中考数学总复习【题型十二 反比例函数与几何图形综合题】

合集下载

2024年中考数学复习重难点(全国通用版):反比例函数与几何图形综合问题(重点突围)(解析版)

2024年中考数学复习重难点(全国通用版):反比例函数与几何图形综合问题(重点突围)(解析版)

专题16反比例函数与几何图形综合问题【中考考向导航】目录【直击中考】 (1)【考向一反比例函数中K 值的几何意义】 (1)【考向二反比例函数与三角形的综合问题】 (8)【考向三反比例函数与矩形的综合问题】 (15)【考向四反比例函数与菱形的综合问题】 (22)【考向五反比例函数与正方形的综合问题】 (32)【考向六反比例函数与圆的综合问题】 (42)【直击中考】【考向一反比例函数中K 值的几何意义】【答案】4【分析】设点C 的坐标为3382AEC S k ,由此即可求出【详解】4k .故答案为:4 .【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是设出点C 的坐标,利用点C 的横坐标表示出A 、E 点的坐标.本题属于基础题,难度不大,解决该题型题目时,利用反比例函数图象上点的坐标特征表示出点的坐标是关键.【变式训练】【答案】23【分析】过点B作BD再由三角形面积求解即可.【详解】解:过点B作BD【答案】7213【分析】先利用面积关系得到得到对应边的关系进一步转化即可得到【详解】解:过点C 作CN OC ∵平分AOB ,CN CD ,54OA OB , 54OAC S S ,【答案】6【分析】根据全等三角形的判定和性质以及三角形的面积公式可得3COD S △,由系数k 的几何意义可得答案.【详解】解:如图,过点C 作CD y 轴于【答案】6【分析】根据反比例函数中k的几何意义:,根据图像均在第一象限可知【考向二反比例函数与三角形的综合问题】(1)求反比例函数的解析式;(2)过点A作AP垂直OA,交反比例函数的图象于点①求直线AC的解析式;②求点P的坐标.【答案】(1)反比例函数的解析式为∵AO=AB,OA=5,OB=6.∴OD=BD=3,∴AD=22253OA OD∴A(3,4),把A(3,4)代入y=kx (x>∴反比例函数的解析式为y=(2)(1)求反比例函数的解析式;(2)坐标平面内有一点D,若以【答案】(1)y=3 x(2)(1,﹣3)或(﹣1,【分析】(1)过点B作BE是等边三角形,根据菱形的性质可知,需要分三种情况:当(1)求反比例函数的表达式;(2)求等边△ACD的边长.【答案】(1)反比例函数的表达式为(2)等边△ACD的边长为458【分析】(1)根据等边三角形的性质以及在Rt△OFM中,∠OMF=90°-∴OF=1,FM=3,∴点M的坐标为(1,3),代入∴反比例函数的表达式为y=∵等边△ADC,∴AD=CD=AC,∠ADC=∠DCA ∴设AD=CD=AC=4a,∵点N是AD的中点,∴AN=DN=2a,同理,得:AE=a,NE=3a,统考中考真题)如图,在平面直角坐标系中,等腰直角三角形(1)直接写出B,C,D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点k的值.【答案】(1)B(1,3),C(3,(2)平移的距离为52,32k=【分析】(1)根据矩形性质得出【答案】(1)k=﹣6连接AE,相似的三角形?若存在,请把它们一一找出来,并选其中一种进行【考向四反比例函数与菱形的综合问题】(1)求k 的值及AB 所在直线的函数表达式;(2)将这个菱形沿x 轴正方向平移,当顶点【答案】(1)32k ,354y x ;(2【分析】(1)根据点D 的坐标为(4k 的值;(2)根据D′F′的长度即可得出D′点的纵坐标,进而利用反比例函数的性质求出∵点D 的坐标为(4,3)∴FO =4,DF =3∴DO =5∴AD =5∴A 点坐标为:(4,8)∴4832xy ∴32k的图像上m,求出(1)求一次函数与反比例函数的解析式;∵四边形AODC是菱形,∴AD⊥OA,AE=DE,EC=OE,∵D(1,−2),∴OE=1,ED=2,∴AE=DE=2,EC=OE=1,∴A(1,2),将A(1,2)代入直线y=k1x+1可得解得k1=1,∴OF=1,∵S△OAF12 ×1×1=12,当P在A的左侧时,S△FOP=12(-a ∴a=−3,a+1=−2,∴P(−3,−2),当P在A的右侧时,S△FOP=12a•OF ∴a=5,a+1=6,(1)求双曲线y2的函数关系式及(2)判断点B是否在双曲线上,并说明理由;(3)若BA的延长线与双曲线y【答案】(1)y=4;m=2∵A(2,0),C(2,m),∴E(2,1m),AC y 轴,【考向五反比例函数与正方形的综合问题】(1)求反比例函数的解析式;(2)若将正方形ABCD沿x轴向右平移得到正方形的坐标,并判断点B′是否在该反比例函数的图象上,说明理由.【答案】(1)反比例函数的解析式为(2)B′(6,4),点B′在该反比例函数的图象上.理由见解析【分析】(1)通过证明△AOB≌△由正方形的性质可知AB =CB ,∠ABC ∴∠ABO +∠BAO =∠ABO +∠CBM ∴∠BAO =∠CBM ,在△AOB 和△BMC 中,90BAO CBM AOB BMC AB CB,同(1)可证△AOB ≌△DEA (AAS ),∴DE =OA =2,AE =OB =4,∴OE =2+4=6,(1)求反比例函数的解析式;(2)求四边形OAFM的面积.【答案】(1)2 yx(2)115【分析】(1)根据三角形的面积可得点(2)首先求出点F的坐标,根据利用待定系数法求出备用图(1)求k的值并直接写出∴四边形AEFO是矩形.【点睛】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,全等三角形的判定和性质,勾股定理,平行四边形的判定以及矩形的判定等知识,通过作辅助线构造出全等三角形是解题的关键.(1)点B的坐标_________;(2)将正方形ABCD以每秒2个单位的速度沿x两点的对应点B 、D¢正好落在某反比例函数的图像上,请求出此时(3)在(2)的情况下,问是否存在y轴上的点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点【答案】(1)(﹣3,1)∵点A (-6,0),D (-7,3),∴OA=6,OG =7,DG =3,∴AG =OG-OA=1.∵∠DAG+∠BAH =90°,∠DAG+∠GDA =90°∴∠GDA =∠BAH .又∠DGA =∠AHB =90°,AD=AB ,∴△DGA ≌△AHB ,∴DG=AH =3,BH=AG =1,∴点B 的坐标是(-3,1);(2)由(1),得点B (-3,1),D (-7,3),∴运动t 秒时,点(72,3)D t ,(32B t 设反比例函数的关系式为k y x,∵点B ,D ¢在反比例函数图象上,=轴的另一个交点是【答案】(1)240k ;(2)四边形【分析】(1)解方程求出OA 、OB 的长,进而可得点求解即可;(2)易求PA =PB =20,设⊙M 的半径为证明四边形PAMB 是菱形;(3)连接PM 并延长,交⊙M 于点过点Q 作QF ⊥y 轴于点F ,首先求出【详解】解:(1)解方程t 2-16t +48∵OA 、OB 的长是方程t 2-16t +48=∴OA =12,OB =4,即点A 、B 的坐标为(∵PA ⊥x 轴于点A ,∴设P 点坐标为12,k ,∴四边形PAMB 是菱形;(3)连接PM 并延长,交⊙M 于点过点Q 作QF ⊥y 轴于点F ,当圆心M 在y 轴上时,由(1)(2)可知∴ME =16+20=36,∴PM =2212361210 ,∴1210sin 101210PE PME PM ,∴sin sin 20FQ FQ PME FMQ MQ∴210FQ ,∴点Q的坐标为(210,16610【点睛】本题为反比例函数综合题,涉及到解一元二次方程、圆的基本知识、勾股定理、两点间距离公式、菱形的判定、解直角三角形等知识,明确第(是本题解题的关键.。

中考反比例函数与几何综合

中考反比例函数与几何综合

Oy xBAABxy O反比例函数与几何综合基本图形及常见结论 (1) 反比例函数)0(≠=k xky 图象上任一点,向两坐标轴作垂线,垂线与坐标轴;所围k S =矩形(2)反比例函数)0(≠=k xky 图象上任一点,向两坐标轴作垂线,垂线与坐标轴及原点连线;所围2k S =三角形(3)反比例函数与正比例函数图像交于A ,B 两点,AM 与x 轴垂直; 则:①A ,B 两点关于原点对称;②k S ABM =△(4)过反比例函数xk y 11=图像上任一点向坐标轴做垂线,与反比例函数)(2122k k xk y >=交于两点; 则:①BNBP AM AP =,即AB ∥MN②21k k S APNH -=矩形③)(△2121k k S OAP -=一次函数)0(≠+=kb b kx y 和反比例函数)0(≠=m xmy 图像交于A 、B 两点,AE ⊥x 轴,BF ⊥y 轴,则:①OAE OBF S S △△= ② OAB ABFE S S △梯形=③AC BD =④BFAEOE OF AE OE BF OF =⇒⋅=⋅ ⑤OACOBD S S △△=(一)巧用k 的几何意义解题y x ABO CDy xDC F EO B A例1.函数y=和y=在第一象限内的图象如图,点P 是y=的图象上一动点,PC ⊥x 轴于点C ,交y=的图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA=AP .其中所有正确结论的序号是________。

迁移练习1(1).如图,双曲线)0x (k>=xy 经过Rt △OAB 斜边OB 的中点D ,与AB 交于点C .若△OBC 面积为3,则k =_______迁移练习1(2)..双曲线)0x (k>=xy 经过矩形OABC 边AB 的中点F ,交BC 于点E ; 若梯形OEBA 的面积为9,则k=________。

