +≤=,∴14xy ≥当且仅当x y =时等号成立. 5.【答案】D【解析】由题意可得10x +≥,且0x ≠,得到1x ≥-,且0x ≠,故选D . 6.【答案】D【解析】因为()f x 是定义在R 上的奇函数,所以有(0)0f =、()()f x f x -=-.()()()()2()f x f x f x f x f x --=+=,()f x 的正负性题目中没有说明,故A 、B 错误;2()()()[()][()]0f x f x f x f x f x ⋅-=⋅-=-≤,故C 错误,D 正确.7.【答案】C【解析】根据题意,()f x 为偶函数,且经过点(1,3)--,则点(1,3)-也在函数图象上,当0a b ≤<时,不等式()()0f b f a b a-<-恒成立,则函数()f x 在[0,)+∞上为减函数,因为(2)30f x -+<,所以(2)3(2)(1)21f x f x f x -<-⇒-<⇒->, 解得1x <或3x >.8.【答案】A【解析】函数()f x 的图象如图,直线1y =与曲线交点(1,1)A -,(1,1)B ,(3,1)C ,(4,1)D , 故()1f m <时,实数m 的取值范围是11m -<<或34m <<.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9.【答案】AB【解析】因为集合{|1}A x x =>-,所以{|1}A x x =≤-R,则(){|1}{2,1,0,1}{2,1}A B x x =≤---=--R.10.【答案】ABC【解析】222a b ab ab ab +≥≥,当且仅当2a b ==时,等号成立,A 正确; 11()2224b aa b b a b a a b b a ⎛⎫++=++≥⋅+= ⎪⎝⎭,当且仅当a b =时,等号成立,B 正确;∵2220a b ab +≥>22ab ab≥,当且仅当a b =时,等号成立,C 正确;∵a b +≥1a b≤+,2ab a b ≤+,当且仅当a b =时,等号成立,D 不正确. 11.【答案】ACD【解析】由12x x >时,()()12f x f x >,所以函数()f x 在()0,+∞上为增函数的函数. A 选项,2y x 在()0,+∞上为增函数,符合题意;B 选项,1y x=在()0,+∞上为减函数,不符合题意; C 选项,y x =在()0,+∞上为增函数,符合题意; D 选项,()21f x x =+在()0,+∞上为增函数,符合题意. 12.【答案】ACD【解析】当0a <时,有(1)0f a =<,不符合题意; 当0a ≥时,若0x ≥,则有0y ax =≥, 若0x ≥,则2y x ax =-在(,0)-∞上为减函数,故当0a ≥时,2, 0(),0ax x f x x ax x ≥⎧=⎨-<⎩的值域为[)0,+∞,则0a ≥,ACD 满足条件.第Ⅱ卷三、填空题:本大题共4小题,每小题5分. 13.【答案】1【解析】令11m +=,则解得0m =,此时()211m -=,与集合的互异性不符;令()211m -=,解得2m =或0m =(舍),则2331m m -+=,与集合互异性不符,舍去; 令2331m m -+=,解得2m =(舍)或1m =,则12m +=,()210m -=, 故1m =,20201m =. 14.【答案】(,0]-∞【解析】由{|{|1}A x y x x ===≤,{|1}B x x m =≤+, 又∵x A ∈是x B ∈的必要条件,∴B A ⊆,∴11m +≤,解得0m ≤,即m 的取值范围是(,0]-∞. 15.【答案】1-,1-【解析】设方程的两根分别为1x ,2,根据根与系数的关系可得122x =-,解得11x =-, 所以121m -=-+=,1m =-. 16.【答案】①②③⑦【解析】对于①,若b a a ->-,则()()0b a a --->,即0b >,故①正确;对于②,若0a b <<,则0a <,0b <,0a b -<,则()20a ab a a b -=->,即2a ab >,故②正确;对于③,若0a b >>则0a >,0b >,0b a -<,10a >,则110b a a b a--=<,即11a b <,则110a b<<,故③正确; 对于④,若a b >,取0c,则20ac =,20bc =,则22ac bc >不成立,故④不正确;对于⑤,若a b >,c d >,取0a =,1b =-,0c ,1d =-,则0ac =,1bd =,则ac bd >不成立,故⑤不正确;对于⑥,若ab c >,取1a =-,1b =-,0c ,则0c b =,则ca b>不成立,故⑥不正确; 对于⑦,若a b >,则0a b ->,则2220a b a b c c c --=>(0c ≠),即22a bc c>,故⑦正确; 对于⑧,若a b >,c d >,取1a =,0b =,1c =,0d =, 则0a c -=,0b d -=,则a c b d ->-不成立,故⑧不正确.