2016年初中数学竞赛模拟试题及参考答案

合集下载

2016年全国初中数学联合竞赛(初二年级组)试题参考答案

2016年全国初中数学联合竞赛(初二年级组)试题参考答案

word 格式-可编辑-感谢下载支持2016 年全国初中数学联合竞赛(初二年级)试题参考答案第一试一、选择题:(本题满分 42 分,每小题 7 分)1.用[ x ] 表示不超过 x 的最大整数,把 x -[ x ] 称为 x 的小数部分.已知 t = a 是 t 的小数部分,2-3b 是 -t 的小数部分,则 1 - 1 =( A)2b a13A..B..C.1.D. 3 .222.三种图书的单价分别为 10 元、15 元和 20 元,某学校计划恰好用 500 元购买上述图书 30 本,那么不同的购书方案共有( C ) AA .9 种.B .10 种.C .11 种.D .12 种.EDF Q3.如图,P 为△ ABC 内一点,∠ BAC =70°,∠ BPC =120°,BD 是∠ ABP 的P平分线, CE 是∠ ACP 的平分线, BD 与 CE 交于 F ,则∠ BFC = ( C )A. 85°. B .90°. C .95°. D .100°.BCS20164.记 S n = 1 + 1 +1 + 1 + 1 + 1 + + 1+ 1 + 1,则= ( D)2 22 22 ( n +1) 21 2 2 3 n 2016A. 2016 .B. 2017 .C. 2017 .D. 2018 .2017 2016 2018 20175.点 D 、 E 、 F 分别在△ ABC 的三边 BC 、 AB 、 AC 上,且 AD 、 BF 、 CE 相交于一点 M ,若 AB + AC = 5 ,则 AM = ( B )BE CF MD A. 7 . B. 3 . C. 5 . D. 2 .22 6.设 a , b , c , d 都是正整数,且 a 5 = b 2 , c3 = d4 , a - c = 319 ,则 b - c = ( B ) a 2dA. 15.B. 17.C.18.D. 20.二、填空题:(本题满分 28 分,每小题 7 分)1.如图,已知四边形 ABCD 的对角互补,且 ∠BAC = ∠DAC , AB =15 , AD =12 .过顶点 C 作CE ⊥ AB 于 E ,则 AE = ____9___.BE2.已知整数 a , b , c 满足不等式 a 2 + 2b 2 + c 2 + 211 < ab + 28b + 20c ,则 a + b - c =____2___. 3.若质数 p , q 满足: 3q - p - 4 = 0 , p + q <111.则 pq 的最大值为1007 .4.将 5 个 1、5 个 2、5 个 3、5 个 4、5 个 5 共 25 个数填入一个 5 行 5 列的表格内(每格填入一个数), 使得同一列中任何两数之差的绝对值不超过 2.考虑每列中各数之和,设这 5 个和的最小值为 M ,则 M 的最大值为10.第二试一、(本题满分 20 分)如图,ABCD 为平行四边形,E 为 BC 的中点,DF ⊥ AE AD于 F , H 为 DF 的中点,证明: CH ⊥ DF .H 证明 分别延长 AE 和 DC ,交于点 P .F因为 AB // CP ,所以 ∠ABE = ∠PCE ,又因为 CE = BE , ∠AEB = ∠PEC , BEC所以△ ABE ≌△ PCE ,所以 PC = AB .又 AB = CD ,所以 PC = CD ,故 C 为 PD 的中点.又 H 为 DF 的中点,所以 CH // PF .又已知 DF ⊥ AE ,所以 CH ⊥ DF .P二、(本题满分 25 分)设互不相等的非零实数 a , b , c 满足 a + 2 2 2 ,求 ( a + 2 2= b + = c + ) +b c a b2 2 2 2的值. (b + ) + ( c + ) c a 解 由 a + 2 = b + 2 = c + 2 可得 bc ( a -b ) = 2(b - c ) ,ab (c - a ) = 2( a -b ) ,ac (b - c ) = 2(c - a ) ,b c a三式相乘得 ( abc ) 2 ( a -b )(b - c )(c - a ) = 8( a -b )(b - c )(c - a ) ,而 a , b , c 互不相等,所以 ( abc ) 2 = 8 .设 a + 2 = b + 2 = c + 2 = k ,则 kb = ab + 2 , kc = bc + 2 , ka = ac + 2 ,于是可得 k (b - c ) =bc ab ( a -c ) , k (c - a ) = c (b - a ) , k ( a -b ) = a (c -b ) , 三式相乘得 k 3 ( a -b )(b - c )(c - a ) = abc ( a - c )(b - a )(c -b ) ,而 a , b , c 互不相等,所以 k 3 = -abc .于是可得 k 6 = ( -abc ) 2 = 8 ,所以 k 2 = 2 .因此 ( a + 2 2 2 2 2 2 2) + (b + ) + ( c + ) = 3k = 6 .b c a三、(本题满分 25 分)已知 a , b 为正整数,求 M = 3a 2 - ab 2 - 2b - 4 能取到的最小正整数值.解 因为 a , b 为正整数,要使得 M = 3a 2 - ab 2 - 2b - 4 的值为正整数,显然有 a ≥ 2 .当 a = 2 时, b 只能为 1,此时 M = 4 ,故 M = 3a 2 - ab 2 - 2b - 4 能取到的最小正整数值不超过 4. 当 a = 3时, b 只能为 1 或 2.若 b =1,则 M = 18;若 b =2,则 M = 7.当 a = 4 时, b 只能为 1 或 2 或 3.若 b =1,则 M = 38;若 b =2,则 M = 24;若 b =3,则 M = 2.下面考虑: M = 3a 2 - ab 2 - 2b - 4 的值能否为 1?若 M =1 ,即 3a 2 - ab 2 - 2b - 4 =1,即 3a 2 - ab 2 = 2b + 5 ①,注意到 2b + 5 为奇数,所以 a是奇数, b 是偶数,此时, 3a 2 - ab 2 被 4 除所得余数为 3, 2b + 5 被 4 除所得余数为 1,故①式不可能成立,即 M ≠1.因此,M=3a2-ab2-2b-4能取到的最小正整数值为 2.。

浙江省温州地区2016年初中数学竞赛选拔试卷含答案

浙江省温州地区2016年初中数学竞赛选拔试卷含答案

浙江省温州地区2016年初中数学竞赛选拔试卷含答案G FE'C'E A DB C浙江省温州地区2016年初中数学竞赛选拔试卷(检测范围:初中数学竞赛⼤纲要求所有内容)⼀、单项选择题(本⼤题分4⼩题,每题5分,共20分)1、设⼆次函数y 1=a (x -x 1)(x -x 2)(a ≠0,x 1≠x 2)的图象与⼀次函数y 2=dx +e (d ≠0)的图象交于点(x 1,0),若函数y =y 2+y 1的图象与x 轴仅有⼀个交点,则( ). A .a (x 1-x 2)=d B .a (x 2-x 1)=d C .a (x 1-x 2)2=d D .a (x 1+x 2)2=d2、如图,ΔABC 、ΔEFG 均是边长为2的等边三⾓形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当ΔEFG 绕点D 旋转时,线段BM 长的最⼩值是( ). A .32- B .13+ C .2 D .13-3、⼀名模型赛车⼿遥控⼀辆赛车,先前进1m ,然后原地逆时针旋转α(0°<α<180°),被称为⼀次操作.若5次操作后,发现赛车回到出发点,则α为( ). A .72° B .108° C .144° D .以上选项均不正确4、⽅程()y x y xy x +=++322的整数解有( ).A 、3组B 、4组C 、5组D 、6组⼆、填空题(本⼤题分16⼩题,每题5分,共80分)5、如图,在矩形ABCD 中,AB =64,AD =10,连接BD ,DBC ∠的⾓平分线BE 交DC 于点E ,现把BCE ?