备考2024年中考数学二轮复习-函数_反比例函数_反比例函数系数k的几何意义-综合题专训及答案

备考2024年中考数学二轮复习-函数_反比例函数_反比例函数系数k的几何意义-综合题专训及答案

备考2024年中考数学二轮复习-函数_反比例函数_反比例函数系数k的几何意义-综合题专训及答案反比例函数系数k的几何意义综合题专训1、(2019盘锦.中考真卷) 如图,四边形ABCD是矩形,点A在第四象限y1=﹣的图象上,点B在第一象限y2=的图象上,AB交x轴于点E,点C与点D在y轴上,AD=,S矩形OCBE= S矩形ODAE.(1)求点B的坐标.(2)若点P在x轴上,S△BPE=3,求直线BP的解析式.2、(2019镇江.中考真卷) 如图,点和点是反比例函数图象上的两点,一次函数的图象经过点,与轴交于点,与轴交于点,过点作轴,垂足为,连接 .已知与的面积满足 .(1)=,=;(2)已知点在线段上,当时,求点的坐标.3、(2018常州.中考真卷) 如图,已知点A在反比例函数y= (x>0)的图象上,过点A作AC⊥x轴,垂足是C,AC=OC.一次函数y=kx+b的图象经过点A,与y轴的正半轴交于点B.(1)求点A的坐标;(2)若四边形ABOC的面积是3,求一次函数y=kx+b的表达式.4、(2017兴化.中考模拟) 已知点A(1,2)、点 B在双曲线y= (x>0)上,过B作BC⊥x轴于点C,如图,P是y轴上一点,(1)求k的值及△PBC的面积;(2)设点M(x1,y1)、N(x2,y2)(x2>x1>0)是双曲线y= (x>0)上的任意两点,s= ,t= ,试判断s与t 的大小关系,并说明理由.5、(2018深圳.中考模拟) 如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.6、(2018河南.中考模拟) 如图,点P是反比例函数y= (k>0)图象在第一象限上的一个动点,过P作x轴的垂线,垂足为M,若△POM的面积为2.(1)求反比例函数的解析式;(2)若点B坐标为(0,﹣2),点A为直线y=x与反比例函数y= (k>0)图象在第一象限上的交点,连接AB,过A作AC⊥y 轴于点C,若△ABC与△POM相似,求点P的坐标.7、(2017黄冈.中考模拟) 如图,正方形OABC的面积为9,点O为坐标原点,点B在函数y= (k>0,x>0)的图象上点P(m,n)是函数图象上任意一点,过点P分别作x轴y轴的垂线,垂足分别为E,F.并设矩形OEPF和正方形OABC不重合的部分的面积为S.(1)求k的值;(2)当S= 时,求P点的坐标;(3)写出S关于m的关系式.8、(2017黄冈.中考模拟) 反比例函数y= 在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y= 的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数y= 的图象上,求t的值.9、(2020辽宁.中考模拟) 如图,已知∠AOB=90°,∠OAB=30°,反比例函数的图象过点,反比例函数的图象过点A.(1)求和的值.(2)过点B作BC∥x轴,与双曲线交于点C.求△OAC的面积.10、(2017湖北.中考真卷) 如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y= (k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y= 于另一点,求△OBC的面积.11、(2018株洲.中考真卷) 如图,已知函数的图象与一次函数的图象相交不同的点A、B,过点A作AD⊥轴于点D,连接AO,其中点A的横坐标为,△AOD的面积为2.(1)求的值及 =4时的值;(2)记表示为不超过的最大整数,例如:,,设 ,若,求值12、(2017常德.中考真卷) 如图,已知反比例函数y= 的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y= 的图象上,当﹣3≤x≤﹣1时,求函数值y的取值范围.13、(2018深圳.中考模拟) 如图,直线y=3x与双曲线y= (k≠0,且x>0)交于点A,点A的横坐标是1.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上一点,且点B的纵坐标是1,连接OB,AB,求△AOB的面积.14、(2018广州.中考真卷) 设P(x,0)是x轴上的一个动点,它与原点的距离为。

2024年九年级数学中考复习——反比例函数-动态几何问题(含答案)

2024年九年级数学中考复习——反比例函数-动态几何问题(含答案)