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】{}|25a a -≤≤.【解析】∵23100x x --<,解得25x -<<,∴{}|25B x x =-<<, 由题意得()()()2110x a x a x x a -++=--<,当1a >时,{}|1A x x a =<<,A B ⊆,15a ∴<≤;当1a =时,A =∅满足条件; 当1a <时,{}|1A x a x =<<,A B ⊆,21a ∴-≤<,综上,实数a 的取值范围是{}|25a a -≤≤. 18.【答案】(1)2a ≥;(2)见解析.【解析】(1)作出二次函数22()43(2)1f x x x x =-+=--的图象如图所示,当0x a ≤≤,二次函数的最小值为1-,则a 的取值范围为2a ≥. (2)选择方案①,由图像可知,当1a =时,max ()(0)3f x f ==,此时0x =,min ()(1)0f x f ==,此时1x =.选择方案②,当4a =时,max ()(0)(4)3f x f f ===,此时0x =或4x =,min ()(2)1f x f ==-,此时2x =.选择方案③,当5a =时,max ()(5)8f x f ==,此时5x =,min ()(2)1f x f ==-,此时2x =.19.【答案】(1)2()241f x x x ;(2)(]15,3.【解析】(1)由(1)(3)f f 可得该二次函数的对称轴为1x,即412m从而得2m,所以该二次函数的解析式为2()241f x x x .(2)由(1)可得2()2(1)3f x x ,所以()f x 在(2,2)上的值域为(]15,3. 20.【答案】(1)见解析;(2)72. 【解析】(1)因为23b a =,所以22()23f x x ax a =+-, 由()0f x ≤,得22230x ax a +-≤,即(3)()0x a x a +-≤, 当0a =时,不等式()0f x ≤的解集为{|0}x x =; 当0a >时,不等式()0f x ≤的解集为{|3}x a x a -≤≤; 当0a <时,不等式()0f x ≤的解集为{|3}x a x a ≤≤-. (2)因为2()2f b b ab b =+-,由已知2()1f b b b a =+++, 可得2210ab a b ---=,∵0a >,0b >,∴1a >,12b >, ∴1112(1)12a b a a +==+--,∵0a >,0b >,∴1a >,12b >, 1337121222a b a a +=-++≥+=-,当且仅当2a =,32b =时取等号,所以a b +的最小值为72.21.【答案】(1)图象见解析,值域为{}1,0,1,2,3-;(2)图象见解析,值域为[)5,3-. 【解析】(1)因为x Z ∈且2x ≤,所以{}2,1,0,1,2x ∈--, 当2x =-时,13y x =-=;当1x =-时,12y x =-=; 当0x =时,11y x =-=;当1x =时,10y x =-=; 当2x =时,11y x =-=-.所以该函数图象为一条直线上孤立的点,如图:由图象可知,{}1,0,1,2,3y ∈-,所以该函数的值域为{}1,0,1,2,3-. (2)因为()22243215y x x x =--=--,所以当0x =时,()22153y x =--=-;当1x =时,()22155y x =--=-; 当3x =时,()22153y x =--=,因为03x ≤<,所以该函数图象为抛物线的一部分,如图:由图象可知,[)5,3y ∈-,所以该函数的值域为[)5,3-. 22.【答案】(1)23a ≥;(2)3a = 【解析】(1)由题知函数()f x 的对称轴方程为2a x =, ()f x 在区间[)21,a -+∞上单调递减,[)21,,2a a ⎡⎫∴-+∞⊆+∞⎪⎢⎣⎭,则212a a -≥,解得23a ≥.(2)由(1)知函数()f x 的对称轴方程为2a x =, 当122a ≤,即1a ≤时,函数()f x 在区间1,12⎡⎤⎢⎥⎣⎦上单调递减, ()f x 最大值为1512244a f ⎛⎫=-=- ⎪⎝⎭,解得2a =,与1a ≤矛盾;当1122a <<,即12a <<时,函数()f x 在区间1,12⎡⎤⎢⎥⎣⎦的最大值为211244a af ⎛⎫=-=- ⎪⎝⎭,解得3a =3a =当12a ≥,即2a ≥时,函数()f x 在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,()f x 最大值为()1124f a =-=-,解得74a =,与2a ≥矛盾,综上,3a =。