绕点B 逆时针旋转,记旋转后的BCE ?为''E BC ?,当射线'BE 和射线'BC 都与线段AD 相交时,设交点分别为F ,G ,若BFD ?为等腰三⾓形,则线段DG 长为 .6、如图,在平⾯直⾓坐标系中,点M 是第⼀象限内⼀点,过M 的直线分别交x 轴,y 轴的正半轴于A 、B 两点,且M 是AB 的中点.以OM 为直径的⊙P 分别交x 轴,y 轴于C 、D 两点,交直线AB 于点E (位于点M 右下⽅),连结DE 交OM 于点K .设x OBA =∠tan (0OK=,则y 关于x的函数解析式为 .7、如图,梯形ABCD 的⾯积为34cm 2,AE=BF ,CE 与DF 相交于O ,OCD ?的⾯积为11cm 2,则阴影部分的⾯积为______cm 2.8、如图,四边形ABCD 为正⽅形,⊙O 过正⽅形的顶点第5题第2题第6题第7题A 和对⾓线的交点P ,分别交AB 、AD 于点F 、E .若⊙O 的半径为23,AB =2+1,则EDAE的值为. 9、已知⼀个正三⾓形的三个顶点在⼀个正⽅形的边上移动.如果这个内接三⾓形的最⼤⾯积是3.则该正⽅形的边长为. 10、在四边形ABCD 中,边AB=x ,BC=CD =4,DA =5,它的对⾓线AC=y ,其中x ,y 都是整数,∠BAC =∠DAC ,那么x = .11、如果满⾜ ||x 2-6x -16|-10| = a 的实数x 恰有6个,那么实数a 的值等于.12、⼀批救灾物资分别随16列货车从甲站紧急调运到三百多千⽶以外的⼄站,已知每列货车的平均速度都相等,且记为v千⽶/⼩时.两列货车实在运⾏中的间隔不⼩于225v ??千⽶,这这批救灾物资全部运到⽬的地最快需要6⼩时,那么每隔分钟从甲站向⼄站发⼀趟货车才能使这批货物在6⼩时内运到.13、已知0≤a-b ≤1,1≤a+b ≤4,那么当a -2b 达到最⼤值时,8a +2015b 的值等于 .14、在边长为l 的正⽅形ABCD 中,点M 、N 、O 、P 分别在边AB 、BC 、CD 、DA 上.如果AM=BM ,DP =3AP ,则MN+NO+OP 的最⼩值是 .15、如图,在四边形纸⽚ABCD 中,AB=BC ,AD=CD ,∠A =∠C =90°,∠B =150°,将纸⽚先沿直线BD 对折,再将对折后的图形沿从⼀个顶点出发的直线裁剪,剪开后的图形打开铺平,若铺平后的图形中有⼀个是⾯积为2的平⾏四边形,则CD =______________. 16、从1,2,…,2008中选出总和为1009000的1004个数,并且这1004个数中的任意两数之和都不等于2009.则这1004个数的平⽅和为. 17、已知直⾓三⾓形ABC 中,斜边AB 长为2,∠ACB =90°,三⾓形内⼀个动点到三个顶点的距离之和的最⼩值为7,则这个直⾓三⾓形的两个锐⾓⼤⼩分别为,. 18、若实数x 、y 满⾜:=+-13x x y y -+23,则若设p=x+y ,则p max = ,p min = . 19、已知平⾯上有4个圆叠在⼀起形成10个区域,其中在外区域的三个圆每个圆有5个区域,在内区域的圆有7个区域.现将数字0,1,…,9分别放⼊10个区域,且使每个圆都有相同的数字和,则数字和S 的取值范围为.第8题第10题第15题第19题x 1x 2 x 3x 4 x 5 x 6x 7x 8 x 9x 1020、已知∠BAC =90°,四边形ADEF 是正⽅形且边长为1,则CABC AB 111++ 的最⼤值为,简述理由(可列式): .三、分析解答题(本⼤题分5⼩题,分值依次为8分、10分、8分、14分、10分,共50分)21、(8分)⽜顿和莱布尼茨于17世纪分别独⽴地创⽴了积分学.其中有⼀个重要的概念:定积分.我们规定把函数()x f 中区间[]b a ,(包括a ,b )与x轴围成的⾯积记作:()?ba x x f d .(1).试证:()()x x f k x x kf babad d ??=;(2).对于任意实数c b a ,,其中(a <c <b ),是否都有:()()()+=bccabax x f x x f x x f d d d .如没有请举出反例;如有,请证明之.22、(10分)在正⽅形ABCD 的AB 、AD 边各取点K 、N ,使得AK ·AN =2BK ·DN ,线段CK 、CN 交对⾓线BD 于点L 、M ,试证:∠BLK =∠DNC =∠BAM .第20题 ABD E F C23、(8分)设AB ,CD 为圆O 的两直径,过B 作PB 垂直AB ,并与CD 延长线相交于点P ,过P 作直线PE ,与圆分别交于E ,F 两点,连AE ,AF 分别与CD 交于G ,H 两点(如图),求证:OG=OH .24、(14分)如图,点A 和动点P 在直线l 上,点P 关于点A 的对称点为Q ,以AQ 为边作Rt ABQ ?,使∠BAQ =90°,AQ :AB =3:4,作ABQ ?的外接圆O .点C 在点P 右侧,PC =4,过点C 作直线m ⊥l ,过点O 作OD⊥m 于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使DF =23CD ,以DE ,DF 为邻边作矩形DEGF .设AQ =3x . (1)⽤关于x 的代数式表⽰BQ ,DF .(2)当点P 在点A 右侧时,若矩形DEGF 的⾯积等于90,求AP 的长. (3)在点P 的整个运动过程中,①当AP 为何值时,矩形DEGF 是正⽅形?②作直线BG 交⊙O 于点N ,若BN 的弦⼼距为1,求AP 的长.第23题25、(10分)有A、B、C三个村庄,各村分别有适龄⼉童a、b、c⼈.今要建⽴⼀所⼩学,使各村学⽣到校总⾥程最短.试问:若三村⼈数不⼀定相等时学校应建在哪⾥?初中数学竞赛选拔试卷参考答案⼀、单项选择题(本⼤题分4⼩题,每题5分,共20分)题⽬ 1 2 3 4 答案BDDD⼆、填空题(本⼤题分10⼩题,每题5分,共50分)5、17986、212xy -= 7、12 8、222或 9、332+ 10、4或5 11、10 12、12 13、8 14、 48515、 432+或32+16、1351373940 17、30°,60° 18、2213921539++或 19、21≤S ≤25 20、221+;理由:求式=1+BC1,⼜EFC BDE ??∽?BD ·CF =1,BC 2≥2+2BD ·CF +CF BD ?4=8∴计算可得为221+三、分析解答题(本⼤题分5⼩题,分值依次为8分、10分、14分、10分,共50分)21、(8分)【解】(暂⽆解答,征求答案) 22、(10分)【解】连结KN 、KM ,将NDC ?绕点C 顺时针旋转90°得EBC ?.AB=AD ?AK+BK=AN+DN ?(AK-AN )2=(DN-BK )2AK 2+AN 2-2AK ·AN =DN 2+BK 2-2ND ·BK (两边同加2AK ·AN )AK 2+AN 2=(DN +BK )2(由AK ·AN =2BK ·DN 可知),结合图可知NK 2=KE 2 ∴EKC NKC ??∽(SSS )∴∠DNC =∠KEC =∠KNC ,且∠KCN =45° ∴B 、C 、M 、K 四点共圆(∠KBN =45°) ∴KM ⊥CN ,∴A 、K 、M 、N 四点共圆∴∠KAM =∠KNM =∠DNC ,⼜∠MDN =45°=∠KCN ∴N 、L 、C 、D 四点共圆,∴∠DNC =∠DLC =∠KLB ∴∠DNC =∠KAM =∠KLB (即∠BLK =∠DNC =∠BAM )23、(8分)【解】24、(14分)【解】23、第23题解25、(10分)【解】(I)当三村⼈数相等时,分以下两种情形(如图):(1)ABC中最⼤⾓⼤于120°,不妨令∠A≥120°,则学校应建在A村;(2)ABC中最⼤⾓⼩于120°,则学校应建在X点(此点到三边的张⾓相等,亦称ABC的费马点) (II)当三村⼈数不⼀定相等时,则学校所在地X,可通过物理学的模拟⽅法求出:在平⾯上,⽤三点A、B、C模拟三村,⽤重物a、b、c模拟相应各村⼈数,并⽤细线通过滑轮连接于X点.当出现平衡时,平衡点X就是学校该建的地⽅.由静⼒学势能原理可知:AX·a+BX·b+CX·c达最⼩值,即各村分别有适龄⼉童到校总⾥程最短.当a=b=c时,AX、BX、CX三⽅向拉⼒ABC (1)XABC(2)相等且平衡.由对称关系,⽴得:∠AXB=∠BXC=∠CXA=90°.。