2024年九年级数学中考复习——反比例函数-动态几何问题1.如图,在矩形ABCD 中,已知点A (2,1),且AB =4,AD =3,把矩形ABCD 的内部及边上,横、纵坐标均为整数的点称为靓点,反比例函数y=(x >0)的图象为曲线L .(1)若曲线L 过AB 的中点.①求k 的值.②求该曲线L 下方(包括边界)的靓点坐标.(2)若分布在曲线L 上方与下方的靓点个数相同,求k 的取值范围.2.如图,在平面直角坐标系中,一次函数 与反比例函数 相交于点 ,与 轴相交于点 ,点 的横坐标为-2.(1)求 的值;(2)直接写出当 且 时, 的取值范围;(3)设点 是直线AB 上的一点,过点 作 轴,交反比例函数 的图象于点 .若以A ,O ,M ,N 为顶点的四边形为平行四边形,求点 的坐标.k x12y x =-+2(0)k y x x=<B x A B k 0x <12y y <x M M //MN x 2(0)k y x x=<N M3.如图,在平面直角坐标系中,OA ⊥OB ,AB ⊥x 轴于点C ,点A (,1)在反比例函数y = 的图象上.(1)求反比例函数y = 的表达式; (2)在x 轴上是否存在一点P ,使得S △AOP =S △AOB ,若存在,求所有符合条件点P 的坐标;若不存在,简述你的理由.4.如图,点 , 在 轴上,以 为边的正方形 在 轴上方,点 的坐标为 ,反比例函数 的图象经过 的中点 , 是 上的一个动点,将 沿 所在直线折叠得到 .(1)求反比例函数 的表达式; (2)若点 落在 轴上,求线段 的长及点 的坐标.k x k x12A B x AB ABCD x C (14),(0)k y k x=≠CD E F AD DEF EF GEF (0)k y k x=≠G y OG F5.如图,已知反比例函数y=(x >0)的图象经过点A (4,2),过A 作AC ⊥y 轴于点C .点B 为反比例函数图象上的一动点,过点B 作BD ⊥x 轴于点D ,连接AD .直线BC 与x 轴的负半轴交于点E .(1)求k 的值;(2)连接CD ,求△ACD 的面积;(3)若BD =3OC ,求四边形ACED 的面积.6.已知:如图1,点是反比例函数图象上的一点.(1)求的值和直线的解析式;(2)如图2,将反比例函数的图象绕原点逆时针旋转后,与轴交于点,求线段的长度;(3)如图3,将直线绕原点逆时针旋转,与反比例函数的图象交于点,求点的坐标.k x(4)A n ,8(0)y x x=>n OA 8(0)y x x =>O 45︒y M OM OA O 45︒8(0)y x x=>B B7.已知:反比例函数的图像过点A ( , ),B ( , )且 (1)求m 的值;(2)点C 在x 轴上,且 ,求C 点的坐标;(3)点Q 是第一象限内反比例函数图象上的动点,且在直线AB 的右侧,设直线QA ,QB 与y 轴分别交于点E 、D ,试判断DE 的长度是否变化,若变化请说明理由,若不变,请求出长度.8.规定:在平面直角坐标系中,横坐标与纵坐标均为整数的点,叫做整点,点,在反比例函数的图象上;(1)m= ;(2)已知,过点、D 点作直线交双曲线于E 点,连接OB ,若阴影区域(不包括边界)内有4个整点,求b 的取值范围.m y x =1x 121m --2x 45m-120x x +=16ABC s ∆=()22A ,()1B m ,()0k y x x=>0b >()40C b -,()0b ,()0k y x x=>9.已知,矩形OCBA 在平面直角坐标系中的位置如图所示,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,已知点B 坐标为(3,6),反比例函数的图象经过AB 的中点D ,且与BC 交于点E ,顺次连接O ,D ,E .(1)求m 的值及点E 的坐标;(2)点M 为y 轴正半轴上一点,若△MBO 的面积等于△ODE 的面积,求点M 的坐标;(3)平面直角坐标系中是否存在一点N ,使得O ,D ,E ,N 四点顺次连接构成平行四边形?若存在,请直接写出N 的坐标;若不存在,请说明理由.10.如图,点P 为函数与函数图象的交点,点P 的纵坐标为4,轴,垂足为点B .(1)求m 的值;(2)点M 是函数图象上一动点,过点M 作于点D ,若,求点M的坐标.m y x=1y x =+()0m y x x=>PB x ⊥()0m y x x =>MD BP ⊥12tan PMD ∠=11.如图,在平面直角坐标系中,直线与轴、轴分别交于点、,与双曲线交于点,直线分别与直线和双曲线交于点、.(1)求和的值;(2)当点在线段上时,如果,求的值;(3)点是轴上一点,如果四边形是菱形,求点的坐标.12.如图,等边和等边的一边都在x 轴上,双曲线经过的中点C 和的中点D .已知等边的边长为4.(1)求k 的值;(2)求等边的边长;(3)将等边绕点A 任意旋转,得到等边,P 是的中点(如图2所示),连结,直接写出的最大值.xOy 34l y x b =+:x y A B x k H y =:922P ⎛⎫ ⎪⎝⎭,x m =H E D k b E AB ED BO =m C y BCDE C OAB AEF ()0k y k x=>OB AE OAB AEF AEF AE F '' E F ''BP BP13.如图,点A 、B 是反比例函数y = 的图象上的两个动点,过A 、B 分别作AC ⊥x 轴、BD ⊥x 轴,分别交反比例函数y =- 的图象于点C 、D ,四边形ACBD 是平行四边形. (1)若点A 的横坐标为-4.①直接写出线段AC 的长度;②求出点B 的坐标;(2)当点A 、B 不断运动时,下列关于□ACBD 的结论:①□ACBD 可能是矩形;②□ACBD 可能是菱形;③□ACBD 可能是正方形;④□ACBD 的周长始终不变;⑤□ACBD 的面积始终不变.其中所有正确结论的序号是 .8x2x14.在平面直角坐标系 中,正比例函数 与反比例函数 的图象相交于点 与点Q . (1)求点Q 的坐标;(2)若存在点 ,使得 ,求c 的值; (3)过点 平行于x 轴的直线,分别与第一象限内的正比例函数 、反比例函数数 的图象相交于点 、点 ,当 时,请直接写出a 的取值范围.15.在平面直角坐标系中,直线y=x+2与x 轴交于点A ,与y 轴交于点B ,并与反比例函数y=(k≠0)的图象在第一象限相交于点C ,且点B 是AC 的中点xOy ()1110y k x k =≠()2220k y k x=≠(11)P ,(0)C c ,2PQC S = (0)M a ,()1110y k x k =≠()2220k y k x =≠()11A x y ,()22B x y ,1252x x +≤kx(1)如图1,求反比例函数y=(k≠0)的解析式;(2)如图2,若矩形FEHG 的顶点E 在直线AB 上,顶点F 在点C 右侧的反比例函数y=(k≠0)图象上,顶点H ,G 在x 轴上,且EF=4.①求点F 的坐标;②若点M 是反比例函数的图象第一象限上的动点,且在点F 的左侧,连结MG ,并在MG 左侧作正方形GMNP .当顶点N 或顶点P 恰好落在直线AB 上,直接写出对应的点M 的横坐标.16.如图,动点P 在函数y (x >0)的图象上,过点P 分别作x 轴和y 轴的平行线,交函数y 的图象于点A 、B ,连接AB 、OA 、OB .设点P 横坐标为a .(1)直接写出点P 、A 、B 的坐标(用a 的代数式表示);(2)点P 在运动的过程中,△AOB 的面积是否为定值?若是,求出此定值;若不是,请说明理由;(3)在平面内有一点Q (,1),且点Q 始终在△PAB 的内部(不包含边),求a 的取值范围.k xk x 3x =1x =-1317.如图1,一次函数y =kx ﹣3(k≠0)的图象与y 轴交于点B ,与反比例函数y=(x >0)的图象交于点A (8,1).(1)求出一次函数与反比例函数的解析式;(2)点C 是线段AB 上一点(不与A ,B 重合),过点C 作y 轴的平行线与该反比例函数的图象交于点D ,连接OC ,OD ,AD ,当CD 等于6时,求点C 的坐标和△ACD 的面积;(3)在(2)的前提下,将△OCD 沿射线BA 方向平移一定的距离后,得到△O'CD',若点O 的对应点O'恰好落在该反比例函数图象上(如图2),求出点O',D'的坐标.18.如图1所示,已知 图象上一点 轴于点 ,点 ,动点 是 轴正半轴点 上方的点,动点 在射线AP 上,过点 作AB 的垂线,交射线AP 于点 ,交直线MN 于点 ,连结AQ ,取AQ 的中点 . m x6(0)y x x=>P PA x ⊥,(0)A a ,(0)(0)B b b >,M y B N B D Q C(1)如图2,连结BP ,求 的面积;(2)当点 在线段BD 上时,若四边形BQNC 是菱形,面积为 .①求此时点Q ,P 的坐标;②此时在y 轴上找到一点E ,求使|EQ-EP|最大时的点E 的坐标.19.已知反比例函数y=的图象经过点A (6,1).(1)求该反比例函数的表达式;(2)如图,在反比例函数y=在第一象限的图象上点A 的左侧取点C ,过点A 作x 轴的垂线交x 轴于点H ,过点C 作y 轴的垂线CE ,垂足为点E ,交直线AH 于点D .①过点A 、点C 分别作y 轴、x 轴的垂线,两条垂线相交于点B ,求证:O 、B 、D 三点共线;②若AC=2CO ,求证:∠OCE=3∠CDO .PAB Q k xk x20.如图,一次函数与反比例函数的图象交于点和,与y 轴交于点C .(1) , ;(2)过点A 作轴于点D ,点P 是反比例函数在第一象限的图象上一点,设直线与线段交于点E ,当时,求点P 的坐标.(3)点M 是坐标轴上的一个动点,点N 是平面内的任意一点,当四边形是矩形时,求出点M 的坐标.21.如图1,将函数的图象T 1向左平移4个单位得到函数的图象T 2,T 2与y 轴交于点.(1)若,求k 的值(2)如图2,B 为x 轴正半轴上一点,以AB 为边,向上作正方形ABCD ,若D 、C 恰好落在T 1上,线段BC 与T 2相交于点E①求正方形ABCD 的面积;②直接写出点E 的坐标.114y k x =+22k y x=()2A m ,()62B --,1k =2k =AD x ⊥OP AD Δ41ODE ODAC S S =四边形::ABMN ()0k y x x =>()44k y x x =>-+()0A a ,3a =22.如图1,直线的图像与x 轴、y 轴分别交于A 、B 两点,点D 是线段AB 上一点,过D 点分别作OA 、OB 的垂线,垂足分别是C 、E ,矩形OCDE 的面积为4,且.(1)求D 点坐标;(2)将矩形OCDE 以1个单位/秒的速度向右平移,平移后记为矩形MNPQ ,记平移时间为t 秒.①如图2,当矩形MNPQ 的面积被直线AB 平分时,求t 的值;②如图3,当矩形MNPQ 的边与反比例函数的图像有两个交点,记为T 、K ,若直线TK 把矩形面积分成1:7两部分,请直接写出t 的值.23.如图1,在平面直角坐标系中,点,点,直线与反比例函数的图象在第一象限相交于点,26y x =-+CD DE >12y x=()40A -,()04B ,AB ()0k y k x=≠()6C a ,(1)求反比例函数的解析式;(2)如图2,点是反比例函数图象上一点,连接,试问在x 轴上是否存在一点D ,使的面积与的面积相等,若存在,请求点D 的坐标;若不存在,请说明理由;(3)新定义:如图3,在平面内,如果三角形的一边等于另一边的3倍,这两条边中较长的边称为“麒麟边”,两条边所夹的角称为“麒麟角”,则称该三角形为“麒麟三角形”,如图所示,在平面直角坐标系中,为“麒麟三角形”, 为“麒麟边”, 为“麒麟角”,其中A ,B 两点在反比例函数 图象上,且A 点横坐标为,点C 坐标为,当为直角三角形时,求n 的值.24.如图1,已知点A (a ,0),B (0,b ),且a 、b 满足 +(a +b +3)2=0,平等四边形ABCD的边AD 与y 轴交于点E ,且E 为AD 中点,双曲线y =经过C 、D 两点. (1)a = ,b = ;(2)求D 点的坐标;(3)点P 在双曲线y = 上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,试求满足要求的所有点Q 的坐标;(4)以线段AB 为对角线作正方形AFBH (如图3),点T 是边AF 上一动点,M 是HT 的中点,MN ⊥HT ,交AB 于N ,当T 在AF 上运动时, 的值是否发生改变?若改变,求出其变化范围;若()6E m ,()0k y k x=≠CE AE ,ACD ACE ABC AB BAC ∠n y x=1-()02,ABC k x k xMN HT不改变,请求出其值,并给出你的证明.25.在平面直角坐标系中,已知点,点.(1)若将沿轴向右平移个单位,此时点恰好落在反比例函数的图象上,求的值;(2)若绕点按逆时针方向旋转度.①当时,点恰好落在反比例函数图象上,求的值;②问点能否同时落在(1)中的反比例函数的图象上?若能,直接写出的值;若不能,请说明理由.26.如图,已知直线与双曲线交第一象限于点.(1)求点的坐标和反比例函数的解析式;(2)将点绕点逆时针旋转至点,求直线的函数解析式;(3)在(2)的条件下,若点C 是射线上的一个动点,过点作轴的平行线,交双曲线xOy ()A -()60B -,OAB x m A y =m OAB O α()0α180<<α30= B k y x=k A B ,α2y x =(0)k y k x=≠(4)A m ,A O A 90︒B OB OB C y的图像于点,交轴于点,且,求点的坐标.27.如图,一次函数的图象与反比例函数的图象交于点,与y 轴交于点B .(1)求a ,k 的值;(2)直线CD 过点A ,与反比例函数图象交于点C ,与x 轴交于点D ,AC =AD ,连接CB .①求△ABC 的面积;②点P 在反比例函数的图象上,点Q 在x 轴上,若以点A ,B ,P ,Q 为顶点的四边形是平行四边形,请求出所有符合条件的点P 坐标.28.如图1,反比例函数与一次函数的图象交于两点,已知.(1)求反比例函数和一次函数的表达式;(2)一次函数的图象与轴交于点,点(未在图中画出)是反比例函数图象上的一个动点,若,求点的坐标:(0)k y k x=≠D x E 23DCO DEO S S = ::C 112y x =+()0k y x x =>()3A a ,k y x=y x b =+A B ,()23B ,y x b =+x C D 3OCD S = D(3)若点是坐标轴上一点,点是平面内一点,是否存在点,使得四边形是矩形?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.29.如图,已知直线y=-2x 与双曲线y=(k<0)上交于A 、B 两点,且点A 的纵坐标为-2 (1)求k 的值;(2)若双曲线y= (k<0)上一点C 的纵坐标为 ,求△BOC 的面积;(3)若A 、B 、P 、Q 为顶点组成的四边形为正方形,直接写出过点P 的反比例函数解析式。

中考专题复习 反比例函数与几何的综合应用 (共29张PPT)

中考专题复习 反比例函数与几何的综合应用 (共29张PPT)
∵四边形OABC是矩形,
∴DA= AC,DB= OB,AC=OB.
1 ∴DA=DB. 2
∴四边形AEBD是菱形.
1 2
(2)解:连接DE,交AB于F.
∵四边形AEBD是菱形,
∴DE⊥AB,DF=EF= DE,
AF= AB=1.
1 ⊥AB,∴OA∥DE. 又∵OA 2 OB, ∵AE∥
∴四边形OAED为平行四边形.
1 2
∴OA=DE=3.
9 . ,1 设所求反比例函数解析式为 2 2 y= k ,
∴DF=EF= 3 .∴E 把点E
9 解得k= ,1 . 2 ∴所求反比例函数解析式为 y= 9 2 4.5
x
的坐标代入,得1= x
k 9 2