浙江省温州十五校联合体2020-2021高一上学期期中联考数学试题 (含答案)

浙江省温州十五校联合体2020-2021高一上学期期中联考数学试题 (含答案)

绝密★考试结束前2020学年第一学期“温州十五校联合体”期中联考高一年级数学学科 试题考生须知:1.本卷共4页满分120分,考试时间100分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场号、座位号及准考证号并填涂相应数字; 3.所有答案必须写在答题纸上,写在试卷上无效; 4.考试结束后,只需上交答题纸。

选择题部分(共 48 分)一、单选题:本大题共8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}3,1,0,2,4U =--,{}1,0A =-,{}0,2B =,则()UA B ⋃=( )A .{}3,1-B .{}3,4-C .{}3,1,2,4--D .{}1,0,2- 2.命题“1x ∀>,都有20x x ->”的否定是( )A .1x ∃>,使得20x x -≤B .1x ∃>,使得20x x ->C .1x ∀>,都有2<0x x -D .1x ∀≤,都有20x x ->3.已知函数22,1()2,1x x f x x x⎧+≤⎪=⎨>⎪⎩,则((2))f f =( )A .1B .2C .3D .4 4.下列各组函数中,表示同一函数的是( ) A .()()ln ,xf x eg x x == B .()()24,22x f x g x x x -==-+ C .()()f x g x == D .()(),f x x g x ==5.设0.70.820232020,2021,log 2022a b c ===,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b << 6.已知实数x 、y 满足2222x y x y +<+,则( )A .x y >B .x y =C .<x yD .x y 、大小不确定7.函数()()221lg 21xx x f x -=+的部分图象大致为( )A .B .C .D .8.已知函数()[]2226,2020,20203x x e e x x f x x x --+++=∈-+,函数()f x 的最大值、最小值分别为M ,m ,则M m += ( )A .0B .2C .3D .4二、多项选择题(每小题4分,共16分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--------------------------------------14分
---------------------------------------------15分
20.解:(1)由题意知:
函数 的对称轴为 ----------------------2分
函数 在区间 上不单调
----------------------------------------------6分
(2)当 时,---------------------------------------------9分
---------------------11分
------------------------------------------------------12分

13分
同理可求当 时,有 14分
(2)设任意 , --------------------6分
------------------------7分
--------------------------------9分
在区间 上是增函数---------------------10分
(3):由题意知
--------------11分
----------------------------------12分
则 ---------------------2分
则 ---------------------4分
又 在 上为偶函数
-------------------==5分
-------------------6分
的函数解析式为
--------------------------------------8分
2020-2021学年浙江省温州中学上学期期中考试
高一数学试题
(满分150分,考试时间:120分钟)
第I 卷(共76分)
一、选择题:(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中只有一项是符合题目要求的)
1.已知集合 ,那么( )
A. B. C. D.
2、已知集合 ,则 ( )
A. B. C. D.
(1)求出函数在定义域 的解析式;
(2)求不等式 得解集.
19. (本题满分15分)函数 是定义在区间 上的奇函数,且 ,
⑴确定函数 的解析式;
⑵用定义法证明 在区间 上是增函数;
⑶解不等式 .
20、(本题满分15分)已知函数 ,
(1)若函数 在区间 上不单调,求实数 的取值范围;
(2)记 是 在区间 上的最大值,证明:当 时, .
16、(本题满分14分)已知全集 ,若集合 , ,
(1)求 , ;
(2)若集合 , ,求实数 的取值范围;
17、(本题满分15分)已知 是二次函数,顶点为(-1,-4),且与x轴的交点为(1,0)
(1)求出 的解析式;
(2) 求 在区间[-2,2]上的值域.
18、(本题满分15分)设偶函数 的定义域为 ,若当 时, ,
12、若 ,则 .
13、如果函数 ,对称轴为 , 则f(1)、f(2)、f(4)大小关系是.
14、当 时, 成立,其中 且 ,则不等式 的解集是.
15、已知f(x)=x2+(2+lga)x+lgb,f(-1)=-2且f(x)≥2x恒成立,则a=_______
b=________.
三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.
3、下列各图中,可表示函数 的图像的只可能是( )
A B C D
4、函数 的定义域为 ( )
A. B. C. D.
5、下列函数中,在其定义域内既是奇函数又是减函数的是( )
A. B. D.
6、已知函数 ,则 ( )
A 4 B 9 C -3 D -2
7、化简 的结果为( )
A.18 B.20 C. 22 D.24
函数与 轴的交点为
-----------------------------------5分
-------------------------------------------7分
------------------------------8分
(2)由(1)知,函数的对称轴为 ,开口向上
在区间 上先减后增------------------------10分
16.(本题满分14分).
解:(1)由题意知:
------------------4分
-----------------8分
(2)由题意知:
------------------12分
-----------------------14分
17.(本题满分15分)
解:(1)由题意知:
----------------3分
2020-2021学年浙江省温州中学上学期期中考试
高一数学试题参考答案
一、选择题
B C DCCBAB
二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分。).
9. 、
10. 、
11. 、
12.
13.
14.
15. 、
三、解答题(本大题共5小题,满分74分.解答应写出文字说明.证明过程或演算步骤).
--------------------------------------------8分
综上所述:不等式的解集为 ------15分
19、(本题满分15分)
解:(1)由题意知:
函数 是定义在区间 上的奇函数
或者利用 也可。
-------------------------------------------- 2分
又 ------------------------- 3分
---------------------------------5分
当 时, 有最小值为 ----------12分
当 时, 有最大值为 ----------------14分
的值域为 -----------------------------------------15分
18、(本题满分15分)
解:(1)由题意知:
设 ---------------------1分
8、设函数 ,集合
,设 ,则 ( )
A. B. C. D.
二、填空题:(本大题共7小题,多空题每题6分,单空题每题4分,共36分。)
9、已知全集 , ,
则 ___________ __________.
10、已知函数 ,且 则
函数 在 上的单调递减区间为__________.
11、已知映射 : → ,则 →,→ .
相关文档
最新文档