2016年全国初中数学联赛试题+答案

2016年全国初中数学联赛试题+答案

2016年全国初中数学联赛试题+答案2016年全国初中数学联合竞赛试题第一试 (3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.)1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知123t =-,a 是t 的小数部分,b 是t -的小数部分,则112b a-=( ).A 12 .B 32.C 1 .D32.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A9种.B10种.C11种.D12种3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=-2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为().A6858.B6860.C9260.D92623(B).已知二次函数21(0)y ax bx a=++≠的图象的顶点在第二象限,且过点(1,0).当a b-为整数时,ab=().A0.B 14.C34-.D2-4.已知O e的半径OD垂直于弦AB,交AB于点C,连接AO并延长交O e于点E,若8,AB=2CD=,则BCE∆的面积为().A12.B15.C16.D185.如图,在四边形ABCD中,090BAC BDC∠=∠=,5AB AC==1CD=,对角线的交点为M,则DM=( ).A 32.B53.C 22 .D 126.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 34.D 1二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数3y x=(x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM恰好把BAC ∠三等分,3AD =,则AM = .2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠=.3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 .3(B).若质数p、q满足:340,111,--=+<则pq的q p p q最大值为 .4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M,则M的最大值为 .第二试(3月20日上午9:50 —11:20)一、(本题满分20分)已知,a b为正整数,求22=---能取到的最小M a ab b324正整数值.二、(本题满分25分)(A).如图,点C在以AB为直径的O e上,CD AB⊥于点D,点E在BD上,,=四边形DEFM是正方形,AMAE AC的延长线与O e交于点N.证明:FN DE=.(B ).已知:5,a b c ++= 22215,a b c ++= 33347.ab c ++=求222222()()()aab b b bc c c ca a ++++++的值.三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xyyz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.(B ).如图,在等腰ABC ∆中,5,AB AC ==D为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.2016年全国初中数学联合竞赛试题及详解 第一试(3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.)1.用[]x 表示不超过x 的最大整数,把[]x x -称为x的小数部分.已知123t =-,a 是t 的小数部分,b 是t-的小数部分,则112b a-=( ).A 12 .B 32.C 1 .D3【答案】A . 【解析】123,132,23t ==+<<-Q 3234,∴<+< 即34,t <<33 1.a t ∴=-= 又23,231,t -=--<<-4233,∴-<-<-(4)23,b t ∴=---=1123311,22222(23)31b a ∴-==-=--故选A .2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A 9种.B 10种 .C 11种.D 12种【答案】C .【解析】设购买三种图书的数量分别为,,,x y z 则30101520500x y z x y z ++=⎧⎨++=⎩,即30341002y z x y z x +=-⎧⎨+=-⎩,解得20210y xz x=-⎧⎨=+⎩依题意得,,,x y z 为自然数(非负整数),故010,x ≤≤x 有11种可能的取值(分别为0,1,2,,9,10)L ,对于每一个x 值,y 和z 都有唯一的值(自然数)相对应. 即不同的购书方案共有11种,故选C .3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=- 2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ).A 6858.B 6860 .C 9260 .D 9262 【答案】B . 【解析】[]3322(21)(21)(21)(21)(21)(21)(21)(21)k k k k k k k k ⎡⎤+--=+--+++-+-⎣⎦22(121)k =+ (其中k 为非负整数),由22(121)2016k +≤得,9k ≤0,1,2,,8,9k ∴=L ,即得所有不超过2016的“和谐数”,它们的和为333333333331(1)(31)(53)(1715)(1917)1916860.⎡⎤--+-+-++-+-=+=⎣⎦L 故选B .3(B ).已知二次函数21(0)y axbx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab =( ).A 0 .B 14.C 34-.D 2-【答案】B .【解析】依题意知0,0,10,2b a a b a <-<++= 故0,b < 且1b a =--,(1)21a b a a a -=---=+,于是10,a -<< 1211a ∴-<+<又a b -为整数,210,a ∴+= 故1,2a b =-=14ab =,故选B . 4.已知O e 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O e 于点E ,若8,AB =2CD =,则BCE ∆的面积为( ).A 12 .B 15 .C 16 .D 18【解析】设,OC x =则2,OA OD x ==+OD AB⊥Q 于,C 14,2AC CB AB ∴=== 在Rt OAC ∆中,222,OC AC OA +=即2224(2),x x +=+解得3x =,即3OC =(第4题答案图) Q 为ABE ∆的中位线,2 6.BE OC ∴== AE Q 是O e 的直径,90,∴∠=o114612.22BCE S CB BE ∆∴=⋅=⨯⨯= 故选A .5.如图,在四边形ABCD中,090BAC BDC ∠=∠=,5AB AC ==,1CD =,对角线的交点为M ,则DM =( ).A 32.B 53.C 22 .D 12(第5题答案图)【答案】D .【解析】过点A作AH BD⊥于点,H 则AMH∆~,CMD ∆,AH AMCD CM∴=1,CD =Q,AMAH CM∴=设,AM x = 则5,5CM x AH x=∴=-在Rt ABM ∆中,2225,BM AB AM x =+=+ 则255AB AMx AH BMx ⋅==+25,55x xxx =-+显然0x ≠,化简整理得2255100xx -+=解得5,2x =(25x =不符合题意,舍去),故5,2CM =在Rt CDM ∆中,2212DM CM CD =-=,故选D .6.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 3【答案】C . 【解析】22(23)(23)(1)34232M xy y x z xy y x x y x xy y x =++=++--=---++222211122332222y x y x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+--++-⎢⎥⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦222211113322222244y x x x y x x ⎛⎫⎛⎫⎛⎫=-+--++=-+---+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当且仅当1,02x y ==时,M 取等号,故max 34M =,故选C .二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数3y x=(x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .【答案】3,22⎛⎫ ⎪ ⎪⎝⎭.【解析】如图,过点C 作CD AB ⊥于点D .在Rt ACB ∆中,cos 33BC AB ABC =⋅∠= 在Rt BCD∆中,33sin 2CD BC B =⋅=(第1题答案图)9cos ,2BD BC B =⋅=32AD AB BD ∴=-=,设33,,,C m A n m n ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,依题意知0,n m >>故33,CD n m AD =-=,于是3323332n m mn ⎧-=⎪⎪-=⎩ 解得33m n ⎧=⎪⎨⎪=⎩,故点C 的坐标为322⎛⎫⎪ ⎪⎝⎭.1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM恰好把BAC ∠三等分,3AD =则AM = .【答案】2. 【解析】(第1题答案图1 ) ( 第1题答案图2)依题意得BAD DAM MAC ∠=∠=∠,090,ADB ADC ∠=∠= 故ABC ACB∠≠∠.(1)若ABC ACB ∠>∠时,如答案图1所示,ADM ∆≌,ADB ∆1,2BD DM CM ∴== 又AM 平分,DAC ∠ 1,2AD DM AC CM ∴==在Rt DAC ∆中,即1cos ,2DAC ∠=060,DAC ∴∠= 从而090,30BAC ACD ∠=∠=.在Rt ADC ∆中,tan 3tan 603,CD AD DAC =⋅∠=⋅=o 1.DM =在Rt ADM ∆中,222AM AD DM =+=.(2)若ABC ACB ∠<∠时,如答案图2所示.同理可得2AM =.综上所述,2AM =.2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠=.【答案】126o.【解析】设,OCD ADO αβ∠=∠=,CA Q 平分BCD ∠,OCD OCB α∴∠=∠=, BCQ ∥AD,,ADO OBC DAO OCB βα∴∠=∠=∠=∠=,(第2题答案图)OCD DAO α∴∠=∠=,AD CD ∴=,Q ,CD AO =AD AO ∴=,ADO AOD BOC OBC β∴∠=∠=∠=∠=,OC BC ∴=,,BC OD =,OC OD ∴=ODC OCD α∴∠=∠=,180BOC ODC OCD BOC OBC OCB ∠=∠+∠∠+∠+∠=o2,2180,βααβ=+=o解得36,72αβ==oo,72DBC BCD ∴∠=∠=o,,BD CD AD ∴==18054,2ABD BAD β-∴∠=∠==o o故126ABC ABD DBC ∠=∠+∠=o.3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 . 【答案】167334.【解析】设两个三位数分别为,x y ,则10003x y xy +=,①31000(31000),y xy x y x ∴=-=-故y 是x 的正整数倍,不妨设y tx =(t 为正整数),代入①得10003,t tx +=1000,3tx t+∴=x Q是三位数,10001003tx t +∴=≥,解得 1000,299t ≤t Q 为正整数,t ∴的可能取值为1,2,3.验证可知,只有2t =符合,此时167,334.x y == 故所求的六位数为167334.3(B).若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 . 【答案】1007. 【解析】由340q p --=得,34,p q =-2224(34)343,33pq q q q q q ⎛⎫∴=-=-=-- ⎪⎝⎭因q 为质数,故pq 的值随着质数q 的增大而增大,当且仅当q 取得最大值时,pq 取得最大值. 又111p q +<,34111,q q ∴-+<3284q ∴<,因q 为质数,故q的可能取值为23,19,17,13,11,7,5,3,2,但23q =时,3465513p q =-==⨯不是质数,舍去. 当19q =时,3453p q =-=恰为质数.故max max 19,()53191007q pq ==⨯=.4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 .【答案】10. 【解析】(依据5个1分布的列数的不同情形进行讨论,确定M 的最大值.(1)若5个1分布在同一列,则5M =; (2)若5个1分布在两列中,则由题意知这两列中出现的最大数至多为3,故2515320M ≤⨯+⨯=,故10M ≤;(3) 若5个1分布在三列中,则由题意知这三列中出现的最大数至多为3,故351525330M ≤⨯+⨯+⨯=,故10M ≤;(4) 若5个1分布在至少四列中,则其中某一列至少有一个数大于3,这与已知矛盾.综上所述,10.M ≤另一方面,如下表的例子说明M 可以取到10.故M 的最大值为10.1 1 1 4 51 12 4 52 2 2 4 53 3 245 3 3 3 4 5第二试(3月20日上午9:50— 11:20)一、(本题满分20分) 已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.【解析】解:因,a b 为正整数,要使得22324M a ab b =---的值为正整数,则有2a ≥.当2a =时,b 只能为1,此时 4.M =故M 能取到的最小正整数值不超过4.当3a =时,b 只能为1或2.若1,18b M ==;若2b =,则7M =.当4a =时,b 只能为1或2或3.若1,38b M ==;若2,24b M ==;若3,b =则2M =.(下面考虑:22324M aab b =---的值能否为1?)(反证法)假设1M =,则223241aab b ---=,即22325a ab b -=+,2(3)25a ab b -=+ ①因b 为正整数,故25b +为奇数,从而a 为奇数,b为偶数,不妨设21,2a m b n =+=,其中,m n 均为正整数,则22222(3)(21)3(21)(2)4(332)3a ab m m n m m mn n ⎡⎤-=++-=+--+⎣⎦即2(3)a ab -被4除所得余数为3,而252(2)141b n n +=+=+被4除所得余数为1,故①式不可能成立,故1M ≠.因此,M 能取到的最小正整数值为2. 二、(本题满分25分)(A ).如图,点C 在以AB 为直径的O e 上,CD AB⊥于点D ,点E 在BD 上,,AE AC =四边形DEFM 是正方形,AM的延长线与O e 交于点N .证明:FN DE =.(第2(A)题答案图)【证明】:连接BC 、.BN AB Q 为O e 的直径,CD AB ⊥于点D90ACB ANB ADC ∴∠=∠=∠=o,,CAB DAC ACB ADC ∠=∠∠=∠Q ,ACB ADC ∴∆∆∽,AC ABAD AC∴=2AC AD AB ∴=⋅由四边形DEFM 是正方形及CD AB ⊥于点D 可知: 点M 在CD 上,DE DM EF MF ===,,NAB DAM ANB ADM ∠=∠∠=∠Q ,ANB ADM ∴∆∆∽,AN ABAD AM∴=,AD AB AM AN ∴⋅=⋅2,AC AM AN ∴=⋅,AE AC =Q 2AE AM AN∴=⋅以点F 为圆心、FE 为半径作,F e 与直线AM 交于另一点P ,则F e 与AB 切于点E ,即AE 是F e 的切线,直线AMP 是F e 的割线,故由切割线定理得2AE AM AP =⋅AN AP ∴=,即点N 与点P 重合,点N 在F e 上,FN FE DE∴==.(注:上述最后一段得证明用了“同一法”) (B ).已知:5,a b c ++= 22215,a b c ++= 33347.ab c ++=求222222()()()aab b b bc c c ca a ++++++的值.【解析】由已知得22221()()5ab bc ca a b c a b c ⎡⎤++=++-++=⎣⎦由恒等式3332223()()a b c abc a b c a b c ab bc ca ++-=++++---得,4735(155),abc -=⨯-1abc ∴=-又22()()()5(5)55(1)a ab b a bc a b ab bc ca c c ++=+++-++=--=-同理可得22225(4),5(4)b bc c a c ca a b ++=-++=-∴原式=[]35(4)(4)(4)1256416()4()a b c a b c ab bc ca abc ---=-+++++-125[6416545(1)]625.=⨯-⨯+⨯--=【注:恒等式32)()()()t b t c t a b c t ab bc ca t abc--=-+++++-】三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(3) 求111xyyz zx++的值. (4) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++. 【解析】(1)解:由等式222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=,去分母得222222(1)(1)(1((1)(1)(1)4z xy x y z y z x xyz--+--+--=,22222222222()()()3()0,y z xy z x yz x y z y z x z x y xyz x y z xyz ⎡⎤++-+++++++++-=⎣⎦()()()()0xyz xy yz zx x y z xy yz zx x y z xyz ++-+++++++-=,∴[()](1)0xyz x y z xy yz zx -++++-=,1,10xy yz zx xy yz zx ++≠∴++-≠Q ,()0,xyz x y z ∴-++=xyz x y z ∴=++,∴原式= 1.x y zxyz++= (2)证明:由(1)得计算过程知xyz x y z ∴=++,又Q ,,x y z 为正实数,9()()()8()x y y z z x xyz xy yz zx ∴+++-++9()()()8()()x y y z z x x y z xy yz zx =+++-++++ 222222()()()6x y z y z x z x y xyz =+++++-222()()()0.x y z y z x z x y =-+-+-≥∴9()()()8()x y y z z x xyz xy yz zx +++≥++. 【注:222222()()()2x y y z z x x y xyy z yz z x zx xyz+++=++++++222222()()()2x y z y z x z x y xyz=++++++222222()()3x y z xy yz zx x y xy y z yz z x zx xyz++++=++++++222222()()()3x y z y z x z x y xyz=++++++】(B ).如图,在等腰ABC ∆中,5,AB AC ==D为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.第3(B )题答案图)【解析】如图,连接,,AE ED CF ,则,AB AC =Q ABD ACB ∴∠=∠Q点C关于直线AD的对称点为点E,,BED BCF AED ACD ACB ∴∠=∠∠=∠=∠,ABD AED ∴∠=∠,,,A E B D∴四点共圆,BED BAD ∴∠=∠(同弧所对得圆周角相等)BAD BCF∴∠=∠,,,,A B F C ∴四点共圆,AFB ACB ABD ∴∠=∠=∠,AFB ABD ∴∆∆∽,AB AFAD AB∴=()225 5.AD AF AB ∴⋅=== (注:若共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆,也可以说成:若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆)。

初三竞赛数学试题(含答案)

初三竞赛数学试题(含答案)

2016年初三数学培优模拟试题一、选择题(10×4=32分)1、已知2110 x x x x-<<,则,,的大小关系是 ( ) (A )21x x x << (B )21x x x << (C )21x x x << (D )21x x x<<2、方程1)1(32=-++x x x 的所有整数解的个数是( )A..5个 B.4个 C.3个 D.2个3、如图,两个标有数字的轮子可以分别绕轮子的中心旋转,旋转停止时,每个轮子上方的箭头各指着轮子上的一个数字,若左图轮子上方的箭头指着的数字为a ,右图轮子上方的箭头指着的数字为b ,数对(a ,b )所有可能的个数为n ,其中a +b 恰为偶数的不同数对的参数为m ,则m/n 等于 ( ) A 、21 B 、61 C 、125 D 、434、古人用天干和地支记次序,其中天干有10个:甲乙丙丁戊己庚辛壬癸。