.
返回
类型3 反比例函数与菱形的综合
8
4
4
返回
类型2 反比例函数与矩形的综合 3. (中考 · 烟台 )如图,矩形 OABC的顶点 A, C的坐标分别
是(4,0)和(0,2),反比例函数y= k (x>0)的图象过对角 线的交点 P 并且与 AB , BC 分别交于 x D , E 两点,连接 OD,OE,DE,则△ODE的面积为________.
8 x
(2)如图②,将图①中的双曲线y=
8 (x>0)沿y轴折叠得到 x 绕点O旋转,点A刚好 双曲线y=- 8 (x<0),将线段OA 落在双曲线y=- (x<0)上的点D(d,n)处,求m和n的 x 8 数量关系. x
解:(1)当a=-2时,A(-2,m).
8 ,得m= 8 =-4, ∴A(-2,-4),B(-2, 2 x 0).
8 m ,m
8 x

反比例函数的图象与性质综合问题(真题6道+模拟30道)-中考数学重难题型押题培优导练案【原卷版】

反比例函数的图象与性质综合问题(真题6道+模拟30道)-中考数学重难题型押题培优导练案【原卷版】

专题12反比例函数的图象与性质综合问题(北京真题6道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率反比例函数(大题)2011.2012.2014.2017.2018 12年5考1.反比例函数的图象及性质(1)双曲线kyx=与坐标轴没有交点,当k>0时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(2)对称性图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在双曲线的另一支上.图象关于直线y=±x对称,即若(a,b)在双曲线的一支上,则(b,a)和(-b,-a)在双曲线的另一支上.(3)k的几何意义如图1,设点P(a,b)是双曲线kyx=上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是12|k|).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|.图1 图22.反比例函数的应用(1)利用反比例函数解决实际问题①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.(2)跨学科的反比例函数应用题要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.(3)反比例函数中的图表信息题正确的认识图象,找到关键的点,运用好数形结合的思想.(4)数形结合类综合题利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.【典例剖析】典例精讲,方法提炼,精准提分(x>0)的图象与直线y=x−2【例1】(2017·北京·中考真题)如图,在平面直角坐标系xOy中,函数y=kx交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,(x>0)的图象于点N.交函数y=kx①当n=1时,判断线段PM与PN的数量关系,并说明理由;①若PN≥PM,结合函数的图象,直接写出n的取值范围.【例2】(2018·北京·中考真题)在平面直角坐标系xOy中,函数y=k(x>0)的图象G经过点A(4,1),xx+b与图象G交于点B,与y轴交于点C.直线l∶y=14(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=−1时,直接写出区域W内的整点个数;①若区域W内恰有4个整点,结合函数图象,求b的取值范围.【真题再现】必刷真题,关注素养,把握核心1.(2011·北京·中考真题)如图,已知反比例函数y1=k1x(k1>0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC①x轴于点C. 若①OAC的面积为1,且tan①AOC=2 .(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值.2.(2012·北京·中考真题)如图,在平面直角坐标系xoy中,函数y=4x(x>0)的图象与一次函数y=kx-k 的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,若P是x轴上一点,且满足①PAB的面积是4,直接写出点P的坐标.3.(2011·北京·中考真题)如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=kx的图象的一个交点为A(﹣1,n).(1)求反比例函数y=k的解析式;x(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.4.(2014·北京·中考真题)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(x>0)和y=x+1(−4<x≤2)是不是有界函数?若是有界函数,求其边界值;(1)分别判断函数y=1x(2)若函数y=−x+1(a⩽x⩽b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么≤t≤1范围时,满足34【模拟精练】押题必刷,巅峰冲刺,提分培优1.(2022·北京市广渠门中学模拟预测)在平面直角坐标系xOy中,一次函数y=k(x−1)+4(k>0)的图象与反比(m≠0)的图象的一个交点的横坐标为1.例函数y=mx(1)求这个反比例函数的解析式;(2)当x<−4时,对于x的每一个值,反比例函数y=m的值大于一次函数y=k(x−1)+4(k>0)的值,直接x写出k的取值范围.2.(2022·北京西城·二模)在平面直角坐标系xOy中,一次函数y=−x+b的图象与x轴交于点(4,0),且与反比例函数y=m的图象在第四象限的交点为(n,−1).x(1)求b,m的值;<y p<4,连接OP,结合函数图象,直(2)点P(x p,y p)是一次函数y=−x+b图象上的一个动点,且满足m xp接写出OP长的取值范围.(k≠0)与一次函数y2=ax+4(a≠0) 3.(2022·北京·二模)图,在平面直角坐标系xOy中,反比例函数y1=kx的图像只有一个公共点A(2,2),直线y3=mx(m≠0)也过点A.(1)求k、a及m的值;(2)结合图像,写出y1>y2>y3时x的取值范围.(k≠0)经过点A(2,−1),直线l:4.(2022·北京东城·二模)如图,在平面直角坐标系xOy中,双曲线y=kxy=−2x+b经过点B(2,−2).(1)求k,b的值;(k≠0)交于点C,与直线l交于点D.(2)过点P(n,0)(n>0)作垂直于x轴的直线,与双曲线y=kx①当n=2时,判断CD与CP的数量关系;①当CD≤CP时,结合图象,直接写出n的取值范围.(x>0)的图象交5.(2022·北京顺义·二模)在平面直角坐标系xOy中,直线l:y=kx−k+4与函数y=mx于点A(1,4).(1)求m的值;(x>0)的图象所围成的区域(不含边界)为W.点(2)横、纵坐标都是整数的点叫做整点.记直线l与函数y=mxB(n,1)(n≥4,n为整数)在直线l上.①当n=5时,求k的值,并写出区域W内的整点个数;①当区域W内恰有5个整点时,直接写出n和k的值.6.(2022·北京市十一学校模拟预测)在平面直角坐标系xOy中,直线l1:y=−x+b与双曲线G:y=−12的x一个交点为A(−3,n).(1)求n和b的值;(2)若直线l2:y=kx(k≠0)与双曲线G:y=−12有两个公共点,它们的横坐标分别为x1,x2(x1<x2).直线xl1与直线l2的交点横坐标记为x3,若x1<x3<x2,请结合函数图象,求k的取值范围.7.(2022·北京海淀·二模)在平面直角坐标系xOy中,一次函数y=k(x−1)+6(k>0)的图象与反比例函数y=mx(m≠0)的图象的一个交点的横坐标为1.(1)求这个反比例函数的解析式;(2)当x<﹣3时,对于x的每一个值,反比例函数y=mx的值大于一次函数y=k(x−1)+6(k>0)的值,直接写出k的取值范围.8.(2022·北京东城·一模)在平面直角坐标系xOy中,一次函数y=x−2的图象与x轴交于点A,与反比例函数y=kx (k≠0)的图象交于点B(3,m),点P为反比例函数y=kx(k≠0)的图象上一点.(1)求m,k的值;(2)连接OP,AP.当S△OAP=2时,求点P的坐标.9.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函数y=mx.(1)当函数y=mx的图象经过点Q时,求m的值并画出直线y=-x-m.(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.10.(2022·北京师大附中模拟预测)如图,一次函数y=-2x-2的图象分别交x轴、y轴于点B、A,与反比例函数y=mx(m≠0)的图象在第二象限交于点M,①OBM的面积是1.(1)求反比例函数的解析式;(2)若x轴上的点P与点A,M是以AM为直角边的直角三角形的三个顶点,求点P的坐标.11.(2022·北京·东直门中学模拟预测)如图,在平面直角坐标系xOy中,点A(1,4),B(3,m).(1)如果点A,B均在反比例函数y1=k的图象上,求m的值;x(2)如果点A,B均在一次函数y2=ax+b的图象上,①当m=2时,求该一次函数的表达式;①当x≥3时,如果不等式mx−1>ax+b始终成立,结合函数图象,直接写出m的取值范围.(k≠0)的两个交点分别为12.(2022·北京一七一中一模)在平面直角坐标系xOy中,直线l与双曲线y=kxA(−3,−1),B(1,m).(1)求k和m的值;(2)求直线l的解析式;(k≠0)于点Q.当点Q位于点P的左侧时,(3)点P为直线l上的动点,过点P作平行于x轴的直线,交双曲线y=kx求点P的纵坐标n的取值范围.13.(2022·北京市第一六一中学分校一模)如图,在平面直角坐标系中,A(a,2)是直线l:y=x−1与函数(x>0)的图像G的交点.y=kx(1)①求a的值;(x>0)的解析式.①求函数y=kx(2)过点P(n,0)(n>0)且垂直于x轴的直线与直线l和图像G的交点分别为M,N,当S△OPM>S△OPN时,直接写出n的取值范围.(k>0)的图象交于A,B 14.(2022·北京通州·一模)已知一次函数y1=2x+m的图象与反比例函数y2=kx两点.(1)当点A的坐标为(2,1)时.①求m,k的值;①当x>2时,y1______y2(填“>”“=”或“<”).(2)将一次函数y1=2x+m的图象沿y轴向下平移4个单位长度后,使得点A,B关于原点对称,求m的值15.(2022·北京十一学校一分校一模)在平面直角坐标系xOy中,函数y=k的图象与直线y=mx交于点Ax(2,2).(1)求k,m的值;(2)点P的横坐标为n,且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交函数y=k(xx>0)的图象于点N.①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;①若0<PN≤3PM,结合函数的图象,直接写出n的取值范围.16.(2022·北京·模拟预测)如图,在平面直角坐标系xOy中,直线l:y=x﹣1的图象与反比例函数y=k(xx>0)的图象交于点A(3,m).(1)求m、k的值;(2)点P(xp,0)是x轴上的一点,过点P作x轴的垂线,交直线l于点M,交反比例函数y=k(x>0)的x(x>0)的图象在点A,N之间的部分与线段AM,图象于点N.横、纵坐标都是整数的点叫做整点.记y=kxMN围成的区域(不含边界)为W.①当xp=5时,直接写出区域W内的整点的坐标为_____;①若区域W内恰有6个整点,结合函数图象,求出xp的取值范围.−3的图象与性质.小17.(2022·北京·中国人民大学附属中学分校一模)有这样一个问题:探究函数y=2x−1−3的图象与性质进行了探究.下面是小亮的探究过程,请补充完亮根据学习函数的经验,对函数y=2x−1整:(1)函数y=2x−1−3中自变量x的取值范围是;(2)表格是y与x的几组对应值.x…−3−2−1012322345…y…−72−113−4−5−7m−1−2−73−52…直接写出m的值;(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)根据画出的函数图象,发现下列特征:①该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线越来越靠近而永不相交.①请再写出此函数的一条性质:.(5)已知不等式kx+b<2x−1−3的解集为1<x<2或x>4,则k+b的值为.18.(2020·北京·模拟预测)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,4),双曲线y=kx(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是边OC上一点,当△FBC~△DEB时,求直线FB的解析式.19.(2022·北京四中模拟预测)在平面直角坐标系xOy中,直线l1:y=x+b与双曲线G:y=2x的一个交点为A(2,n).(1)求n和b的值;(2)若直线l2:y=kx(k≠0)与双曲线G:y=2x有两个公共点,它们的横坐标分别为x1,x2(x1<x2),直线l1与直线l2的交点横坐标为x3,若x1<x3<x2,请结合函数图象,求k的取值范围.20.(2022·北京朝阳·模拟预测)已知:一次函数y1=x﹣2﹣k与反比例函数y2=−2k(k≠0).x(1)当k=1时,①求出两个函数图象的交点坐标;①根据图象回答:x取何值时,y1<y2;(2)请说明:当k取任何不为0的值时,两个函数图象总有交点;(3)若两个函数图象有两个不同的交点A、B,且AB=5√2,求k值.21.(2022·北京·北理工附中模拟预测)在平面直角坐标系xOy中已知双曲线y=k过点A(1,1),与直线yx=4x交于B,C两点(点B的横坐标小于点C的横坐标).(1)求k的值;(2)求点B,C的坐标;(3)若直线x=t与双曲线y=k,交于点D(t,y1),与直线y=4x交于点E(t,y2).当y1<y2时,直接写出tx的取值范围.22.(2022·北京朝阳·模拟预测)如图,一次函数y=kx+b的图象交反比例函数y=m的图象于A(2,−4),xB(a,−1)两点.(1)求反比例函数与一次函数解析式.(2)连接OA,OB,求ΔOAB的面积.(3)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?23.(2022·北京·二模)一次函数y=kx+b(k≠0)的图像与反比例函数y=m的图象相交于A(2,3),B(6,n)x两点(1)求一次函数的解析式(2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与反比例函数的图象相交于点P,Q,求PQ的值MN24.(2022·北京·模拟预测)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)经过点A(0,-1)和点B(3,2).(1)求直线y=kx+b(k≠0)的表达式;(m≠0).(2)已知双曲线y=mx(m≠0)经过点B时,求m的值;①当双曲线y=mx①若当x>3时,总有kx+b>m直接写出m的取值范围.x(x>0)的图象上.25.(2021·北京·二模)如图,A、B两点在函数y=mx(1)求m的值及直线AB的解析式;(x>0)的图象(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出函数y=mx与直线AB围出的封闭图形中(不包括边界)所含格点的坐标.26.(2021·北京朝阳·二模)在平面直角坐标系xOy中,过点A(2,2)作x轴,y轴的垂线,与反比例函数y=k(k<4)的图象分别交于点B,C,直线AB与x轴相交于点D.x(1)当k=−4时,求线段AC,BD的长;(2)当AC<2BD时,直接写出k的取值范围.27.(2021·北京顺义·二模)在平面直角坐标系xOy中,反比例函数y=m与一次函数y=kx+b相交于A(3,x2)、B(-2,n)两点.(1)求反比例函数和一次函数的表达式;交于点C,与一次函数y=kx+b交于(2)过P(p,0)(P≠0)作垂直于x轴的直线,与反比例函数y=mx点D,若SΔCOP=3SΔDOP,直接写出p的值.28.(2021·北京门头沟·二模)在平面直角坐标系xOy中,反比例函数y=k的图象过点P(2 , 2 ).x(1)求k的值;(x > 0)的图象交于点N,过点M作x轴(2)一次函数y=x+a与y轴相交于点M,与反比例函数y=kx≤S△MNQ≤2时,通过画图,直接写出a的取的平行线,过点N作y轴的平行线,两平行线相交于点Q,当12值范围.(m≠0)的29.(2021·北京丰台·二模)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与反比例函数y=mx图象交于点A(−1,n),B(2,−1)两点.(1)求m,n的值;(m≠0)(2)已知点P(a,0)(a>0),过点P作x轴的垂线,分别交直线y=kx+b(k≠0)和反比例函数y=mx的图象于点M,N,若线段MN的长随a的增大而增大,直接写出a的取值范围.(x>0)的30.(2021·北京西城·二模)在平面直角坐标系xOy中,直线l:y=kx−k+2(k>0),函数y=2kx图象为F.(x>0)的图象F上,求直线l对应的函数解析式:(1)若A(2,1)在函数y=2kx(2)横、纵坐标都是整数的点叫做整点.记直线l:y=kx−k+2(k>0),图象F和直线y=1围成的区域2(不含边界)为图形G.①在(1)的条件下,写出图形G内的整点的坐标;①若图形G内有三个整点,直接写出k的取值范围.。

反比例函数与几何综合

反比例函数与几何综合(一)反比例函数与一次函数、几何图形综合题类型一 反比例函数与一次函数综合 1. 已知反比例函数y =kx的图象过点A (3,1).(1)求反比例函数的解析式;(2) 若一次函数y =ax +6(a ≠0)的图象与反比例函数的图象只有一个交点,求一次函数的解析式.2. 如图,直线y =2x +4与反比例函数y =kx 的图象相交于A (-3,a )和B 两点.(1)求k 的值;(2)直线y =m (m >0)与直线AB 相交于点M ,与反比例函数y =kx的图象相交于点N .若MN =4,求m 的值.第2题图3. 如图,已知A (-4,n ),B (2,-4)是一次函数y =kx +b 和反比例函数y =mx 的图象的两个交点.(1)求一次函数和反比例函数的解析式; (2)求△AOB 的面积;(3)观察图象,直接写出方程kx +b -mx=0的解.第3题图4. 如图,已知直线y =kx 与双曲线y =4x (x >0)相交于点A (2,m ),将直线y =kx 向下平移2个单位长度后与y 轴相交于点B ,与双曲线交于点C ,连接AB 、AC .第4题图(1)求直线BC 的函数表达式; (2)求△ABC 的面积.类型二 反比例函数与几何图形综合5. 如图,已知,A (0,4),B (-3,0),C (2,0),D 为B 点关于AC 的对称点,反比例函数y =kx 的图象经过D 点.(1)证明四边形ABCD 为菱形; (2)求此反比例函数的解析式;(3)已知在y =kx的图象(x >0)上有一点N ,y 轴正半轴上有一点M ,且四边形ABMN 是平行四边形,求M 点的坐标.第5题图6. 如图,在平面直角坐标系中,Rt △AOB 的斜边OA 在x 轴的正半轴上,∠OBA =90°,且tan ∠AOB =12,OB =25,反比例函数y =kx的图象经过点B .(1)求反比例函数的表达式;(2)若△AMB 与△AOB 关于直线AB 对称,一次函数y =mx +n 的图象过点M 、A ,求一次函数的表达式.第6题图类型三 反比例函数与一次函数、几何图形综合7. 如图,双曲线y =kx (x >0)经过△OAB 的顶点A 和OB 的中点C ,AB ∥x 轴,点A 的坐标为(4,6),连接AC 交x 轴于D ,连接BD . (1)确定k 的值;(2)求直线AC 的解析式;(3)判断四边形OABD 的形状,并说明理由; (4)求△OAC 的面积.第7题图8. 如图,直线y =-x +b 与反比例函数y =kx 的图象相交于A (1,4),B 两点,延长AO 交反比例函数图象于点C ,连接OB .(1)求k 和b 的值;(2)直接写出一次函数值小于反比例函数值的自变量x 的取值范围;(3)在y 轴上是否存在一点P ,使S △PAC =25S △AOB ?若存在,请求出点P 坐标;若不存在,请说明理由.第8题图。

2024河南中考数学微专题复习 反比例函数综合题 课件

[答案] ∵ ▱ 的对称中心是原点 ,点 的坐标为 −, − ,
∴ , .
(2)当点 是边 的中点时,求对应的反比例函数的表达式;
[答案] ∵ , , , ,点 是边 的中点,
∴ , .
∵ 点 在反比例函数 =


[答案] ∵ 反比例函数 = < 的图象过点 −, ,


∴ = , ∴ = × − = − ,

∴ 反比例函数的表达式为 =

− .

把 −, 代入 = − + ,得 = − × − + ,
解得 = ,
∴ 一次函数的表达式为 = − + .




∵ − = − + = − , < ,



∴ − > ,即 > .
=

− .