地支也有12个:子丑寅卯辰巳午未申酉戌亥,将天干的10个汉字和地支的12个汉字分别循环排列成如下两行:甲乙丙丁戊己庚辛壬癸甲乙丙丁戊己庚辛壬癸……子丑寅卯辰巳午未申酉戌亥子丑寅卯辰巳午未申酉戌亥……从左向右数,第1列是甲子,第2列是乙丑,第3列是丙寅……,则当第2次甲和子在同一列时,该列的序号是 ( )A. 31B. 61C. 91D. 52120a b c x ax bx c x x ++=已知、、为实数,关于的二次方程有两个非零实根、,221211x x x 则:下列关于的一元二次方程中以、为根的是 ( ) 2222222222222222()(2)0()(2)0()(2)0()(2)0.A c x b ac x aB c x b ac x aC c x b ac x aD c x b ac x a +-+=--+=+--=---=;;; 6、24ABC D AC F BC ∆如图,已知的面积为,点在线段上,点在线段延长线上,4BC CF DCEF =且,四边形为平行四边形,则:图中阴影部分面积为( )A 、3B 、4C 、6D 、87.如图,AB 是⊙O 的直径,C 为AB 上一个动点(C 点不与A 、B 重合),CD ⊥AB ,AD 、CD 分别交⊙O 于E 、F ,则与AB •AC 相等的一定是 ( )A .AE •ADB .AE •EDC .CF •CD D .CF •FD 8.已知二次函数c bx ax y ++=2的x 与y 的部分对应值如下表:且方程02=++c bx ax 的两根分别为1x 、)(212x x x <,下面说法错误..的是( ) . A .5,2=-=y x ; B .212<<x ;C .当21x x x <<时,0>y ;D .当21=x 时,y 有最小值. 9.如图,从1×2的矩形ABCD 的较短边AD 上找一点E ,过这点剪下两个正方形,它们的边长分别是AE 、DE ,当剪下的两个正方形的面积之和最小时,点E 应选在( ).A .AD 的中点;B .AE :ED=2:)15(-;C .AE :ED=1:2;D .AE :ED=2:)12(-.10.如右图,以半圆的一条弦AN 为对称轴将AN ︵ 折叠过来和直径MN 交于点B ,如果MB :BN =2:3,且MN =10,则弦AN 的长为( ) A .53 B .54C .34D .35 第10题二、填空题(8×4=32分)11、如下左图,动点C 在⊙O 的弦AB 上运动,AB=32,连接OC ,CD ⊥OC 交⊙O 于D ,则CD 的最大值为_____12、如右上图,已知P 是正方形ABCD 外一点,且PA=3,PB=4,则PC 的最大值是___3+413、0110101111121262...)2(a x a x a x a x a x x ++++++=--,则=+++++24681012a a a a a a -3214.设,C ,C ,C 321… … 为一群圆, 其作法如下:1C 是半径为a 的圆, 在1C 的圆内作四个相等的圆2C (如图), 每个圆2C 和圆1C 都内切, 且相邻的两个圆2C 均外切, 再在每一个圆2C 中, 用同样的方法作四个相等的圆3C , 依此类推作出,C ,C ,C 654…… , 则(1) 圆2C 的半径长等于()a(用a 表示);(2) 圆k C 的半径为-1)k-1a( k 为正整数,用a 表示,不必证明) 15、下列两个方程组与有相同的解,则m+n=3889 . 16、某工程队要招聘甲乙两种工种的工人150名,甲乙两种工种工人的月工资分别是600元和1000元,现要求乙种工种的人数不少于甲种工种人数的两倍,问甲乙两种工种的人数各聘 50、100 时可使得每月所付工资最少,最小值是 130000 .17、对于正数x ,规定f (x )= x 1x +,例如f (3)=33134=+,f (13)=1131413=+,计算f (12006)+ f (12005)+ f (12004)+ …f (13)+ f (12)+ f (1)+ f(1)+ f (2)+ f (3)+ … + f (2004)+ f (2005)+ f (2006)= 2006 .18、如图,△AOB 和△ACD 均为正三角形,且顶点B 、D 均在双曲线)0(4>=x xy 上,则图中S △OBP =D .A .32B .33C .34D .4三、解答题19. (2011安徽芜湖,22,10分)在复习《反比例函数》一课时,同桌的小明和小芳有一个问题观点不一致.小明认为如果两次分别从1~6六个整数中任取一个数,第一个数作为点(),P m n 的横坐标,第二个数作为点(),P m n 的纵坐标,则点(),P m n 在反比例函数12y x =的图象上的概率一定大于在反比例函数6y x=的图象上的概率,而小芳却认为两者的概率相同.你赞成谁的观点?(1)试用列表或画树状图的方法列举出所有点(),P m n 的情形; (2)分别求出点(),P m n 在两个反比例函数的图象上的概率,并说明谁的观点正确.【答案】解: (1)列表如下: ………………………………………………………………6分画树状图如下:………………………………………………………………6分(2)由树状图或表格可知,点(),P m n共有36种可能的结果,且每种结果出现的可能性相同,点(3,4),(4,3),(2,6),(6,2)在反比例函数12yx=的图象上,……………7分点 (2,3),(3,2),(1,6),(6,1)在反比例函数6yx=的图象上, …………………8分故点(),P m n在反比例函数12yx=和6yx=的图象上的概率相同,都是41.369=………9分所以小芳的观点正确. ………………………………………………………………10分20、问题探究(1)请在图①的正方形ABCD内,画出使∠APB=90°的一个..点P,并说明理由.(2)请在图②的正方形ABCD内(含边),画出使∠APB=60°的所有..的点P,并说明理由.问题解决如图③,现有一块矩形钢板ABCD,AB=4,BC=3,工人师傅想用它裁出两块全等的、面积最大的△APB和△CP’D钢板,且∠APB=∠CP’D=60°,请你在图③中画出符合要求的点P和P’,并求出△APB的面积(结果保留根号).【关键词】正方形对角线等边三角形圆周角性质三角形面积【答案】解:(1)如图①,连接AC、BD交于点P,则∠APB=90°,∴点P 为所求,(2)如图②,画法如下:1)以AB 为边在正方形内作等边△ABP;2)作△ABP 的外接圆⊙O,分别与AD 、BC 交于点E 、F .∵在⊙O 中,弦AB 所对的弧APB 上的圆周角均为60°,∴弧EF 上的所有点均为所求的点P , (3)如图③,画法如下: 1)连接AC ;2)以AB 为边作等边△ABE;3)作等边△ABE 的外接圆⊙O,交AC 于点P ; 4)在AC 上截取AP’=CP . 则点P 、P’为所求.(评卷时,作图准确,无画法的不扣分) 过点B 作BG⊥AC,交AC 于点G . ∵在Rt△ABC 中,AB =4,BC =3, ∴AC=522=+BC AB . ∴BG=512=⋅AC BC AB . 在Rt△ABG 中,AB =4, ∴AG=51622=+BG AB . 在Rt△BPG 中,∠BPA=60°, ∴PG=5343351260tan =⨯=︒BG , ∴AP=AG+PG =534516+. ∴S △APB =25324965125345162121+=⨯⎪⎪⎭⎫⎝⎛+⨯=⋅BG AP21、如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x 米. (1)用含x 的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元? 【关键词】二次函数的极值问题【答案】26.解:(1)横向甬道的面积为:()2120180150m 2x x += (2)依题意:2112018028015028082x x x +⨯+-=⨯⨯ 整理得:21557500x x -+=125150x x ==,(不符合题意,舍去)∴甬道的宽为5米.(3)设建设花坛的总费用为y 万元.()21201800.028******** 5.72y x x x x +⎡⎤=⨯⨯-+-+⎢⎥⎣⎦20.040.5240x x =-+当0.5 6.25220.04b x a =-==⨯时,y 的值最小. 因为根据设计的要求,甬道的宽不能超过6米,6x ∴=当米时,总费用最少.最少费用为:20.0460.56240238.44⨯-⨯+=万元22、如图,以矩形OABC 的顶点O 为原点,OA 所在的直线为x 轴,OC 所在的直线为y 轴,建立平面直角坐标系.已知OA =3,OC =2,点E 是AB 的中点,在OA 上取一点D ,将△BDA 沿BD 翻折,使点A 落在BC 边上的点F 处. (1)直接写出点E 、F 的坐标;(2)设顶点为F 的抛物线交y 轴正半轴...于点P ,且以点E 、F 、P 为顶点的三角形是等腰三角形,求该抛物线的解析式; (3)在x 轴、y 轴上是否分别存在点M 、N ,使得四边形MNFE 的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.(第2题)26. (本题满分12分)解:(1)(31)E ,;(12)F ,.(2)在Rt EBF △中,90B ∠= ,…….1分EF ∴=设点P 的坐标为(0)n ,,其中0n >, 顶点(12)F ,, ∴设抛物线解析式为2(1)2(0)y a x a =-+≠.①如图①,当EF PF =时,22EF PF =,221(2)5n ∴+-=.解得10n =(舍去);24n =.(04)P ∴,.24(01)2a ∴=-+. 解得2a =. ∴抛物线的解析式为22(1)2y x =-+。

2016年下学期八年级数学竞赛试题及答案

2016年下学期八年级数学竞赛试题及答案

9. 7-4'、3的算术平方根为()2016年下学期八年级数学竞赛试题时量:120分钟 满分:120分A . 35°B . 40°C . 455 .正数x 的两个平方根分别为A . - 5B . 5C . 13 6 .若Vx 2 = X ,贝y x 的值有A . 0个B . 1个C . 2个7.若关于x 的不等式 mx - n > 0的解集是 :::-,则关于x 的不等式(n - m ) x >( m +n )4的解集是(5A . xB .31 2xy2 33a b c 5xy2 _2x .在式10 xy ,a兀 46x 7 8xA .5B . 4C . 3D . 2x 2 J已知 x - 1)二 :1,则 x 的值为( )A . ± 1B . - 1 和2C . 1和2D . 0和 -1如图, MON 二90,点 A , B 分别在射线 OM , ON 上运动, 10小题,每小题3分, •选择题(共 满分30分)1. 2. BAO 的平分线交于点 C ,则/ C 的度数是(分式的个数是(3 . 的反向延长线与/ BE 平分/ NBA , BE)F ,若/ BAC=110° 则/ EAF 为( )D . 50°3 - a 和2a +7,则44 - x 的立方根为D . 108.某品牌电脑的成本为 折销售,最低可打(A . 7折B . 7.5 折2400 元, )折出售.C . 8 折D . 8.5折标价为2980元,如果商店要以利润不低于5%的售价打A . 2 3B . 2 — 3c . 3-2D . 、3 210•已知a = 35 , b = 3 - J5,则代数式•. a 2 - ab • b 2的值是( )A . 24B ._2 6 C . 2 6 D . 2 5•填空题(共8小题,每小题4分,满分32 分)12.已知ab = 1,则丄+丄匚la+1 b + 1 丿14. ______________________________________________ 如图, △ ABC 中,/ BAC =90 ° AD 丄BC ,Z ABC 的平分线 BE 交AD 于点F , AG 平 分/ DAC,给出下列结论:① / BAD= / C;② / AEF=/ AFE :③ / EBC= / C;④ AG 丄 EF , ⑤AN=NG ,⑥AE=FG .其中错误的结论是.x 2 v = 4k一15.已知彳 __________________________________________ ,且-1< x - yv0,贝U k 的取值范围为.I2x + y = 2k +1f x a _0一16. 若不等式组彳 _______________________ 有解,则a 的取值范围是.11 -2x > x - 217. _____________________________________________ 若 y = J x -3 十 J 3 - x + 2,则 x y = _____________________________________________________ . 18.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是_________________________.(结果保留根号) 三.解答题(共6小题,满分58分)『3 x x — 22佃.(9分)先化简再求值:i x2,其中x 满足x +x - 2=0.V x+1 丿 X 2+2X +111.若 5x 22x - 5x 6—,则 A= _____________________ x - 2 x - 3,B= ___________13.如图,在厶ABC 中,AD 平分/ BAC , AB=AC - BD ,则/ B :/ C 的值是 __________________ 第13题图第14题图第18题图20. (9分)已知5 • '、5与5 - 5的小数部分分别是a和匕,求(a+b)(a - b)的值.21. (10分)如图,已知AD // BC,/ PAB的平分线与/ CBA的平分线相交于E, CE的连线交AP 于D .求证:AD+BC=AB.22、(10分)某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B 商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元, 那么该商店有哪几种购买方案?23. (10分)某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了 8兀.商家销售这种衬衫时每件定价都是 100兀,最后剩下10件按8折销售,很快售完•在这两笔生意中,商家共盈利多少元?24. (10 分)已知,Rt △ ABC 中,/ ACB=90 ° / CAB=30 ° 分别以 AB 、AC 为边,向三 角形外作等边△ ABD 和等边△ ACE .(1) 如图1,连接线段 BE 、CD .求证:BE=CD ;(2)如图2,连接DE 交AB 于点F .求证:F 为DE 中点.2016年下学期八年级数学竞赛试题参考答案.选择题(共10小题,每小题3分,满分30 分) 题号 1 2 3 4 5 6 7 8 9 10 答案BBBBACBDBC.填空题(共8小题,每小题3分,满分24 分) 题号 11 12 13 141516 17 18 答案-12; 1712③a >— 19朋-2三.解答题(共6小题,满分58 分)2 2•/ X 2+X - 2=0 ,••• X 2+X=2,则原式=2 .20. (9 分)解:••— 2V "< 3,二7V 5+ "< 8, 2< 5- "< 3,• a=5+ V 5 - 7=《三—2, b=5 - * ;= - 2=3 -甘三19.(9分)解:原式二」^"」=x (x +1)=x +x ,•••原式二(二-2+3 - _)(二-2 - 3 + _) =1 X( 2打-5) =2 ~ - 5.21. (10分)证明:在AB上截取AF=AD ,血二AF•/ AE 平分/ PAB,「./ DAE= / FAE,在△ DAE 和厶FAE中,:・ZDAE二Z FAE ,牠二AE •••△ DAE ◎△ FAE (SAS), AFE= / ADE ,•/ AD // BC,•/ ADE +/ C=180 ° v/ AFE +/EFB=180 °EFB= / C,•/ BE 平分/ ABC , •/ EBF= / EBC ,(Z EFB=Z C在厶BEF 和厶BEC 中BEF ◎△ BEC (AAS),I BE二BE• BC=BF ,• AD +BC=AF +BF=AB .22. (10分)解:(1)设A种商品的单价为x元、B种商品的单价为y元,由题意得::丄 DAB + / BAC= / EAC +/ r AC=AB“ ZDAC=ZBAE ,I AD 二AB • △ DAC BAE (SAS ) , • DC=BE ;由/ EAC=60 °, / CAB=30。

2016年全国初中数学联合竞赛试题及详细解答(含一试二试)

2016年全国初中数学联合竞赛试题及详细解答(含一试二试)