(2)结合以上信息,从条件①、条件②这两个条件中选择一个作为已知,
求 的值.
条件①:四边形 的面积为2.
条件②: = 2 .
[答案] 选择条件①四边形 的面积为2,求解如下:

− + = ,
=− ,

得ቊ
解得 ቐ
+ = −,
= ,
∴ 一次函数的表达式为 =



+ .
(2)求 △ 的面积;
[答案] 把 = 代入 =



∴ 点 的坐标为 , ,
∴ = ,
∴ △ = △ + △

中考数学考点12反比例函数的图像与性质及实际应用总复习(原卷版)

反比例函数的图像与性质及实际应用【命题趋势】在中考中.反比例函数的图像与性质常以选择题和填空形式考查;反比例函数解析式主要在反比例函数综合题中与一次函数、几何图形结合考查。

【中考考查重点】一、结合具体情境体会反比例函数的意义.能根据已知条件确定反比例函数的表达式;二、能画出反比例函数的图像.根据图像和表达式探索并理解k>0和k<0时.图像的变化情况;三、结合具体情境体会反比例函数的意义四、能用反比例函数解决简单实际问题考点一:反比例函数的概念一般地.形如.叫做反比例函数.自变量x的取值概念范围是≠0的一切实数【提分要点】反比例函数图像上的点的横纵坐标之积是定值k1.(2021秋•南召县期末)下列函数是y关于x的反比例函数的是()A.y=B.y=C.y=﹣D.y=﹣2.(2021•门头沟区一模)在物理实验室实验中.为了研究杠杆的平衡条件.设计了如下实验.如图.铁架台左侧钩码的个数与位置都不变.在保证杠杆水平平衡的条件下.右侧采取变动钩码数量即改变力F.或调整钩码位置即改变力臂L.确保杠杆水平平衡.则力F与力臂L满足的函数关系是()A.正比例函数关系B.反比例函数关系C.一次函数关系D.二次函数关系3.(2021秋•越秀区校级期末)函数y=(m﹣1)x|m|﹣2是反比例函数.则m的值为.考点二:反比例函数的图像与性质概念kk >0k <0图像所在象限一、三二、四增减性 在每个象限内.y 随x 的增大而减少在每个象限内.y 随x 的增大而增大图像特征图像无限接近于坐标轴.但不与坐标轴相交;关于直线y=±x 成轴对称;关于原点成中心对称4.(2021秋•南开区期末)若反比例函数y =的图象在其所在的每一象限内.y 随x的增大而减小.则k 的取值范围是( ) A .k <﹣2B .k >﹣2C .k <2D .k >25.(2021秋•揭阳期末)点(x 1.y 1)、(x 2.y 2)、(x 3.y 3)在反比例函数y =﹣的图象上.且x 1<0<x 2<x 3.则有( ) A .y 1<y 2<y 3B .y 2<y 3<y 1C .y 1<y 3<y 2D .y 3<y 2<y 16.(2020秋•浦东新区校级期末)已知函数y =kx .y 随x 的增大而减小.另有函数.两个函数在同一平面直角坐标系内的大致图象可能是( )A .B .C .D .7.(2020秋•孝义市期末)近视眼镜的度数y (度)与镜片焦距x (米)之间具有如图所示的反比例函数关系.若要配制一副度数小于400度的近视眼镜.则镜片焦距x 的取值范围是( )A .0米<x <0.25米B .x >0.25米C .0米<x <0.2米D .x >0.2米考点三:反比例函数系数k 的几何意义8.(2021秋•铁西区期末)如图.A 是反比例函数y =的图象上一点.过点A 作AB ⊥y 轴于点B .点C 在x 轴上.且S △ABC =2.则k 的值为( )K 的几何意义在反比例函数上任取一点P(x.y),过这个点分别作x 轴.y 轴的垂线PM 、PN.于坐标轴围成的矩形PMON 的面积S=PM ·PN===k基本图形面积基本图形面积A .4B .﹣4C .﹣2D .29.(2021•铜仁市)如图.矩形ABOC 的顶点A 在反比例函数y =的图象上.矩形ABOC 的面积为3.则k= .考点四:反比例函数解析式的确定10.2021秋•房山区期末)若反比例函数的图象经过点(3.﹣2).则该反比例函数的表达式为( ) A .y = B .y =﹣C .y =D .y =﹣11.(2021秋•泰山区期中)如果等腰三角形的面积为6.底边长为x .底边上的高为y .则y 与x 的函数关系式为( ) A .y =B .y =C .y =D .y =12.(2021•江西模拟)小明学习了物理中的杠杆平衡原理发现:阻力×阻力臂=动力待定系数法 1. 设所求反比例函数解析式为:2. 找出反比例函数图像上一点P (a,b ).并将其代入解析式得k=ab ;3. 确定反比例函数解析式利用k 得几何意义 题中已知面积时.考虑利用k 得几何意义.由面积得.再综合图像所在象限判段k 得正负.从而得出k 的值.代入解析式即可×动力臂.现已知某一杠杆的阻力和阻力臂分别为2400N和1m.则动力F(单位:N)关于动力臂l(单位:m)的函数图象大致是()A.B.C.D.1.(2021秋•隆回县期中)下面的函数是反比例函数的是()A.y=B.y=C.y=D.y=2.(2021秋•大东区期末)如果反比例函数的图象经过点P(﹣3.﹣1).那么这个反比例函数的表达式为()A.y=B.y=﹣C.y=x D.y=﹣x 3.(2021春•海淀区校级月考)某物体对地面的压力为定值.物体对地面的压强p(Pa)与受力面积S(m2)之间的函数关系如图所示.这一函数表达式为()A.B.C.D.4.(2020秋•瓜州县期末)如图.在某温度不变的条件下.通过一次又一次地对气缸顶部的活塞加压.测出每一次加压后气缸内气体的体积V(mL)与气体对气缸壁产生的压强p(kPa)的关系可以用如图所示的反比例函数图象进行表示.下列说法错误的是()A.气压p与体积V表达式为p=.则k>0B.当气压p=70时.体积V的取值范围为70<V<80C.当体积V变为原来的时.对应的气压p变为原来的D.当60≤V≤100时.气压p随着体积V的增大而减小5.(2020秋•东莞市校级期末)已知点(3.y1).(﹣2.y2).(2.y3)都在反比例函数的图象上.那么y1.y2与y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y1<y3<y2 6.(2021秋•西湖区期中)已知y1和y2均是以x为自变量的函数.当x=m时.函数值分别是M1和M2.若存在实数m.使得M1+M2=1.则称函数y1和y2具有性质P.以下函数y1和y2不具有性质P的是()A.y1=x2+2x和y2=﹣x﹣1B.y1=x2+2x和y2=﹣x+1C.y1=﹣和y2=﹣x﹣1D.y1=﹣和y2=﹣x+17.(2021秋•会宁县期末)如图.A.B是反比例函数的图象上关于原点对称的两点.BC ∥x轴.AC∥y轴.若△ABC的面积为6.则k的值是.8.(2021春•沙坪坝区校级期末)已知函数y=(m﹣1)是反比例函数.则m的值为.1.(2018•柳州)已知反比例函数的解析式为y=.则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2 2.(2020•上海)已知反比例函数的图象经过点(2.﹣4).那么这个反比例函数的解析式是()A.y=B.y=﹣C.y=D.y=﹣3.(2021•黔西南州)对于反比例函数y=.下列说法错误的是()A.图象经过点(1.﹣5)B.图象位于第二、第四象限C.当x<0时.y随x的增大而减小D.当x>0时.y随x的增大而增大4.(2021•济南)反比例函数y=(k≠0)图象的两个分支分别位于第一、三象限.则一次函数y=kx﹣k的图象大致是()A.B.C.D.5.(2021•宜昌)某气球内充满了一定质量m的气体.当温度不变时.气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=.能够反映两个变量p和V函数关系的图象是()A.B.C.D.6.(2021•沈阳)如图.平面直角坐标系中.O是坐标原点.点A是反比例函数y=(k≠0)图象上的一点.过点A分别作AM⊥x轴于点M.AN⊥y轴于点N.若四边形AMON 的面积为12.则k的值是.7.(2021•阜新)已知点A(x1.y1).B(x2.y2)都在反比例函数y=﹣的图象上.且x1<0<x2.则y1.y2的关系一定成立的是()A.y1>y2B.y1<y2C.y1+y2=0D.y1﹣y2=0 8.(2020•大庆)已知正比例函数y=k1x和反比例函数y=.在同一平面直角坐标系下的图象如图所示.其中符合k1•k2>0的是()A.①②B.①④C.②③D.③④9.(2021•自贡)已知蓄电池的电压为定值.使用蓄电池时.电流I(单位:A)与电阻R (单位:Ω)是反比例函数关系.它的图象如图所示.下列说法正确的是()A.函数解析式为I=B.蓄电池的电压是18VC.当I≤10A时.R≥3.6ΩD.当R=6Ω时.I=4A10.(2020•河北)如图是8个台阶的示意图.每个台阶的高和宽分别是1和2.每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=(x<0)的图象为曲线L.(1)若L过点T1.则k=;(2)若L过点T4.则它必定还过另一点T m.则m=;(3)若曲线L使得T1~T8这些点分布在它的两侧.每侧各4个点.则k的整数值有个.1.(2021•抚顺模拟)下列函数中.y是x的反比例函数的是()A.B.C.D.2.(2021•卧龙区二模)已知反比例函数.在下列结论中.不正确的是()A.图象必经过点(﹣1.﹣2)B.图象在第一、三象限C.若x<﹣1.则y<﹣2D.点A(x1.y1).B(x2.y2)图象上的两点.且x1<0<x2.则y1<y23.(2021•富阳区二模)已知反比例函数y=.当﹣2<x<﹣1.则下列结论正确的是()A.﹣3<y<0B.﹣2<y<﹣1C.﹣10<y<﹣5D.y>﹣104.(2021•武陟县模拟)某气球内充满了一定质量的气体.当温度不变时.气球内气体的气压P(kpa)是气体体积V(m3)的反比例函数其图象如图所示.当气体体积为1m3时.气压为()kPa.A.150B.120C.96D.84 5.(2021•云岩区模拟)阿基米德说:“给我一个支点.我就能撬动整个地球”这句话精辟地阐明了一个重要的物理学知识﹣﹣杠杆原理.即“阻力×阻力臂=动力×动力臂”.若已知某一杠杆的阻力和阻力臂分别为1200N和0.5m.则这一杠杆的动力F和动力臂l之间的函数图象大致是()A.B.C.D.6.(2021•昆明模拟)如图.点P在双曲线第一象限的图象上.P A⊥x轴于点A.则△OP A的面积为()A .2B .3C .4D .67.(2021•乐陵市一模)为预防新冠病毒.某学校每周末用药熏消毒法对教室进行消毒.已知药物释放过程中.教室内每立方米空气中含药量y (mg )与时间t (h )成正比例;药物释放完毕后.y 与t 成反比例.如图所示.根据图象信息.下列选项错误的是( )A .药物释放过程需要小时B .药物释放过程中.y 与t 的函数表达式是y =tC .空气中含药量大于等于0.5mg /m 3的时间为hD .若当空气中含药量降低到0.25mg /m 3以下时对身体无害.那么从消毒开始.至少需要经过4.5小时学生才能进入教室8.(2021•山西模拟)已知.A (﹣3.n ).C (3n ﹣6.2)是反比例函数y =(x <0)图象上的两点.则反比例函数的解析式为 .9.(2021•雁塔区校级模拟)已知同一象限内的两点A (3.n ).B (n ﹣4.n +3)均在反比例函数y =的图象上.则该反比例函数关系式为 .10.(2021•昭通模拟)若函数y =是关于x 的反比例函数.则a 满足的条件是 .。