2016年全国初中数学联合竞赛试题第一试 (3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.) 1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知23t =-a 是t 的小数部分,b 是t -的小数部分,则112b a-= ( ) .A 12.B 3.C 1 .D 3 2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A 9种 .B 10种 .C 11种 .D 12种 3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=- 2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ).A 6858 .B 6860 .C 9260 .D 9262 3(B ).已知二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab = ( ).A 0 .B 14 .C 34- .D 2-4.已知O e 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O e 于点E ,若8,AB =2CD =,则BCE ∆的面积为 ( ).A 12 .B 15 .C 16 .D 185.如图,在四边形ABCD 中,090BAC BDC ∠=∠=,5AB AC ==1CD =,对角线的交点为M ,则DM = ( ).A 3.B 5.C 22 .D 126.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 34.D 1 二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数y x=(0x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,AD =则AM = .2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠= .3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 .3(B).若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 . 4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 .第二试(3月20日上午9:50 — 11:20)一、(本题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.二、(本题满分25分)(A ).如图,点C 在以AB 为直径的O e 上,CD AB ⊥于点D ,点E 在BD 上,,AE AC =四边形DEFM 是正方形,AM 的延长线与O e 交于点N .证明:FN DE =.(B ).已知:5,a b c ++= 22215,a b c ++= 33347.a b c ++=求222222()()()a ab b b bc c c ca a ++++++的值.三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.(B ).如图,在等腰ABC ∆中,5,AB AC ==D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.2016年全国初中数学联合竞赛试题详解 第一试 (3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分. 1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知t =a 是t 的小数部分,b 是t -的小数部分,则112b a-= ( ).A 12.B .C 1 .D 【答案】A .【解析】22,t ==+<<Q 324,∴<+< 即34,t <<3 1.a t ∴=-=又221,t -=---<-423,∴-<-<-(4)2b t ∴=---=11211,2222b a ∴-==-=故选A .2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A 9种 .B 10种 .C 11种 .D 12种【答案】C .【解析】设购买三种图书的数量分别为,,,x y z 则30101520500x y z x y z ++=⎧⎨++=⎩,即30341002y z x y z x +=-⎧⎨+=-⎩,解得20210y xz x=-⎧⎨=+⎩ 依题意得,,,x y z 为自然数(非负整数),故010,x ≤≤x 有11种可能的取值(分别为0,1,2,,9,10)L ,对于每一个x 值,y 和z 都有唯一的值(自然数)相对应. 即不同的购书方案共有11种,故选C .3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=- 2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ).A 6858 .B 6860 .C 9260 .D 9262 【答案】B .【解析】[]3322(21)(21)(21)(21)(21)(21)(21)(21)k k k k k k k k ⎡⎤+--=+--+++-+-⎣⎦22(121)k =+ (其中k 为非负整数),由22(121)2016k +≤得,9k ≤0,1,2,,8,9k ∴=L ,即得所有不超过2016的“和谐数”,它们的和为333333333331(1)(31)(53)(1715)(1917)1916860.⎡⎤--+-+-++-+-=+=⎣⎦L 故选B . 3(B ).已知二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab =( ) .A 0 .B 14 .C 34- .D 2- 【答案】B .【解析】依题意知0,0,10,2ba ab a<-<++= 故0,b < 且1b a =--, (1)21a b a a a -=---=+,于是10,a -<< 1211a ∴-<+<又a b -为整数,210,a ∴+= 故1,2a b =-=14ab =,故选B . 4.已知O e 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O e 于点E ,若8,AB =2CD =,则BCE ∆的面积为( ).A 12 .B 15 .C 16 .D 18【解析】设,OC x =则2,OA OD x ==+OD AB ⊥Q 于,C 14,2AC CB AB ∴=== 在Rt OAC ∆中,222,OC AC OA +=即2224(2),x x +=+解得3x =,即3OC = (第4题答案图)OC Q 为ABE ∆的中位线,2 6.BE OC ∴== AE Q 是O e 的直径,90,B ∴∠=o 114612.22BCE S CB BE ∆∴=⋅=⨯⨯= 故选A .5.如图,在四边形ABCD 中,090BAC BDC ∠=∠=,5AB AC ==1CD =,对角线的交点为M ,则DM = ( ).A 3.B 5.C 2 .D 12(第5题答案图)【答案】D . 【解析】过点A 作AH BD ⊥于点,H 则AMH ∆~,CMD ∆,AH AMCD CM∴=1,CD =Q,AMAHCM ∴=设,AM x = 则,CM x AH =∴=在Rt ABM ∆中,BM == 则AB AMAH BM⋅===显然0x ≠,化简整理得22100x -+=解得2x =(x =,故2CM =在Rt CDM ∆中,12DM ==,故选D . 6.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 34.D 1【答案】C .【解析】22(23)(23)(1)34232M xy y x z xy y x x y x xy y x y =++=++--=---++222211122332222y x y x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+--++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦222211113322222244y x x x y x x ⎛⎫⎛⎫⎛⎫=-+--++=-+---+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当且仅当1,02x y ==时,M 取等号,故max 34M =,故选C . 二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数y x=(0x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .【答案】322⎛⎫⎪ ⎪⎝⎭. 【解析】如图,过点C 作CD AB ⊥于点D . 在Rt ACB ∆中,cos 33BC AB ABC =⋅∠= 在Rt BCD ∆中,33sin 2CD BC B =⋅=(第1题答案图) 9cos ,2BD BC B =⋅=32AD AB BD ∴=-=,设33,C m A n ⎛⎛ ⎝⎭⎝⎭, 依题意知0,n m >>故33,CD n m AD =-=3323332n m mn ⎧-=⎪⎪-=⎩ 解得323m n ⎧=⎪⎨⎪=⎩,故点C 的坐标为322⎛⎫ ⎪ ⎪⎝⎭. 1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,3AD =则AM = .【答案】2.【解析】(第1题答案图1 ) ( 第1题答案图2)依题意得BAD DAM MAC ∠=∠=∠,090,ADB ADC ∠=∠= 故ABC ACB ∠≠∠. (1)若ABC ACB ∠>∠时,如答案图1所示,ADM ∆≌,ADB ∆1,2BD DM CM ∴== 又AM 平分,DAC ∠ 1,2AD DM AC CM ∴==在Rt DAC ∆中,即1cos ,2DAC ∠= 060,DAC ∴∠= 从而0090,30BAC ACD ∠=∠=.在Rt ADC ∆中,tan 3tan 603,CD AD DAC =⋅∠==o 1.DM =在Rt ADM ∆中,222AM AD DM =+=.(2)若ABC ACB ∠<∠时,如答案图2所示.同理可得2AM =.综上所述,2AM =. 2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠= .【答案】126o.【解析】设,OCD ADO αβ∠=∠=,CA Q 平分BCD ∠,OCD OCB α∴∠=∠=,BC Q ∥AD ,,ADO OBC DAO OCB βα∴∠=∠=∠=∠=, (第2题答案图) OCD DAO α∴∠=∠=,AD CD ∴=,Q ,CD AO =AD AO ∴=,ADO AOD BOC OBC β∴∠=∠=∠=∠=,OC BC ∴=, Q ,BC OD =,OC OD ∴=ODC OCD α∴∠=∠=,180BOC ODC OCD BOC OBC OCB ∠=∠+∠∠+∠+∠=o Q2,2180,βααβ∴=+=o解得36,72αβ==o o ,72DBC BCD ∴∠=∠=o,,BD CD AD ∴==18054,2ABD BAD β-∴∠=∠==o o 故126ABC ABD DBC ∠=∠+∠=o.3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 . 【答案】167334.【解析】设两个三位数分别为,x y ,则10003x y xy +=,①31000(31000),y xy x y x ∴=-=-故y 是x 的正整数倍,不妨设y tx =(t 为正整数),代入①得10003,t tx +=1000,3t x t +∴=x Q 是三位数,10001003tx t+∴=≥,解得 1000,299t ≤t Q 为正整数,t ∴的可能取值为1,2,3.验证可知,只有2t =符合,此时 167,334.x y == 故所求的六位数为167334.3(B).若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 . 【答案】1007.【解析】由340q p --=得,34,p q =-2224(34)343,33pq q q q q q ⎛⎫∴=-=-=-- ⎪⎝⎭因q 为质数,故pq 的值随着质数q 的增大而增大,当且仅当q 取得最大值时,pq 取得最大值.又111p q +<,34111,q q ∴-+<3284q ∴<,因q 为质数,故q 的可能取值为 23,19,17,13,11,7,5,3,2,但23q =时,3465513p q =-==⨯不是质数,舍去.当19q =时,3453p q =-=恰为质数.故max max 19,()53191007q pq ==⨯=.4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 . 【答案】10.【解析】(依据5个1分布的列数的不同情形进行讨论,确定M 的最大值.(1)若5个1分布在同一列,则5M =;(2)若5个1分布在两列中,则由题意知这两列中出现的最大数至多为3,故 2515320M ≤⨯+⨯=,故10M ≤;(3) 若5个1分布在三列中,则由题意知这三列中出现的最大数至多为3,故 351525330M ≤⨯+⨯+⨯=,故10M ≤;(4) 若5个1分布在至少四列中,则其中某一列至少有一个数大于3,这与已知矛盾. 综上所述,10.M ≤另一方面,如下表的例子说明M 可以取到10.故M 的最大值为10.第二试(3月20日上午9:50 — 11:20)一、(本题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.【解析】解:因,a b 为正整数,要使得22324M a ab b =---的值为正整数,则有2a ≥.当2a =时,b 只能为1,此时 4.M =故M 能取到的最小正整数值不超过4.当3a =时,b 只能为1或2.若1,18b M ==;若2b =,则7M =.当4a =时,b 只能为1或2或3.若1,38b M ==;若2,24b M ==;若3,b =则2M =. (下面考虑:22324M a ab b =---的值能否为1?)(反证法)假设1M =,则223241a ab b ---=,即22325a ab b -=+, 2(3)25a a b b -=+ ①因b 为正整数,故25b +为奇数,从而a 为奇数,b 为偶数,不妨设21,2a m b n =+=,其中,m n 均为正整数,则22222(3)(21)3(21)(2)4(332)3a a b m m n m m mn n ⎡⎤-=++-=+--+⎣⎦即2(3)a a b -被4除所得余数为3,而252(2)141b n n +=+=+被4除所得余数为1,故①式不可能成立,故1M ≠.因此,M 能取到的最小正整数值为2.二、(本题满分25分)(A ).如图,点C 在以AB 为直径的O e 上,CD AB ⊥于点D ,点E 在BD 上,,AE AC =四边形DEFM 是正方形,AM 的延长线与O e 交于点N .证明:FN DE =.(第2(A)题答案图)【证明】:连接BC 、.BN AB Q 为O e 的直径,CD AB ⊥于点D90ACB ANB ADC ∴∠=∠=∠=o,,CAB DAC ACB ADC ∠=∠∠=∠Q ,ACB ADC ∴∆∆∽,AC AB AD AC∴=2AC AD AB ∴=⋅ 由四边形DEFM 是正方形及CD AB ⊥于点D 可知:点M 在CD 上,DE DM EF MF ===,,NAB DAM ANB ADM ∠=∠∠=∠Q ,ANB ADM ∴∆∆∽,AN AB AD AM∴=,AD AB AM AN ∴⋅=⋅2,AC AM AN ∴=⋅ ,AE AC =Q 2AE AM AN ∴=⋅以点F 为圆心、FE 为半径作,F e 与直线AM 交于另一点P ,则F e 与AB 切于点E ,即AE 是F e 的切线,直线AMP 是F e 的割线,故由切割线定理得2AE AM AP =⋅AN AP ∴=,即点N 与点P 重合,点N 在F e 上,FN FE DE ∴==.(注:上述最后一段得证明用了“同一法”)(B ).已知:5,a b c ++= 22215,a b c ++= 33347.a b c ++= 求222222()()()a ab b b bc c c ca a ++++++的值. 【解析】由已知得22221()()52ab bc ca a b c a b c ⎡⎤++=++-++=⎣⎦ 由恒等式3332223()()a b c abc a b c a b c ab bc ca ++-=++++---得,4735(155),abc -=⨯-1abc ∴=-又22()()()5(5)55(1)a ab b a b c a b ab bc ca c c ++=+++-++=--=- 同理可得22225(4),5(4)b bc c a c ca a b ++=-++=-∴原式=[]35(4)(4)(4)1256416()4()a b c a b c ab bc ca abc ---=-+++++- 125[6416545(1)]625.=⨯-⨯+⨯--=【注:恒等式32()()()()()t a t b t c t a b c t ab bc ca t abc ---=-+++++-】三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且 222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= . (3) 求111xy yz zx++的值. (4) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.【解析】(1)解:由等式222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=, 去分母得222222(1)(1)(1((1)(1)(1)4z x y x y z y z x xyz --+--+--=,222222222222()()()3()0,x y z xy z x yz x y z y z x z x y xyz x y z xyz ⎡⎤++-+++++++++-=⎣⎦ ()()()()0xyz xy yz zx x y z xy yz zx x y z xyz ++-+++++++-=,∴[()](1)0xyz x y z xy yz zx -++++-=,1,10xy yz zx xy yz zx ++≠∴++-≠Q ,()0,xyz x y z ∴-++=xyz x y z ∴=++,∴原式= 1.x y z xyz++= (2)证明:由(1)得计算过程知xyz x y z ∴=++,又Q ,,x y z 为正实数,9()()()8()x y y z z x xyz xy yz zx ∴+++-++9()()()8()()x y y z z x x y z xy yz zx =+++-++++222222()()()6x y z y z x z x y xyz =+++++-222()()()0.x y z y z x z x y =-+-+-≥∴9()()()8()x y y z z x xyz xy yz zx +++≥++.【注:222222()()()2x y y z z x x y xy y z yz z x zx xyz +++=++++++ 222222()()()2x y z y z x z x y xyz =++++++222222()()3x y z xy yz zx x y xy y z yz z x zx xyz ++++=++++++222222()()()3x y z y z x z x y xyz =++++++】(B ).如图,在等腰ABC ∆中,5,AB AC ==D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.(第3(B )题答案图)【解析】如图,连接,,AE ED CF ,则,AB AC =Q ABD ACB ∴∠=∠Q 点C 关于直线AD 的对称点为点E ,,BED BCF AED ACD ACB ∴∠=∠∠=∠=∠ ,ABD AED ∴∠=∠,,,A E B D ∴四点共圆,BED BAD ∴∠=∠(同弧所对得圆周角相等) BAD BCF ∴∠=∠,,,,A B F C ∴四点共圆,AFB ACB ABD ∴∠=∠=∠,AFB ABD ∴∆∆∽,AB AF AD AB ∴=225 5.AD AF AB ∴⋅===(注:若共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆,也可以说成:若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆)------------------------------------------------------------------------ 怎样才能学好数学一、把握好课堂的每一分钟如今的小学数学教师,都比较重视课堂教学的效益,所以,老师最期盼的事情就是:学生能够专心听讲,眼睛时刻盯在老师身上,或者盯在黑板上。