中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)

中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)知识点总结1. 反比例函数的定义:形如()0≠=k xky 的函数叫做反比例函数。

有时也用k xy =或1−=kx y 表示。

2. 反比例函数的图像:反比例函数的图像是双曲线。

3. 反比例函数的性质与图像:反比例函数()0≠=k xky k 的符号0>k0<k所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y 随x 的增大而减小。

在一个支上(每一个象限内),y 随x 的增大而增大。

对称性图像关于原点对称练习题1.(2022•黔西南州)在平面直角坐标系中,反比例函数y =xk(k ≠0)的图像如图所示,则一次函数y =kx +2的图像经过的象限是( ) A .一、二、三 B .一、二、四C .一、三、四D .二、三、四【分析】先根据反比例函数的图像位于二,四象限,可得k <0,由一次函数y =kx +2中,k <0,2>0,可知它的图像经过的象限. 【解答】解:由图可知:k <0,∴一次函数y =kx +2的图像经过的象限是一、二、四. 故选:B .2.(2022•上海)已知反比例函数y =xk(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图像上的为( ) A .(2,3)B .(﹣2,3)C .(3,0)D .(﹣3,0)【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y =(k ≠0),且在各自象限内,y 随x 的增大而增大, 所以k <0,A .2×3=6>0,故本选项不符合题意;B .﹣2×3=﹣6<0,故本选项符合题意;C .3×0=0,故本选项不符合题意;D .﹣3×0=0,故本选项不符合题意; 故选:B .3.(2022•广东)点(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =x4图像上,则y 1,y 2,y 3,y 4中最小的是( ) A .y 1B .y 2C .y 3D .y 4【分析】根据k >0可知增减性:在每一象限内,y 随x 的增大而减小,根据横坐标的大小关系可作判断. 【解答】解:∵k =4>0,∴在第一象限内,y 随x 的增大而减小,∵(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =图像上,且1<2<3<4, ∴y 4最小. 故选:D .4.(2022•云南)反比例函数y =x6的图像分别位于( ) A .第一、第三象限 B .第一、第四象限 C .第二、第三象限D .第二、第四象限【分析】根据反比例函数的性质,可以得到该函数图像位于哪几个象限,本题得以解决.【解答】解:反比例函数y =,k =6>0, ∴该反比例函数图像位于第一、三象限, 故选:A .5.(2022•镇江)反比例函数y =xk(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,写出符合条件的k 的值 (答案不唯一,写出一个即可). 【分析】先根据已知条件判断出函数图像所在的象限,再根据系数k 与函数图像的关系解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,∴此反比例函数的图像在二、四象限, ∴k <0,∴k 可为小于0的任意实数,例如,k =﹣1等. 故答案为:﹣1.6.(2022•福建)已知反比例函数y =xk的图像分别位于第二、第四象限,则实数k 的值可以是 .(只需写出一个符合条件的实数)【分析】根据图像位于第二、四象限,易知k <0,写一个负数即可. 【解答】解:∵该反比例图像位于第二、四象限, ∴k <0,∴k 取值不唯一,可取﹣3, 故答案为:﹣3(答案不唯一).7.(2022•成都)在平面直角坐标系xOy 中,若反比例函数y =xk 2−的图像位于第二、四象限,则k 的取值范围是 .【分析】根据反比例函数的性质列不等式即可解得答案. 【解答】解:∵反比例函数y =的图像位于第二、四象限,∴k ﹣2<0, 解得k <2, 故答案为:k <2.8.(2022•襄阳)二次函数y =ax 2+bx +c 的图像如图所示,则一次函数y =bx +c 和反比例函数y =xa在同一平面直角坐标系中的图像可能是( ) A . B .C .D .【分析】根据二次函数图像开口向下得到a <0,再根据对称轴确定出b ,根据与y 轴的交点确定出c <0,然后确定出一次函数图像与反比例函数图像的情况,即可得解. 【解答】解:∵二次函数图像开口方向向下, ∴a <0,∵对称轴为直线x =﹣>0,∴b >0,∵与y 轴的负半轴相交, ∴c <0,∴y =bx +c 的图像经过第一、三、四象限, 反比例函数y =图像在第二四象限, 只有D 选项图像符合. 故选:D .9.(2022•菏泽)根据如图所示的二次函数y =ax 2+bx +c 的图像,判断反比例函数y =xa与一次函数y =bx +c 的图像大致是( )A .B .C .D .【分析】先根据二次函数的图像,确定a 、b 、c 的符号,再根据a 、b 、c 的符号判断反比例函数y =与一次函数y =bx +c 的图像经过的象限即可. 【解答】解:由二次函数图像可知a >0,c <0, 由对称轴x =﹣>0,可知b <0,所以反比例函数y =的图像在一、三象限,一次函数y =bx +c 图像经过二、三、四象限. 故选:A .10.(2022•安顺)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则一次函数y =ax +b 和反比例函数y =xc(c ≠0)在同一直角坐标系中的图像可能是( ) A . B .C .D .【分析】直接利用二次函数图像经过的象限得出a ,b ,c 的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y =ax 2+bx +c 的图像开口向上, ∴a >0,∵该抛物线对称轴位于y 轴的右侧, ∴a 、b 异号,即b <0. ∵抛物线交y 轴的负半轴,∴c <0,∴一次函数y =ax +b 的图像经过第一、三、四象限,反比例函数y =(c ≠0)在二、四象限. 故选:A .11.(2022•西藏)在同一平面直角坐标系中,函数y =ax +b 与y =axb(其中a ,b 是常数,ab ≠0)的大致图像是( )A .B .C .D .【分析】根据a 、b 的取值,分别判断出两个函数图像所过的象限,要注意分类讨论. 【解答】解:若a >0,b >0,则y =ax +b 经过一、二、三象限,反比例函数y =(ab ≠0)位于一、三象限,若a >0,b <0,则y =ax +b 经过一、三、四象限,反比例函数数y =(ab ≠0)位于二、四象限, 若a <0,b >0,则y =ax +b 经过一、二、四象限,反比例函数y =(ab ≠0)位于二、四象限, 若a <0,b <0,则y =ax +b 经过二、三、四象限,反比例函数y =(ab ≠0)位于一、三象限, 故选:A .12.(2022•张家界)在同一平面直角坐标系中,函数y =kx +1(k ≠0)和y =xk(k ≠0)的图像大致是( )A.B.C.D.【分析】分k>0或k<0,根据一次函数与反比例函数的性质即可得出答案.【解答】解:当k>0时,一次函数y=kx+1经过第一、二、三象限,反比例函数y=位于第一、三象限;当k<0时,一次函数y=kx+1经过第一、二、四象限,反比例函数y=位于第二、四象限;故选:D.13.(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图像如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=xc ba++24在同一平面直角坐标系中的图像大致是()A.B.C.D.【分析】由二次函数y=ax2+bx+c的部分函数图像判断a,b2﹣4ac及4a+2b+c的符号,即可得到答案.【解答】解:∵二次函数y=ax2+bx+c的部分函数图像开口向上,∴a>0,∵二次函数y =ax 2+bx +c 的部分函数图像顶点在x 轴下方,开口向上, ∴二次函数y =ax 2+bx +c 的图像与x 轴有两个交点,b 2﹣4ac >0, ∴一次函数y =ax +b 2﹣4ac 的图像位于第一,二,三象限,由二次函数y =ax 2+bx +c 的部分函数图像可知,点(2,4a +2b +c )在x 轴上方, ∴4a +2b +c >0, ∴y =的图像位于第一,三象限,据此可知,符合题意的是B , 故选:B .14.(2022•贺州)已知一次函数y =kx +b 的图像如图所示,则y =﹣kx +b 与y =xb的图像为( )A .B .C .D .【分析】本题形数结合,根据一次函数y =kx +b 的图像位置,可判断k 、b 的符号;再由一次函数y =﹣kx +b ,反比例函数y =中的系数符号,判断图像的位置.经历:图像位置﹣系数符号﹣图像位置.【解答】解:根据一次函数y =kx +b 的图像位置,可判断k >0、b >0. 所以﹣k <0.再根据一次函数和反比例函数的图像和性质, 故选:A .15.(2022•广西)已知反比例函数y =xb(b ≠0)的图像如图所示,则一次函数y =cx ﹣a (c ≠0)和二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图像可能是( )A .B .C .D .【分析】本题形数结合,根据反比例函数y =(b ≠0)的图像位置,可判断b >0;再由二次函数y =ax 2+bx +c (a ≠0)的图像性质,排除A ,B ,再根据一次函数y =cx ﹣a (c ≠0)的图像和性质,排除C .【解答】解:∵反比例函数y =(b ≠0)的图像位于一、三象限, ∴b >0;∵A 、B 的抛物线都是开口向下,∴a <0,根据同左异右,对称轴应该在y 轴的右侧, 故A 、B 都是错误的.∵C 、D 的抛物线都是开口向上,∴a >0,根据同左异右,对称轴应该在y 轴的左侧, ∵抛物线与y 轴交于负半轴, ∴c <0由a >0,c <0,排除C . 故选:D .16.(2022•滨州)在同一平面直角坐标系中,函数y =kx +1与y =﹣xk(k 为常数且k ≠0)的图像大致是( )A .B .C .D .【分析】根据一次函数和反比例函数的性质即可判断.【解答】解:当k >0时,则﹣k <0,一次函数y =kx +1图像经过第一、二、三象限,反比例函数图像在第二、四象限,所以A 选项正确,C 选项错误;当k <0时,一次函数y =kx +1图像经过第一、二,四象限,所以B 、D 选项错误. 故选:A .17.(2022•德阳)一次函数y =ax +1与反比例函数y =﹣xa在同一坐标系中的大致图像是( )A .B .C .D .【分析】根据一次函数与反比例函数图像的特点,可以从a >0,和a <0,两方面分类讨论得出答案.【解答】解:分两种情况:(1)当a >0,时,一次函数y =ax +1的图像过第一、二、三象限,反比例函数y =﹣图像在第二、四象限,无选项符合;(2)当a <0,时,一次函数y =ax +1的图像过第一、二、四象限,反比例函数y =﹣图像在第一、三象限,故B 选项正确. 故选:B .18.(2022•阜新)已知反比例函数y =x k (k ≠0)的图像经过点(﹣2,4),那么该反比例函数图像也一定经过点( )A .(4,2)B .(1,8)C .(﹣1,8)D .(﹣1,﹣8)【分析】先把点(﹣2,4)代入反比例函数的解析式求出k 的值,再对各选项进行逐一判断即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(﹣2,4),∴k =﹣2×4=﹣8,A 、∵4×2=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;B 、∵1×8=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;C 、﹣1×8=﹣8,∴此点在反比例函数的图像上,故本选项正确;D 、(﹣1)×(﹣8)=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误. 故选:C .19.(2022•襄阳)若点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =x2的图像上,则y 1,y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定 【分析】根据反比例函数图像上点的坐标特征即可求解.【解答】解:∵点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =的图像上,k =2>0,∴在每个象限内y 随x 的增大而减小,∵﹣2<﹣1,∴y 1>y 2,故选:C .20.(2022•海南)若反比例函数y =xk (k ≠0)的图像经过点(2,﹣3),则它的图像也一定经过的点是( )A .(﹣2,﹣3)B .(﹣3,﹣2)C .(1,﹣6)D .(6,1) 【分析】将(2,﹣3)代入y =(k ≠0)即可求出k 的值,再根据k =xy 解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(2,﹣3),∴k =2×(﹣3)=﹣6,A 、﹣2×(﹣3)=6≠﹣6,故A 不正确,不符合题意;B 、(﹣3)×(﹣2)=6≠﹣6,故B 不正确,不符合题意;C 、1×(﹣6)=﹣6,故C 正确,符合题意,D 、6×1=6≠﹣6,故D 不正确,不符合题意.故选:C .21.(2022•武汉)已知点A (x 1,y 1),B (x 2,y 2)在反比例函数y =x6的图像上,且x 1<0<x 2,则下列结论一定正确的是( )A .y 1+y 2<0B .y 1+y 2>0C .y 1<y 2D .y 1>y 2 【分析】先根据反比例函数y =判断此函数图像所在的象限,再根据x 1<0<x 2判断出A (x 1,y 1)、B (x 2,y 2)所在的象限即可得到答案.【解答】解:∵反比例函数y =中的6>0,∴该双曲线位于第一、三象限,且在每一象限内y 随x 的增大而减小,∵点A (x 1,y 1),B (x 2,y 2)在反比例函数y =的图像上,且x 1<0<x 2,∴点A 位于第三象限,点B 位于第一象限,∴y 1<y 2.故选:C .22.(2022•天津)若点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =x8的图像上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 3 【分析】根据函数解析式算出三个点的横坐标,再比较大小.【解答】解:点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =的图像上, ∴x 1==4,x 2==﹣8,x 3==2. ∴x 2<x 3<x 1,故选:B .23.(2022•淮安)在平面直角坐标系中,将点A (2,3)向下平移5个单位长度得到点B ,若点B 恰好在反比例函数y =xk 的图像上,则k 的值是 .【分析】点A (2,3)向下平移5个单位长度得到点B (2,﹣2),代入y =利用待定系数法即可求得k 的值.【解答】解:将点A (2,3)向下平移5个单位长度得到点B ,则B (2,﹣2), ∵点B 恰好在反比例函数y =的图像上,∴k =2×(﹣2)=﹣4,故答案为:﹣4.24.(2022•北京)在平面直角坐标系xOy 中,若点A (2,y 1),B (5,y 2)在反比例函数y =xk (k >0)的图像上,则y 1 y 2(填“>”“=”或“<”). 【分析】先根据函数解析式中的比例系数k 确定函数图像所在的象限,再根据各象限内点的坐标特征及函数的增减性解答.【解答】解:∵k >0,∴反比例函数y =(k >0)的图像在一、三象限,∵5>2>0,∴点A (2,y 1),B (5,y 2)在第一象限,y 随x 的增大而减小,∴y 1>y 2,故答案为:>.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解:(1)反比例函数的表达式为 y=2x7,一次函数的表达式为 y=34x -145;
(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5, ∴P(0,0)或(10,0);
②当 AB=AP 时,如图,由(1)可得,BD=4,易知,点 P 与点 B 关于 AD 对称,∴DP=BD=4; ∴OP=5+4+4=13,∴P(13,0);③当 PB=AP 时,设 P(a,0),∵A(9,3),B(5,0),∴AP2=(9-a)2+9,BP2=(5-a)2,∴ (9-a)2+9=(5-a)2,∴a=685,∴P(685,0),即:满足条件的点 P 的坐标为(0, 0)或(10,0)或(13,0)或(685,0).
解:(1)把点 P(2,4)代入 y=k1x 得 k1=2,把 P(2,4)代入 y=kx2得 k2 =8;
(2)∵A(4,0),B(0,3),∴AO=4,BO=3.如图,延长 A′C 交 x 轴于 点 D,由平移可得 A′P=AO=4.又∵A′C∥y 轴,P(2,4),∴点 C 的横坐
标为 2+4=6. 当 x=6 时,y=86=43,即 C(6,43).设直线 PC 的表达式为 y=kx+b,
3.∵AH∥BC,OH=BH,∴
MH