2016年全国初中数学联赛试题及答案

2016年全国初中数学联合竞赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知t =,a 是t 的小数部分,b 是t -的小数部分,则112b a -= ( )A.12. . C.1. 【答】A.∵2t ==+324<+,∴31a t =-=.又∵2t -=-423-<-<-,∴(4)2b t =---=∴11122b a -===. 2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案共有 ( )A .9种.B .10种.C .11种.D .12种.【答】C.设购买三种图书的数量分别为,,a b c ,则30a b c ++=,101520500a b c ++=,易得202b a =-,10c a =+,于是a 有11种可能的取值(分别为0,1,2,3,4,5,6,7,8,9,10).对于每一个a 值,对应地可求出唯一的b 和c , 所以,不同的购书方案共有11种.3.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”。

如: 3321(1)=--,332631=-,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( )A .6858.B .6860.C .9260.D .9262.【答】B.注意到332(21)(21)2(121)k k k +--=+,由22(121)2016k +≤得||10k <.取k =0,1,2,3,4,5,6,7,8,9,即得所有的不超过2016的“和谐数”,它们的和为 333333333[1(1)](31)(56)(1917)1916860--+-+-++-=+= .4.已知⊙O 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交⊙O 于点E ,若AB =8,CD =2,则△BCE 的面积为 ( )A.12.B.15.C.16.D.18.【答】A.设OC x =,则OA =OD 2x =+,在Rt △OAC 中,由勾股定理得222OC AC OA +=,即2224(2)x x +=+,解得3x =.又OC 为△ABE 的中位线,所以26BE OC ==. 所以直角△BCE 的面积为1122CB BE ⋅=. 5.如图,在四边形ABCD 中,90BAC BDC ∠=∠=︒,AB AC ==1CD =,对角线的交点为M ,则DM = ( )... D.12. 【答】D.作AH BD ⊥于点H ,易知△AMH ∽△CMD ,所以AH AM CD CM=,又1CD =,所以 AM AH CM= ① 设AM x =,则CM x =.在Rt △ABM中,可得AB AM AH BM ⋅==.=,解得x =x =舍去).所以2CM =,12DM ==. 6.设实数,,x y z 满足1x y z ++=,则23M xy yz xz =++的最大值为 ( ) A.12. B. 23. C.34. D. 1. 【答】C.23(23)(1)M xy yz xz xy y x x y =++=++--2234232x xy y x y =---++22221112[2()()]332()222y x y x x x x =-+-+--++-22112()22y x x x =-+--++ 2211332()()2244y x x =-+---+≤, 所以23M xy yz xz =++的最大值为34. 二、填空题:(本题满分28分,每小题7分)B C1.已知△ABC 的顶点A 、C在反比例函数0)y x x=>的图象上,90ACB ∠=︒,ABC ∠=30°,AB ⊥x 轴,点B 在点A 的上方,且AB =6,则点C 的坐标为_______.【答】2). 作CD AB ⊥于点D,易求得CD =,32AD =.设(C m,(A n ,结合题意可知0n m >>,(D n m,所以CD n m =-,AD m n =-,故2n m -=,32m n -=,联立解得2m =,n =所以,点C的坐标为(2)2. 2.在四边形ABCD 中,//BC AD ,CA 平分BCD ∠,O 为对角线的交点,CD AO =,BC OD =,则ABC ∠= .【答】126︒.因为//BC AD ,CA 平分BCD ∠,所以DAC ACB ACD ∠=∠=∠,所以DA DC =,又CD AO =,所以AD AO =,所以ADO AOD ∠=∠.记DAC ACB ACD ∠=∠=∠=α,ADO AOD β∠=∠=. 又//BC AD ,所以△ADO ∽△CBO ,结合AD AO =可得OC BC =,且CBO COB β∠=∠=. 又BC OD =,所以OC OD =,所以ODC OCD α∠=∠=.结合图形可得:2βα=且2180αβ+=︒,解得36α=︒,72β=︒.所以72DBC DCB ∠=∠=︒,所以BD CD AD ==,所以54DAB DBA ∠=∠=︒,于是可得126ABC ABD DBC ∠=∠+∠=︒.3.有位学生忘记写两个三位数间的乘号,得到一个六位数.这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 .【答】167334.设两个三位数分别为x 和y ,由题设知10003x y xy += ①由①式得31000(31000)y xy x y x =-=-,故y 是x 的整数倍,不妨设y tx =(t 为正整数),代入①式得10003t tx +=,所以10003t x t +=.因为x 是三位数,所以10001003t x t+=≥,从而可得1000299t ≤,又t 为正整数,故t 的可能的取值只能是1,2,3.验证可知:只有t =2符合题意.所以t =2,167x =,334y =,所求的六位数为167334.4.将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 .【答】10.依据5个1分布的列数的不同情形分别求M 的最大值.若5个1分布在同一列,则M =5;若5个1分布在两列中,则由题设知这两列中出现的最大数至多为3,故2515320M ≤⨯+⨯=,所以10M ≤;若5个1分布在三列中,则由题设知这三列中出现的最大数至多为3,故351525330M ≤⨯+⨯+⨯=,所以10M ≤; 若5个1分布在至少四列中,则其中某一列至少有一个数大于3,与题设矛盾. 综上所述,10M ≤; 另一方面,右边给出的例子说明M 可以取到10.故M 的最大值为10.第一试(B)一、选择题:(本题满分42分,每小题7分)1.题目和解答与(A )卷第1题相同.2.题目和解答与(A )卷第2题相同.3.已知二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时, ab = ( )A .0.B .14. C .34-. D .2-. 【答】B.由于二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0)和(0,1),故0a <,02b a-<,10a b ++=,所以0b <且1b a =--,于是可得10a -<<. 当21a b a -=+为整数时,因为1211a -<+<,所以210a +=,故12a =-,12b =-,所以14ab =. 4.题目和解答与(A )卷第4题相同.5.题目和解答与(A )卷第5题相同.6. 题目和解答与(A )卷第6题相同.二、填空题:(本题满分28分,每小题7分)1.已知△ABC 的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,AD =则AM =_______.【答】2.显然ABC ACB ∠≠∠.若ABC ACB ∠>∠,则由已知条件易知△ADM ≌△ADB ,所以BD =DM 12CM =.又因为AM 平分DAC ∠,所以,由角平分线定理可得12AD DM AC CM ==,即1cos 2DAC ∠=,所以DAC ∠=60︒,进而可得90BAC ∠=︒,30ACD ∠=︒.在Rt △ADC中,AD =30ACD ∠=︒,可求得3CD =,所以1DM =.在Rt △ADM中,由勾股定理得2AM ==.若ABC ACB ∠<∠,同理可求得2AM =.2.题目和解答与(A )卷第1题相同.3.若质数,p q 满足:340q p --=,111p q +<.则pq 的最大值为 .【答】1007.由340q p --=得34p q =-,所以(34)pq q q =-,显然(34)q q -的值随着质数q 的增大而增大,当且仅当q 取得最大值时pq 取得最大值.又因为111p q +<,即p q +=44q -111<,所以29q <.因为q 为质数,所以q 的可能的取值为23,19,17,13,11,7,5,3,2.当q =23时,34p q =-=65,不是质数;当q =19时,34p q =-=53,是质数.所以,q 的最大值为19,pq 的最大值为53×19=1007.4. 题目和解答与(A )卷第3题相同.第二试 (A )一、(本题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值. 解 因为,a b 为正整数,要使得22324M a ab b =---的值为正整数,显然有2a ≥.当2a =时,b 只能为1,此时4M =,故22324M a ab b =---能取到的最小正整数值不超过4.………………5分当3a =时,b 只能为1或2.若b =1,则M =18;若b =2,则M =7.当4a =时,b 只能为1或2或3.若b =1,则M =38;若b =2,则M =24;若b =3,则M =2.………………10分下面考虑: 22324M a ab b =---的值能否为1?若1M =,即223241a ab b ---=,即22325a ab b -=+ ①,注意到25b +为奇数,所以a 是奇数, b 是偶数,此时,223a ab -被4除所得余数为3,25b +被4除所得余数为1,故①式不可能成立,即1M ≠.因此,22324M a ab b =---能取到的最小正整数值为2. ……………………20分二、(本题满分25分)如图,点C 在以AB 为直径的⊙O 上,CD AB ⊥于点D ,点E 在BD 上,AE AC =,四边形DEFM 是正方形,AM 的延长线与⊙O 交于点N .证明:FN DE =.证明 连接BC 、BN .∵AB 为⊙O 的直径,CD AB ⊥,∴90ACB ANB ADC ∠=∠=∠=︒.∵CAB DAC ∠=∠,ACB ADC ∠=∠,∴△ACB ∽△ADC , ∴AC AB AD AC=,∴2AC AD AB =⋅. ……………………5分 又由DEFM 为正方形及CD AB ⊥可知:点M 在CD 上,B ADE DM EF MF ===.∵NAB DAM ∠=∠,ANB ADM ∠=∠,∴△ANB ∽△ADM ,∴AN AB AD AM =, ∴AD AB AM AN ⋅=⋅.∴2AC AM AN =⋅,又AE AC =,∴2AE AM AN =⋅.……………………15分 以F 为圆心、FE 为半径作⊙F ,与直线AM 交于另一点P ,显然:⊙F 与AB 切于点E .于是,由切割线定理可得2AE AM AP =⋅.∴AN AP =,∴点N 即为点P ,∴点N 在⊙F 上,∴FN FE DE ==.……………………25分三、(本题满分25分)已知正实数,,x y z 满足:1xy yz zx ++≠且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=. (1)求111xy yz zx++的值. (2)证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.解 (1)由等式222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=得 222222(1)(1)(1)(1)(1)(1)4z x y x y z y z x xyz --+--+--=,展开整理得222222222222[()()()]()4x y z x yz xy z x y z y z x z x y x y z xyz ++-++++++++=, 即()()()()0xyz xy yz xz x y z xy yz xz x y z xyz ++-+++++++-=,所以[()](1)0xyz x y z xy yz xz -++++-=. ……………………10分 又因为1xy yz zx ++≠,所以()0xyz x y z -++=,所以xyz x y z =++,因此,1111xy yz zx++=. ……………………15分(2)因为,,x y z 为正数,所以9()()()8()x y y z z x xyz xy yz zx +++-++=9()()()8()()x y y z z x x y z xy yz zx +++-++++ =2222226x y xy x z xz y z yz xyz +++++-=222()()()0x y z y z x z x y -+-+-≥,所以9()()()8()x y y z z x xyz xy yz zx +++≥++.……………………25分第二试 (B )一、(本题满分20分)题目和解答与(A )卷第一题相同.二、(本题满分25分)已知:5a b c ++=,22215a b c ++=,33347a b c ++=.求222222()()()a ab b b bc c c ca a ++++++的值.解 因为5a b c ++=,22215a b c ++=,所以22222()()()10ab bc ac a b c a b c ++=++-++=,所以5ab bc ac ++=. ……………………5分 结合恒等式3332223()()a b c abc a b c a b c ab bc ac ++-=++++---,可得4735(155)abc -=- 50=,所以1abc =-. ……………………10分 而22()()()a ab b a b a b c ab bc ac ++=+++-++5(5)55(4)c c =--=-. ……………15分 同理可得225(4)b bc c a ++=-,225(4)c ca a b ++=-,所以 222222()()()125(4)(4)(4)a ab b b bc c c ca a a b c ++++++=---125[6416545(1)]=-⨯+⨯--625=. ……………………25分三、(本题满分25分)如图,在等腰△ABC中,AB AC ==D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点F ,求AD AF ⋅的值. 解 连接AE 、ED 、CF ,由题设条件可知ABC ACB AED ∠=∠=∠,所以A 、E 、B 、D 四点共圆,于是可得BED BAD ∠=∠.……………………10分又因为点C 和点E 关于直线AD 对称,所以BED BCF ∠=∠.……………………15分因此BAD BCF ∠=∠,所以A 、B 、F 、C 四点共圆,又AB AC =,所以ABD ACB AFB ∠=∠=∠, ……………………20分所以△ABD ∽△AFB ,所以AB AD AF AB =,所以25AD AF AB ⋅==. ……………………25分E C。

2016初二联赛试题与参考答案


。 ab 【答案】32. 1 1 2 4 8 16 。 2 4 8 1 x 1 x 1 x 1 x 1 x 1 x16 ∴ a 16, b 16, a b 32 。 8.若实数 a, b 满足 2a 2 | b | 1 ,则 a 2 2 | b | 的取值范围为 【答案】 2 a 2 2 | b |
∴ n 14 或 7 或 2 或 5。
第二试(C)
一、(本题满分 20 分) 三只蚂蚁同时从点 A 出发,沿三角形道路 A B C A 爬行,已知第一只蚂蚁在
AB, BC , CA 上爬行速度分别为 12 厘米/秒,10 厘米/秒,15 厘米/秒;第二只蚂蚁在此三
段道路上的速度分别为 15 厘米/秒,15 厘米/秒,10 厘米/秒;第三只蚂蚁在此三段上的 速度分别为 10 厘米/秒,20 厘米/秒,12 厘米/秒。若三只蚂蚁同时回到 A 点,求 ABC 的 值。 解:记 AB c, BC a, CA b , 则
由 2 x 2 y a ,可知 a 必为偶数, 又 1
22 为整数,所以 a 0, 4, 24, 20 。 a2
故选 C。 ( )
2.定义运算 a b A.720 C.240 【答案】B。 代入求值的结果。
a ( a 1)( a 2) ( a b 2)( a 2 1
2016 年全国初中数学联合竞赛试题参考答案及评分标准
第 4 页 共 5 页
1 ∵ BE 平分 ABC , ∴ ABE EBC ABC 29.5 。 2
又 BD BD, 故 ABD GBD 。……………………………………(10)
BAC 180 ABC ACB 180 59 30.5 90.5 ,

“周报杯”2016年全国初中数学竞赛试题及参考答案

中国教育学会中学数学教学专业委员会“《数学周报》杯”2016年全国初中数学竞赛试题1.用圆珠笔或钢笔作答;2.解答书写时不要超过装订线;3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分. 每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设1a ,则代数式32312612a a a 的值为( ).(A )24 (B )25 (C )10 (D )122.对于任意实数a b c d ,,定义有序实数对a b (,)与c d (,)之间的运算“△”为:(a b ,)△(c d ,)=(ac bd ad bc ,).如果对于任意实数u v , 都有(u v ,)△(x y ,)=(u v ,),那么(x y ,)为( ).(A )(0,1) (B )(1,0) (C )(﹣1,0) (D )(0,-1)3.若1x ,0y ,且满足3y yxxy x x y ,,则x y 的值为( ).(A )1 (B )2 (C )92 (D )1124.点D E ,分别在△ABC 的边AB AC ,上,BE CD ,相交于点F ,设1234BDF BCF CEF EADF S S S S S S S S 四边形,,则13S S 与24S S 的大小关系为( ).(A )1324S S S S (B )1324S S S S (C )1324S S S S (D )不能确定5.设3333111112399S L ,则4S 的整数部分等于( ).(A )4 (B )5 (C )6 (D )7二、填空题(共5小题,每小题7分,共35分)6.若关于x 的方程2(2)(4)0x x x m 有三个根,且这三个根恰好可以作为一个三角形的三条边的长,则m 的取值范围是 .7.一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,2,3,3,4;另一枚质地均匀的正方体骰子的六个面上的数字分别是1,3,4,5,6,8. 同时掷这两枚骰子,则其朝上的面两数字之和为奇数的概率是 .8.如图,点A B ,为直线y x 上的两点,过A B ,两点分别作y 轴的平行线交双曲线1y x(x >0)于C D ,两点. 若2BD AC ,则224OC OD 的值为 .9.若y a ,最小值为b ,则22a b 的值为.10.如图,在Rt △ABC 中,斜边AB 的长为35,正方形CDEF 内接于△ABC ,且其边长为12,则△ABC 的周长为 .三、解答题(共4题,每题20分,共80分)11.已知关于x 的一元二次方程20x cx a 的两个整数根恰好比方程20x ax b 的两个根都大1,求a b c 的值.12.如图,点H 为△ABC 的垂心,以AB 为直径的⊙1O 和△BCH 的外接圆⊙2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点.13.如图,点A 为y 轴正半轴上一点,A B ,两点关于x 轴对称,过点A 任作直线交抛物线223y x于P ,Q 两点.(1)求证:∠ABP =∠ABQ ;(2)若点A 的坐标为(0,1),且∠PBQ =60º,试求所有满足条件的直线PQ 的函数解析式.14.如图,△ABC 中,60BAC ,2AB AC .点P 在△ABC 内,且52PA PB PC ,求△ABC 的面积.“《数学周报》杯”2020年全国初中数学竞赛试题参考答案一、选择题1.A解:因为1a , 1a , 262a a , 所以322312612362126261261260662126024.a a a a a a a a a a a ()()2.B解:依定义的运算法则,有ux vy u vx uy v ,,即(1)0(1)0u x vy v x uy,对任何实数u v ,都成立. 由于实数u v ,的任意性,得(x y ,)=(1,0).3.C解:由题设可知1y y x ,于是341y y x yx x ,所以 411y ,故12y,从而4x .于是92x y.4.C解:如图,连接DE ,设1DEFS S ,则1423S S EF S BF S,从而有1324S S S S .因为11S S ,所以1324S S S S .5.A解:当2 3 99k L ,时,因为 32111112111k k k k k k k,所以3331111115111239922991004SL .于是有445S ,故4S 的整数部分等于4.二、填空题6.3<m ≤4解:易知2x 是方程的一个根,设方程的另外两个根为12 x x ,,则124x x ,12x x m .显然1242x x ,所以122x x ,164m ≥0,即2,164m≥0,所以2 , 164m ≥0,解之得 3<m ≤4.7.19解: 在36对可能出现的结果中,有4对:(1,4),(2,3),(2,3),(4,1)的和为5,所以朝上的面两数字之和为5的概率是41369. 8.6解:如图,设点C 的坐标为a b (,),点D的坐标为c d (,),则点A 的坐标为a a (,),点B 的坐标为.c c (,) 因为点C D ,在双曲线1y x上,所以11ab cd ,.由于AC a b,BD c d ,又因为2BD AC ,于是22222242c d a b c cd d a ab b ,()所以 22224826a b c d ab cd (), 即224OC OD 6.9.32解:由1x ≥0,且12x≥0,得12≤x ≤1.21122y由于13124<<,所以当34x =时,2y 取到最大值1,故1a =.当12x =或1时,2y 取到最小值12,故b =.所以,2232a b.10.84解:如图,设BC =a ,AC =b ,则22235a b =1225. ①又Rt △AFE ∽Rt △ACB ,所以FE AFCB AC,即1212b a b ,故 12()a b ab . ②由①②得2222122524a b a b ab a b (),解得a +b =49(另一个解-25舍去),所以493584a b c .三、解答题11.解:设方程20x ax b 的两个根为 ,,其中 ,为整数,且 ≤ ,则方程20x cx a 的两根为11 ,,由题意得11a a,,两式相加得 2210 , 即 (2)(2)3 ,所以 2123 ,; 或232 1. , 解得 11 ,;或53.,又因为[11]a b c(), 所以012a b c ,;或者8156a b c ,,故3a b c ,或29.12.证明:如图,延长AP 交⊙2O 于点Q ,连接 AH BD QB QCQH ,.因为AB 为⊙1O 的直径,所以∠ADB ∠BDQ 90°,故BQ 为⊙2O 的直径.于是CQ BC BH HQ ,.又因为点H 为△ABC 的垂心,所以.AH BC BH AC ,所以AH ∥CQ ,AC ∥HQ ,四边形ACQH 为平行四边形. 所以点P 为CH 的中点.13.解:(1)如图,分别过点P Q , 作y 轴的垂线,垂足分别为C D , .设点A 的坐标为(0,t ),则点B 的坐标为(0,-t ).设直线PQ 的函数解析式为y kx t ,并设P Q ,的坐标分别为 P P x y (,),Q Q x y (,).由223y kx t y x,,得 2203x kx t ,于是 32P Q x x t ,即 23P Qt x x .于是222323P P Q Qx t y t BC BD y t x t 22222()333.222()333P P Q P P Q P Q Q P Q Q Q P x x x x x x x x x x x x x x 又因为PQx PCQD x ,所以BC PCBD QD . 因为∠BCP ∠90BDQ ,所以△BCP ∽△BDQ , 故∠ABP =∠ABQ .(2)解法一 设PC a ,DQ b ,不妨设a ≥b >0,由(1)可知∠ABP =∠30ABQ ,BC,BD,所以 AC2 ,AD=2 .因为PC ∥DQ ,所以△ACP ∽△ADQ .于是PC AC DQ AD,即a b,所以a b .由(1)中32P Q x x t ,即32ab,所以32ab a b ,于是可求得2a b将b代入223y x ,得到点Q,12).再将点Q 的坐标代入1y kx,求得k所以直线PQ的函数解析式为1y .根据对称性知,所求直线PQ的函数解析式为1y,或1y .解法二 设直线PQ 的函数解析式为y kx t ,其中1t .由(1)可知,∠ABP =∠30ABQ ,所以2BQ DQ .故2Q x .将223Q Qy x代入上式,平方并整理得4241590Q Q x x ,即22(43)(3)0Q Q x x .所以Q x又由 (1)得3322P Q x x t ,32P Q x x k.若Q x代入上式得P x 从而2()3P Q k x x .同理,若Q x可得P x 从而2()3P Q k x x .所以,直线PQ的函数解析式为1y,或1y .14.解:如图,作△ABQ ,使得QAB PAC ABQ ACP ,则△ABQ ∽△ACP . 由于2AB AC ,所以相似比为2.于是224AQ AP BQ CP .60QAP QAB BAP PAC BAP BAC .由:2:1AQ AP 知,90APQ,于是3PQ .所以 22225BP BQ PQ ,从而90BQP .于是222()28AB PQ AP BQ故21sin 602ABC S AB AC AB.。