1 2
BC

3 2


AM

AH

MH

92.∵AM∥BC,∴△ADM∽△BDC,∴ADDB=ABMC =32.
[对应训练] 1. (2019·泰安)已知一次函数 y=kx+b 的图象与反比例函数 y=mx 的图 象交于点 A,与 x 轴交于点 B(5,0),若 OB=AB,且 S△OAB=125. (1)求反比例函数与一次函数的表达式; (2)若点 P 为 x 轴上一点,△ABP 是等腰三角形,求点 P 的坐标.
2. (2017·江西)如图,直线 y=k1x(x≥0)与双曲线 y=kx2相交于点 P(2, 4).已知点 A(4,0),B(0,3),连接 AB,将 Rt△AOB 沿 OP 方向平移,使 点 O 移动到点 P,得到△A′PB′.过点 A′作 A′C∥y 轴交双曲线于点 C.
(1)求 k1 与 k2 的值; (2)求直线 PC 的表达式; (3)直接写出线段 AB 扫过的面积.
(1)k=___-__6___,b=__5__; (2)求点 D 的坐标; (3)若将△ODC 绕点 O 逆时针旋转,得到△OD′C′,其中点 D′落在 x 轴 负半轴上,判断点 C′是否落在函数 y=kx(x<0)的图象上,并说明理由.
解:(2)如图①,过点 D 作 DM⊥x 轴,垂足为点 M,过点 A 作 AN⊥x 1
解:(1)过点 A 作 AH⊥x 轴,垂足为点 H,AH 交 OC 于点 M,如图.∵OA =AB,AH⊥OB,
∴OH=BH=12OB=2,∴AH= OA2-OH2=6,∴点 A 的坐标为(2, 6).∵A 为反比例函数 y=kx图象上的一点,∴k=2×6=12;
(2)∵BC⊥x 轴,OB=4,点 C 在反比例函数 y=1x2图象上,∴BC=
= 25-41070=51717,∴C′的坐标为(-51717,201717),∵-5 1717×201717 ≠-6,∴点 C′不在函数 y=-6x的图象上.
中考数学总复习 题型十二 反比例函数与几何图形综合题
类型二 反比例函数与几何结合
例 2 (2019·苏州)如图,A为反比例函数 y=kx(其中 x>0)图象上的一点, 在 x 轴正半轴上有一点 B,OB=4.连接 OA,AB,且 OA=AB=2 10.
(1)求 k 的值; (2)过点 B 作 BC⊥OB,交反比例函数 y=kx(其中 x>0)的图象于点 C, 连接 OC 交 AB 于点 D,求ADDB的值.
【分析】(1)过点 A 作 AH⊥x 轴,垂足为点 H,AH 交 OC 于点 M,利 用等腰三角形的性质可得出 DH 的长,利用勾股定理可得 AH,进而得点 A 坐标,再利用反比例函数图象上点的坐标特征即可求出 k 值;(2)由 OB 的长, 利用反比例函数图象上点的坐标特征可得出 BC 的长,利用三角形中位线定 理 可 求 出 MH 的 长 , 进 而 可 得 出 AM 的 长 , 由 AM∥BC 可 得 出 △ADM∽△BDC,利用相似三角形的性质即可求出ADDB的值.
轴,垂足为点 N,∵SS△ △OODACC=212OOCC··DAMN =23,∴DAMN =23.又∵点 A 的坐标为(- 1,6),∴AN=6,∴DM=4,即点 D 的纵坐标为 4,把 y=4 代入 y=-x +5 中,得,x=1,
∴D(1,4);
(3)由题意可知,OD′=OD= OM2+DM2= 17,如图②,过点 C′ 作 C′G⊥x 轴,垂足为 G,∵S△ODC=S△OD′C′,∴OC·DM=OD′·C′G,即 5×4= 17C′G,∴C′G=201717,在 Rt△OC′G 中,∵OG= OC′2-C′G2
把 P(2,4),C(6,43)代入得344==62kk++bb,,解得kb==1-3623,,
∴直线 PC 的表达式为 y=-23x+136; (3)线段 AB 扫过的面积为 22.
3. (2019·连云港)如图,在平面直角坐标系 xOy 中,函数 y=-x+b 的 图象与函数 y=kx(x<0)的图象相交于点 A(-1,6),并与 x 轴交于点 C. 点 D 是线段 AC 上一点,△ODC 与△OAC 的面积比为 2∶3.
相关文档
最新文档