2016年全国初中数学联赛试题-含详细解析


2016 年全国初中数学联赛(决赛)试题
第3页
三、(本题满分 25 分)
(A).已知正实数 x, y, z 满足: xy yz zx 1 ,且
(x2 1)( y2 1) ( y2 1)(z2 1) (z2 1)(x2 1) 4 .
xy
yz
zx
(1) 求 1 1 1 的值. xy yz zx
格填入一个数),使得同一列中任何两数之差的绝对值不超过 2.考虑每列中各数之和,设这
5 个和的最小值为 M ,则 M 的最大值为
.
第二试
(3 月 20 日上午 9:50 — 11:20) 一、(本题满分 20 分)
已知 a,b 为正整数,求 M 3a2 ab2 2b 4 能取到的最小正整数值.
上,ACB 900 , ABC 300 , AB x 轴,点 B 在点 A 的上方,且 AB 6, 则点 C 的坐
标为
.
1(B). 已 知 ABC 的 最 大 边 BC 上 的 高 线 AD 和 中 线 AM 恰 好 把 BAC 三 等 分 ,
AD 3 ,则 AM .
2(A). 在 四 边 形 ABCD 中 , BC ∥ AD , CA 平 分 B C D, O 为 对 角 线 的 交 点 ,
30 本,那么不同的购书方案有
2016 年全国初中数学联赛(决赛)试题
第4页
2016 年全国初中数学联合竞赛试题
第一试
(3 月 20 日上午 8:30 - 9:30)
一、选择题(本题满分 42 分,每小题 7 分)
(本题共有 6 个小题,每题均给出了代号为 A,B,C,D 的四个答案,其中有且仅有一个是正 确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得 7 分;不选、选错或选 出的代号字母超过一个(不论是否写在括号内),一律得 0 分.)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年初中数学竞赛模拟试题考试时间 2016年3月13日 9∶00-11∶00 满分150分一、选择题(共5小题,每小题7分,共35分)。

每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.如果,22=++b ab a 且b 是有理数,那么a 是A .整数B .有理数C .无理数D .可能是有理数,也可能是无理数2.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m ,n ,则二次函数n mx x y ++=2的图象与x 轴有两个不同交点的概率是A .125B .94C .3617D .21 3.已知⊙O 的半径为5,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,AB=8,则tan ∠CBD 的值等于A .34B .54C .53D .43 4.四边形ABCD 的对角线AC 、BD 交于点O ,且S △AOB =4,S △COD =9,则四边形ABCD 面积有A .最小值12B .最大值12C .最小值25D .最大值255.将1,2,3,4,5这五个数字排成一排,最后一个数是奇数,且使得其中任意连续三个数之和都能被这三个数中的第一个数整除,那么满足要求的排法有A .2种B .3种C .4种D .5种 二、填空题(共5小题,每小题7分,共35分)6.两个质数p ,q 恰是整系数方程x 2-99x+m=0的两根,则=+pq q p . 7.如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a>0),半径为2,函数y=x 的图象被⊙P 截得的弦AB 的长为2.则a=.8.方程组⎪⎩⎪⎨⎧=+=-=-28)(35)(27)(y x z z x y z y x 的正数解(x ,y ,z )是.9.分式12156322++++x x x x 的最小值为. 10.如图,在△ABC 中,AP=QP=QB=BC ,AB=AC .则∠A=o. 三、解答题(共4题,每小题20分,共80分)11.已知x ,y 为正整数,并且xy+x+y =71,x 2y+xy 2=880,求3x 2+8xy+3y 2的值.12.如图,直角三角形ABC 中,D 是斜边AB 的中点,MB ⊥AB ,MD 交AC 于N ;MC的延长线交AB 于E .证明:∠DBN=∠BCE .13.当-1≤x ≤2时,函数y=2x 2-4ax+a 2+2a +2有最小值2.求a 所有可能取的值.14.从1,2,…,9中任取n 个数,其中一定可以找到若干个数(至少一个,也可以是全部),它们的和能被10整除,求n 的最小值.2016年初中数学竞赛模拟试题参考答案考试时间 2016年3月13日 9∶00-11∶00 满分150分一、选择题(共5小题,每小题7分,共35分)。

每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。

请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.【答案】C【解答】由题目条件得12)1(212312)1(23)12)(12()12)(2(12222222-+--=-+-=-+--=+-=b b b b b b b b b b b b b a 因为b 是有理数,则12)1(和123222-+-b b b b 也都是有理数,而2是无理数,所以a 是无 理数.2.【答案】C【解答】基本事件总数有6×6=36,即可以得到36个二次函数. 由题意知 ,0422>-=∆n m ,即m 2>4n .通过枚举知,满足条件的mn ,有17对. 故P =3617. 3.【答案】D【解答】过B 作⊙O 的直径BM ,连接AM ;则∠MAB=∠CDB=90°,∠M=∠C ;∴∠MBA=∠CBD ;过O 作OE ⊥AB 于E ;Rt △OEB 中,BE= AB=4,OB=5;由勾股定理得:OE=3 43=∠=∠MBA tan CBD tan . 4.【答案】C【解答】设S △AOD =x ,S △BOC =y ,则S 四边形ABCD =4+9+x+yxy y x 2≥+ ∴xy S 213+≥最小当且仅当x=y 时,xy S 213+=最小,此时694=⨯==y x 故S 最小=4+9+2×6=25.5.【答案】D【解答】设a 1,a 2,,a 3,a 4,a 5,是1,2,3,4,5的一个满足要求的排列. 首先,对于a 1,a 2,,a 3,a 4,不能有连续的两个都是偶数,否则,这两个之后都是偶数,与已知条件矛盾.又如果a i (1≤i ≤3)是偶数,a i+1是奇数,则a i+2是奇数,这说明一个偶数后面一定要接两个或两个以上的奇数,除非接的这个奇数是最后一个数.所以a 1,a 2,,a 3,a 4,a 5只能是:偶,奇,奇,偶,奇,有如下5种情形满足条件: 2,1,3,4,5; 2,3,5,4,1; 2,5,1,4,3; 4,3,1,2,5; 4,5,3,2,1.二、填空题(共5小题,每小题7分,共35分)6.【答案】1949413 【解答】由韦达定理,p+q=99,∵p ,q 是质数,∴p ,q 中必有一个为2,而要计算的代数式关于p ,q 是对称的,不妨设p=2,从而q=97.∴=+p q q p 1949413 7.【答案】22【解答】过点P 作PE ⊥AB 于点E ,连接PA 并延长PA 交x 轴于点C ,∵PE ⊥AB ,AB=2∴AE=21AB=1, ∵PA=2在Rt △PAE 中,由勾股定理得:PE=1,∴PE=AE ,∴∠PAE=45°,∵函数y=x 的图象与y 轴的夹角为45°,∴y 轴∥PA ,∴∠PCO=90°,∴A 点的横坐标为2∵A 点在直线y=x 上,∴A 点的纵坐标为2∴PC=22,a =228.【答案】(9,5,2)【解答】⎪⎩⎪⎨⎧=+=-=-③②①28)(35)(27)(y x z z x y z y x∴①+②+③=2xy =90,∴xy =45,∴x =1,y =15或x =3或y =15,或x =5,y =9,或x =15,y =1或x =15或y =3或x =9,y =5,验证可知x =9,y =5,z =2,故答案为(9,5,2).9.【答案】4【解答】令2226121563222++-=++++=x x x x x x y问题转化为考虑函数z =x 2+2x +2的最小值则z min =1,此时y min =4.10.【答案】20【解答】解:在AC 上取点D ,使QD=PQ ,连接QD 、BD ,设∠A=x°,∵AP=QP ,∴∠AQP=∠A=x°,∴∠QPD=∠A+∠AQP=2x°,∵QD=QP ,∴∠QDP=∠QPD=2x°,∴∠BQD=∠A+∠QDP=3x°,∵DQ=QB ,∴∠QBD=2180o BQD ∠-=90°-1.5x°, ∴∠BDC=∠A+∠QBD=90°-0.5x°,又∵AB=AC ,∴∠ABC=∠ACB=90°-0.5x°,∴BD=BC ,∴BD=BQ=QD ,∴△BDQ 为等边三角形,∴∠QBD=90°-1.5x°=60°,解得:x=20,∴∠A=20°.三、解答题(共4题,每小题20分,共80分) 11.解:∵xy+x+y=71∴xy=71-(x+y )∵x 2y+xy 2=880∴x 2y+xy 2=xy (x+y )=[71-(x+y )]*(x+y )=71(x+y )-(x+y )2=880………(5分) ∴(x+y )2-71(x+y )+880=0∴[(x+y )-55]•[(x+y )-16]=0∴(x+y )-55=0或(x+y )-16=0解得:x+y=55或x+y=16……………………………………………………………(10分)(1)当x+y=55时,代入xy+x+y=71中得:xy=16(2)当x+y=16时,代入xy+x+y=71中得:xy=55因为x ,y 为正整数,所以结果(1)不可能,去掉………………………………(15分) 3x 2+8xy+3y 2=3(x+y )2+2xy=3×162+2×55=3×256+110=878………………………………………………………………………(20分)12.证明:如图,延长ME 交△ABC 的外接圆于F ,延长MD 交AF 于K ,作CG ∥MK ,交AF 于G ,交AB 于P ,作DH ⊥CF 于H ,则H 为CF 的中点,…………………………………(5分)连接HB 、HP ,则点D 、H 、B 、M 共圆,故∠HBD=∠HMD=∠HCP ,于是H 、B 、C 、P 共圆,………………………………………(10分)∴∠PHC=∠ABC=∠AFC ,故PH ∥AF ,即PH 为△CFG 的中位线,P 是CG 的中点,则AP 为△ACG 的边CG 上的中线,又∵NK ∥CG ,故D 是NK 的中点,即线段AB 与NK 互相平分…(15分)∴四边形NAKB 为平行四边形,∴∠DBN=∠DAK ,而∠DAK=∠BAF=∠BCF=∠BCE ,即有∠DBN=∠BCE .………………………………………(20分)13.y=2x 2-4ax+a 2+2a+2图象的对称轴为:x=a ,…………………………………(5分) ①当-1≤a≤2时,函数在x=a 处取得最小值2,故-a 2+2a+2=2,即a 2-2a=0,解得:a=0或2……………………………………………………(10分)②当a <-1时,函数在x=-1处取得最小值2,代入函数式得2+4a+a 2+2a+2=2, 即:a 2-6a+2=0,解得:a=73±-取a=73--……………………………………………………(15分) ③当a >2时,函数在x=2处取得最小值2,代入函数式得:8-8a+a 2+2a+2=2,即a 2-6a+8=0,解得:a=2或4,取a=4.………………………………………(20分)故a 所有可能的值为:73--,0,2,4. 14.当n=4时,数1,3,5,8中没有若干个数的和能被10整除.………………(5分) 当n=5时,设a 1,a 2,a 5是1,2,…,9中的5个不同的数.若其中任意若干个数,它们的和都不能被10整除,则a 1,a 2,a 5中不可能同时出现1和9;2和8;3和7;4和6.于是a 1,a 2,…,a 5中必定有一个数是5.…………………………………(10分) 若a 1,a 2,…,a 5中含1,则不含9.于是不含4(4+1+5=10),故含6;于是不含3(3+6+1=10),故含7;…………………………………(15分)于是不含2(2+1+7=10),故含8.但是5+7+8=20是10的倍数,矛盾.若a 1,a 2,…,a 5中含9,则不含1.于是不含6(6+9+5=20),故含4;于是不含7(7+4+9=20),故含3;于是不含8(8+9+3=10),故含2.但是5+3+2=10是10的倍数,矛盾.综上所述,n 的最小值为5.…………………………………(20分)。

相关文档
最新文档